
©2011 EDSIG (Education Special Interest Group of the AITP) Page 1

www.aitp-edsig.org /www.jisar.org

Volume 4, No. 1
April 2011

ISSN: 1946-1836

Journal of

Information Systems Applied Research

In this issue:

4. A Process for Assessing Voting System Risk Using Threat Trees

Alec Yasinsac, University of South Alabama,

Harold Pardue, University of South Alabama

17 Development of an Evaluation Model for XBRL-enabled Tools Intended for

Investors

Barbara Clements, Southeast Missouri State University,

Dana Schwieger, Southeast Missouri State University,

Ken Surendran, Southeast Missouri State University

30 Factors Influencing People to Use Linux

D. Scott Hunsinger, Appalachian State University

Susanna Fransen, Appalachian State University

39 How Mobile Technology is Changing Our Culture

Jamie Pinchot, Robert Morris University

Karen Paullet, Robert Morris University

Daniel Rota, Robert Morris University

49 Creating a Framework for Research on Virtual Organizations

Bryan Reinicke, University of North Carolina Wilmington

57 The Potential Reality of Service-Oriented Architecture (SOA) in a Cloud

Computing Strategy

James P. Lawler, Pace University

Anthony Joseph, Pace University

Journal of Information Systems Applied Research (JISAR) 4 (1)
 April 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 2

www.aitp-edsig.org /www.jisar.org

The Journal of Information Systems Applied Research (JISAR) is a double-blind peer-
reviewed academic journal published by EDSIG, the Education Special Interest Group of AITP,
the Association of Information Technology Professionals (Chicago, Illinois). Publishing
frequency is currently semi-annual. The first date of publication is December 1, 2008.

JISAR is published online (http://jisar.org) in connection with CONISAR, the Conference on
Information Systems Applied Research, which is also double-blind peer reviewed. Our sister
publication, the Proceedings of CONISAR, features all papers, panels, workshops, and
presentations from the conference. (http://conisar.org)

The journal acceptance review process involves a minimum of three double-blind peer reviews,
where both the reviewer is not aware of the identities of the authors and the authors are not
aware of the identities of the reviewers. The initial reviews happen before the conference. At
that point papers are divided into award papers (top 15%), other journal papers (top 30%),
unsettled papers, and non-journal papers. The unsettled papers are subjected to a second
round of blind peer review to establish whether they will be accepted to the journal or not. Those
papers that are deemed of sufficient quality are accepted for publication in the JISAR journal.
Currently the target acceptance rate for the journal is about 45%.

Questions should be addressed to the editor at editor@jisar.org or the publisher at
publisher@jisar.org.

2011 AITP Education Special Interest Group (EDSIG) Board of Directors

Alan Peslak

Penn State University

President 2011

Wendy Ceccucci

Quinnipiac University

Vice President

Tom Janicki

Univ of NC Wilmington

President 2009-2010

Scott Hunsinger

Appalachian State University
Membership Director

Michael Smith

High Point University
Secretary

Brenda McAleer

Univ of Maine Augusta
Treasurer

Michael Battig
Saint Michael’s College

Director

George Nezlek
Grand Valley State University

Director

Leslie J. Waguespack Jr
Bentley University

Director

Mary Lind
North Carolina A&T St Univ

Director

Li-Jen Shannon
Sam Houston State Univ

Director

S. E. Kruck
James Madison University

JISE Editor

 Kevin Jetton
Texas State University

FITE Liaison

Copyright © 2011 by the Education Special Interest Group (EDSIG) of the Association of Information Technology
Professionals (AITP). Permission to make digital or hard copies of all or part of this journal for personal or classroom
use is granted without fee provided that the copies are not made or distributed for profit or commercial use. All copies
must bear this notice and full citation. Permission from the Editor is required to post to servers, redistribute to lists, or
utilize in a for-profit or commercial use. Permission requests should be sent to Scott Hunsinger, Editor,
editor@jisar.org.

mailto:editor@jisar.org
mailto:editor@jisar.org

Journal of Information Systems Applied Research (JISAR) 4 (1)
 April 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 3

www.aitp-edsig.org /www.jisar.org

Journal of

Information Systems Applied Research

Editors

Scott Hunsinger

Senior Editor

Appalachian State University

Thomas Janicki
Publisher

University of North Carolina Wilmington

Alan Peslak
Associate Editor

Penn State University

JISAR Editorial Board

Alan Abrahams
Virginia Tech

Ronald Babin
Ryerson University

Mike Battig
Saint Michael’s College

Gerald DeHondt II
Grand Valley State University

Terri Lenox
Westminster College

Mary Lind
North Carolina A&T State University

Brenda McAleer
University of Maine at Augusta

George Nezlek
Grand Valley State University

Doncho Petkov
Eastern Connecticut State University

Samuel Sambasivam
Azusa Pacific University

Li-Jen Shannon
Sam Houston State University

Michael Smith
High Point University

Leslie Waguespack
Bentley University

Laurie Werner
Miami University

Bruce White
Quinnipiac University

Journal of Information Systems Applied Research (JISAR) 4 (1)
 April 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 4

www.aitp-edsig.org /www.jisar.org

Voting System Risk Assessment:

A Process Using Threat Trees

Alec Yasinsac
yasinsac@gmail.com

Harold Pardue

hpardue@usouthal.edu

School of Computer and Information Sciences,

University of South Alabama
Mobile, Al 36688-0002, USA

Abstract

Security continues to be a critical issue in the safe operation of electronic voting machines. Risk

assessment is the process of determining if a particular voting system is at risk and what steps can be
taken to mitigate the risk. We propose an iterative risk assessment process using threat trees. This
process involves using a voting system risk taxonomy to categorize a threat, a schema to express

logical hypothesis about a threat, generating a threat tree through functional decomposition,
expressing threat instance semantics as nodal properties with metrics, validating the threat instance
through independent representations, and finally pruning the tree for enhanced usability and
understandability. This process provides guidance to an analyst in using threat trees to conduct risk

assessment of electronic voting systems. Because this process is based on abstract and extendable
structures, it facilitates the comparison and validation of independent risk evaluations. Prospective
voting system risk assessment metrics are provided.

Keywords: electronic voting systems, risk assessment, threat trees, taxonomy

1. INTRODUCTION

In their 2004 seminal work Kohono, Stubblefield,
Rubin and Wallach (2004) et al. closed the book
on the question of whether security mechanisms

were critical to safe operation of electronic

voting machines. Their analysis showed that
there were many critical vulnerabilities in a
widely used voting system. That work also
precipitated a firestorm of vulnerability analyses
that further confirmed that existing electronic
voting system security mechanisms were
insufficient to ensure election integrity.

This paper represents a first step in providing
guidance to analysts for systematically
determining if particular voting systems are at

risk and to identify steps that can mitigate that
risk. There is significant work documented in the
literature regarding fault analysis (Clifton, 1999)
and threat tree analysis (Schneier, 1999; Uppal,
2007; Evans, Heinbuch, Kyle, & Porokowski,

2004), but our work details a specific approach
for specifying voting system threats that can
facilitate risk analysis.

As information systems go, voting applications
are relatively simple. Their core function is to
capture the will of the eligible voters. There are
no complex algorithms; addition is simple

arithmetic and the numbers are relatively small,
as computer computations go.

mailto:yasinsac@gmail.com
mailto:hpardue@usouthal.edu

Journal of Information Systems Applied Research (JISAR) 4 (1)
 April 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 5

www.aitp-edsig.org /www.jisar.org

On the other hand, voting systems have been
under attack for centuries, with malicious parties
trying to influence, or control electoral
outcomes. An important challenge to conducting

effective elections is to protect against these
manipulative threats.

In this paper, we introduce a process for
identifying, categorizing, specifying, validating,
and pruning voting system threats. At the core
of this process is the threat tree.

A threat tree is a data structure for representing

the steps that an attacker would take to exploit
a vulnerability in order to accomplish malicious
intent. While there has recently been much

discussion of voting system threats and
numerous voting system security vulnerability
assessments, (Black Box Voting, 2005);

Yasinsac, Wagner, Bishop, Baker, Medeiros,
Tyson, Shamos, & Burmester, 2007; Gardner,
Yasinsac, Bishop, Kohno, Hartley, Kerski,
Gainey, Walega, Hollander, & Gerke, 2007;
California Secretary of State, 2007; Epstein,
2007; & Alaska, 2008) we are unaware of any
systematic or formal effort to catalog, specify,

and validate voting system threat trees.

Threat trees allow the analyst to (1)
Descriptively name nodes as threat goals and
steps (2) Graphically express logical

relationships between nodes and (3) Define
attack goal and step semantic properties as
nodal attributes. Collectively these three

characteristics allow the abstraction and
precision that are necessary to reason
comparatively about fundamentally different
threats.

The remainder of this paper provides a detailed
description and discussion of the risk

assessment process followed by a brief
summary.

2. VOTING SYSTEM RISK ASSESSMENT
PROCESS

The purpose of the voting system risk

assessment process is to provide guidance to an
analyst in using threat trees to conduct risk

analysis of voting systems. The power of this
process derives from the use abstraction to
produce artifacts that categorize and illuminate
important voting system security issues while
facilitating a balance between detail and
complexity. These artifacts, because they are
based on generalizations that are flexible and

extensible yet explicit in their construction,

enable an analyst to compare and validate
independent evaluations of risk. In other words,
these generalizations provide a common
structure upon which to express individual

perceptions, metrics, and analyses.

The threat tree generation process consists of
six iterative steps (see Figure 1). The first step
is to identify the threat as a high level attack
goal. In the second step, the analyst rigorously
defines the high level goal by assigning relevant
parameters from the voting system attack

taxonomy, creating new taxonomy parameters
where necessary. This level of detail provides
the foundation for the refinement step that

follows.

Figure 1. Risk Assessment Process.

In the fundamental step of the process, threat

tree generation, the analyst conducts functional
decomposition, recursively expanding each node
into its requisite tasks. The recursive functional
decomposition continues until the threat is
refined sufficiently to conduct the necessary
analysis. The result of this step is a threat tree.

With the threat tree defined, each node is
assigned attributes that capture properties that
are relevant to the analyst. These attributes may
be metrics, data points that allow analysts to
compute metrics, or simply observations that
provide the analyst a point of reference for their

analytical processes. They differ from the

taxonomy parameters in that while taxonomy
parameters are generic threat properties that
allow threat categorization, these attributes are
specific to the analyst's risk assessment goals.

In the fifth step, the analyst iterates the first
four steps to validate and enhance the threat
tree. Each of the first four steps increases

specificity, adding detail to the threat processes
and properties.

Journal of Information Systems Applied Research (JISAR) 4 (1)
 April 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 6

www.aitp-edsig.org /www.jisar.org

In the final step, the analyst prunes the threat
tree through abstraction leaving a threat tree
that is well understood and whose threat
instances can be comparatively analyzed.

The remainder of this section contains a detailed
description of each step in using the voting
system risk assessment process.

2.1. IDENTIFY THE THREAT

The first step is to identify the high level threat.
The analyst may derive high level threats
through literature searches, brainstorming,

personal experience, newspaper articles, etc. To
be most useful, the identified threat's impact

must be tangible and measurable. For example,
the threat: "Remove a ballot from a ballot box"
is concrete while "Change an election result" is
inherently ambiguous.

2.2. APPLY THE TAXONOMY

The second step of the process requires the
analyst to define the high-level threat in abstract
yet precise terms. In order for these definitions
to be useful in making independent comparisons
and analysis, threats must be categorized
according to a common structure. We offer a

voting system threat taxonomy for this purpose.
Our extensible voting system risk taxonomy can

capture important properties of voting system
vulnerability and those that may seek to create
corresponding exploits. This taxonomy employs
a hierarchical structure based on attribute n-
tuples , where the lower levels comprehensively

describe the properties of the parent.

2.2.1. TAXONOMY CLASSIFICATION

Taxonomy fundamentally classifies the target
group. That is, it provides commonality among
group members in a way that can facilitate
understanding and application. For example, our

proposed taxonomy provides a mechanism for
analysts to more precisely capture the threats
that they are expected to analyze. This

abstraction may be realized by searching, for
example, against attribute wild cards, i.e. all
attacks that accomplish wholesale impact, or all
attacks that involve rogue poll workers.

These abstractions may allow elections officials
to devise procedures that can systematically
mitigate the defined threats. For example,
preventing voters from accessing removable
media eliminates the class of attacks that pairs
the following:

<Role(Voter), AttackVector(RemovableMedia)>

Similarly, if the voting system does not include
commercial off the shelf software, then all
attacks associated with the attribute

<Software(COTS)> are eliminated.

Finally, the taxonomy can allow the analyst to
identify and syntactically prohibit conflicting
attributes. For example, it may not be possible
to conduct a DoS attack after the voting period
ends. We term these “constraints” in the
taxonomy and represent them as predicate

pairs, e.g.:

<Objective(DoS), Phase(AfterVotingPeriod)>

One challenge of modeling any process or issue
is to decide what level of detail is optimum.
Excessive detail can unnecessarily complicate
the model, while too little detail can limit its

usefulness. Our voting system threat taxonomy’s
present form is easily extensible. As threat
attributes emerge, they may be added to the
tree depth or items of less interest may be
removed. Moreover, the model can be
automated to prompt manual entry guided by
the taxonomy’s syntax.

The content of the threat taxonomy is based on
an extensive review of the extant literature and
the experience and expertise of the authors. The

taxonomy was constructed in a top-down
process where each logical structure block was
decomposed into non-overlapping sub-block
structures.

We provide our voting system threat taxonomy
as Appendix A.

2.2.2. SCHEMA

The voting system risk taxonomy enables the
analyst to consistently classify threats through a
common syntax. However, the usefulness of the

resulting artifacts will be limited if 1) the analyst
does not have a means of consistently
expressing the logical hypothesis engendered by

the definition of an attack and 2) a consistent
means of expressing terms contained in those
hypothesis. A schema serves both needs.

We generate voting system threat tree

definitions and schema by creating logical
hypothesis regarding prospective voting system
attacks and we capture that hypothesis as n-
tuple expressions. For example, we posit, as
definition, that the only two overarching voting
system attack goals are to either alter or ensure
a contest result or to negatively impact voter

Journal of Information Systems Applied Research (JISAR) 4 (1)
 April 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 7

www.aitp-edsig.org /www.jisar.org

confidence. We capture that hypothesis as
follows:

VSAttack = <AlterContestDecision,
UndermineVoterConfidence>

We similarly posit that there are only four ways
that an attacker can alter a contest decision,
given as:

AlterContestDecision = <AddVotes,
DeleteVotes, FlipVotes, AlterCount>

Further, votes are either physical or electronic,
so:

DeleteVotes=

<DeleteAcceptedBallotsPhysical,
DeleteAcceptedBallotsElectronic>

Finally, we propose the following hypothesis
regarding any attacker's ability to delete an
accepted physical ballot, stated as a schema:

schema:
DeleteAcceptedBallotsPhysical.[Phase].[Cont
rol] = <GainPrivateAccessToABPs.

RemoveABPsFromControlledCustody,

MoveABPsToPrivateSpace>

This schema stands as a template or skeleton for
any voting system attack that involves deleting

physical ballots.

The definitions and schema above reveal the
pseudo-formal language approach that we
adopt. Our conventions include:

• Use short phrases coupled as long
words, with the first letter of each word
in caps

• Only abbreviate well known terms or
phrases

• Establish a data dictionary of node
names

We provide an extended set of definitions and
schema as Appendix B.

2.3. GENERATE THREAT TREE

Step three involves the recursive functional
decomposition of a threat into a collection of
goals and steps necessary to carry out a threat.
The recursive functional decomposition
continues until the threat is refined sufficiently
to conduct the necessary analysis. The result of

this step is a threat tree.

2.3.1. THREAT TREES

For our purposes, a threat defines the process
that one or more attackers might take to
accomplish a malicious act in an election. The

"tree" is a powerful abstraction that graphically
captures relationships among nodes that are
hierarchically connected by directional edges,
while allowing analysts to express individual
node properties as nodal attributes. The tree
structure allows a systematic approach to threat
analysis, including facilitating abstraction and

decomposition and allows analysts to categorize
goals and steps so they can focus on those that
are most critical.

For threat trees to be most useful, node names
must capture the node's core function, whether
the node is a goal or a step. Short, succinct

names allow the analyst to recognize the
collective meaning of the tree based on node
type, name, and connectivity.

2.3.2. THREAT TREE COMPONENTS

In order to leverage tree structures to represent
threat processes, we define voting system threat
trees so that their graphical properties capture

important process relationship properties. We
accomplish this by establishing the three node
types of AND, OR, and TERMINAL .

Subordination reflects specification through
functional decomposition, so nodes higher in the
tree are abstractions of subordinate nodes. All
nodes that are immediately subordinate to an

AND node must be carried out in order to meet
higher level goals, while OR node subordinates
reflect alternate means to accomplish an
intended function. TERMINAL nodes have no
subordinates, thus reflect the primitive
operations (i.e. steps) that accomplish the

modeled threat, while AND and OR nodes reflect
intermediate attack goals. We provide a glossary
of terms related to voting system threat trees as
Appendix C. Figure 2 illustrates a generic threat
tree composed of AND [A, D], OR [B, I], and
TERMINAL [C, E, F, G, H, J, K] nodes.

A tree represents many threat instances, or

attacks, as a combination of TERMINAL nodes
that satisfy the logical requirements of the tree.
For example, in order to realize threat A, an
attacker would have to carry out goals B, C and
D. Accomplishing E, F, or G would accomplish B,
while H and J or K would be needed to
accomplish D. Thus, <E, C, H, K> is one attack

represented in Figure 1, as is <G, C, H, K>.
There are four other TERMINAL node (step)

Journal of Information Systems Applied Research (JISAR) 4 (1)
 April 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 8

www.aitp-edsig.org /www.jisar.org

combinations (threat instances) that realize
threat A.

Figure 2. Generic Voting System Threat Tree.

We can identify several properties of the threat
instances captured in this tree without knowing

any of the nodes' semantic properties. We know
for example that:

• The tree depth is four and its breadth is
seven

• This tree represents exactly six distinct
threat instances

• Each threat instance requires four steps
(i.e. four TERMINAL nodes)

• Nodes C and H are necessarily steps in
every threat instance

These are computations that can be applied to
all tree structures and all other routine tree
algorithms and provability properties similarly

apply to these trees. Thus, we know that
splitting a TERMINAL node into an OR node
doubles the number of represented distinct
attack instances. If the split is an AND node, it
adds one step to each attack instance that
includes the replaced node. The practical
importance of these properties and

computations will be evidenced in the validation
of threat tree metrics.

We also know that canonical limitations that
apply to tree structures also apply to our voting
system threat tree, most importantly that their
size expands rapidly relative to their breadth

and depth. In our approach, tree depth is
controlled by the level of detail necessary to
describe the goal or activity represented in the
node. These decisions are made by the analyst.

For example, if a particular threat may involve
the task of "Picking a lock", one analyst may
encode that task as a TERMINAL node, while
another may encode it as an AND node with the

subordinate TERMINAL nodes of "Acquire
necessary skill and knowledge" AND "Attain
Necessary Access" AND "Acquire necessary
tools" AND "Pick the lock". The latter approach
adds one level of depth to its branch.

Note that we intentionally avoid temporal
notions of step or goal sequencing in the tree's

graphical representation. If sequencing is
important to a specific analysis, temporal
dependencies may be expressed as nodal

properties.

2.4. ASSIGN NODAL PROPERTIES

At this stage in the process, the focus shifts

from the syntax of generic threat categorization
to the semantics of the primitive operations
(steps) of a threat in the context of a specific
risk assessment. The analyst must define a
threat instance for an attack (a realization of a
threat) and assign attributes specific to the
threat instance. The two attributes required by

our process are likelihood and impact. Likelihood
is the probability that an attack will be realized
and impact measures the consequences of an
attack. Both likelihood and impact are expressed

and measured as quantifiable metrics.

2.4.1. THREAT INSTANCE

The unit of evaluation for voting system threat

trees is a threat instance, or equivalently, an
attack, thus an attack is the realization of a
threat. We choose to focus on primitive
operations (steps) because steps can be
associated with a metric. For example, an
analyst can estimate how much or how little of

some resource is required to carry out a given
set of steps. A goal represents an attacker's
purpose or objective. As such, it is more difficult
to assign quantifiable metrics to a purpose or
objective than it is to a concrete activity or

sequence of steps.

Metrics are important because they allow the

analyst to compare and validate independent
evaluations. This allows the analyst to reason
comparatively about fundamentally different
threats to voting systems. However, it is not
always possible or feasible to provide direct
evaluations of all possible sets of primitive
operations or steps in a threat tree because of

the potential for state space explosion.

Journal of Information Systems Applied Research (JISAR) 4 (1)
 April 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 9

www.aitp-edsig.org /www.jisar.org

We use goal nodes to abstract multiple sets of
steps into a single logical unit of evaluation and
thus mitigate this problem. Abstraction can
reduce tree depth and make evaluation

tractable. For example, in Figure 2, if we
understood the properties of node I sufficiently
to collapse it into a TERMINAL node, thus
eliminating nodes J and K, it would reduce the
number of threat instances by half (from six to
three). Thus, it may make sense to decompose
goals in order to reason about them, but where

that understanding is sufficiently detailed, to
evaluate the tree at a higher abstraction level to
reduce the evaluation state space.

2.4.2. THREAT INSTANCE METRICS

Threat tree nodes may have many, sometimes
seemingly contradictory, properties that dictate

or influence a goal or step's occurrence
LIKELIHOOD or its potential IMPACT. These are,
of course, the two parameters for assessing
voting system risk. Voting systems in the United
States are highly complex. Consequently, risk
LIKELIHOOD and IMPACT are varied and difficult
to capture and express. It is not uncommon for

two highly qualified election experts to disagree
vehemently regarding the voting system risk.

We highlight some voting system threat node
attributes that capture a perspective of each of

these properties in this section.

2.4.2.1. LIKELIHOOD METRICS

We may measure LIKELIHOOD and IMPACT as a

continuous variable on a 0 to 1 scale. For the
former, 0 (as the lower LIKELIHOOD extreme)
would indicate that the event will not (or cannot)
occur, while 1 (at the upper extreme) means
that the event is certain to occur. For the latter,
0 would reflect no impact while a catastrophic

result would represent the opposite extreme
impact. Alternatively, a simple three step
discrete metric of high, medium, and low could
also represent LIKELIHOOD and/or IMPACT.

The only absolute in estimating risk likelihood is
that there are no absolutes. Issues of relativity,
temporality, uncertainty, and other qualifications

render even the most intuitively accurate
assumptions invalid, or worse yet,
counterproductive. The best that we can hope
for is to leverage heuristics to find metrics that
incorporate best practice experience and offer
analysts a chance at estimating comparative
risk. We offer a few such prospective voting

system risk assessment metrics below.

Cost. The resource commitment required to
carry out a voting system attack always bounds
the prospective attacker's options. Money, labor,
time, and equipment are canonical resources

that are represented in a cost metric.

Necessary expertise. We may expect that a
requirement for specialized knowledge or skill
diminishes the likelihood of an attack occurring.
The obvious likelihood limitation is that
specialized expertise injects is to reduce the pool
of potential attackers or increases the time and

resources that an attacker needs to carry out
the attack. It also likely indicates that there is
an advanced sophistication, and a resulting

elevated complexity, in the prospective attack.

Detectability. Detection can enable prevention
of many types of voting system attacks. It can

also allow officials to punish perpetrators after
the fact and can allow correction of damage
caused by a voting system attack.

We use the term "detectability" to capture the
notion of how difficult or likely it is that an
attack will be detected. We posit generally that
attacks, events, and actions that are more likely

to be detected are less likely to be attempted
and that they are less likely to achieve
maximum impact than those that are more
difficult to detect.

2.4.2.2. IMPACT METRICS

Generically, we think of threat IMPACT as the
magnitude or degree of damage that will, or is

expected to, occur as a result of a realized
threat. In practice, IMPACT is context exclusive
to the extent that the same voting system threat
may have a catastrophic impact in one
environment, but be essentially benign in a
different environment. Assignment of the

IMPACT metric is a major and important task of
the analyst and requires significant subject
matter expertise.

The two primary overarching goals of voting
system attacks are either to impact election

integrity or to influence public's perception about
the election. Thus, we partition IMPACT metrics

according to these two aspects and address
IMPACT as the magnitude of the effect on voting
system integrity or public perception.

2.4.2.3. INTEGRITY IMPACT METRICS

Voting system integrity attacks are what we
think of when we discuss election fraud, that is,
integrity attacks maliciously influence a contest

Journal of Information Systems Applied Research (JISAR) 4 (1)
 April 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 10

www.aitp-edsig.org /www.jisar.org

result in an election. This encompasses canonical
election fraud issues, such as ballot stuffing.

Voting system integrity attack impact ranges
from deleting one legal vote (or equivalently,

injecting one illegal vote) with no impact on any
contest selection, to controlling the selected
candidate or issue decision in all contests. Voting
system integrity issues are either related to vote
counting (process where each voter selection is
added to the total, one by one) or aggregation
(where subtotals are combined to reflect the

cumulative result). The following metrics are
illustrative (as opposed to comprehensive) and
represent issues that are relevant to risk

assessment.

Without knowing a contest result a priori, an
attack waged during the voting period has the

best chance to be decisive if it can effect a large
volume of votes . Such attacks are similar in
many ways to wholesale purchasing tactics and
the term "wholesale vote fraud" has become
part of the election integrity vernacular.
Wholesale attacks optimize effort-to-effect ratio,
or more mathematically, retail attacks are linear

in terms of the effort-to-effect ratio, while
wholesale attacks are geometric (or exponential)
in effort-to-effect ratio.

Knowing the magnitude of change necessary to

control an electoral decision can be important to
an attacker, allowing a small number of votes to
be decisive. We have recently seen two federal

elections (Minnesota Senate 2008 election and
New York's 2009 special election for their 20th
Congressional district) decided by only a few
hundred votes. Each of these contests was
vulnerable to post voting period attacks where a
relatively small malicious change could be

decisive.

2.4.2.4. PUBLIC PERCEPTION IMPACT
METRICS

For a malicious party that desires to negatively
influence election-related public perception, the

prospective damage ranges from generating
isolated incidents of misunderstanding to

wrongfully creating widespread belief that one or
more electoral decisions were influenced by
error or malice. While election integrity attacks
against voting systems predominantly involve
data and processes that are integral to
conducting an election, perception issues are
uniformly driven through mass information

dissemination media that is separate from the
voting system. The voting system responsibility

in this process is to be able to provide strong,
accurate information about election activity.
Thus, attacks on public perception are either
voting system independent, or involve modifying

data reported to public dissemination media, as
reflected in the following illustrative metrics.

Elections officials uniformly rely on validation
mechanisms both to ensure election integrity
and to reassure the public of election accuracy.
Virtually all validation mechanisms employ some
type of redundancy, so attackers may attack

either the primary electoral product or the
validation data in order to create a negative
perception (Yasinsac & Bishop, 2008). For

example, ballot accounting procedures measure
the number of ballots issued against the
counted. A public perception attack may target

the records of the number of ballots issued so
that validation will suggest that there were more
voters than ballots. The greater the disparity,
the greater the potential to create negative
public perception.

2.4.3. THREAT INSTANCE STOPPING
FUNCTION

A challenge to any system based on functional
decomposition is how to fashion a stopping
function. That is, it can be difficult to identify the
best or most effective abstraction level to ensure

that the decomposition process does not reach a
point of diminishing returns.

In our case, decomposition stops when the

analyst can assign values to the nodal attributes
with sufficient precision to accomplish the
necessary global computations. For example, if
our metric is cost, the analyst must decompose
the task to the level that the cost of each step is
clear and justifiably assigned. Justification may

be based on the skill of the analyst or upon
some predefined threshold, but the degree of
precision is always dictated by the metric's
context.

Cumulative analysis must then begin at the

TERMINAL nodes that comprise each threat
instance, which is our unit of evaluation. To

illustrate, we compute the cost (C) of instance
(i) of threat (a) as (C(a, i)), which is the sum of
the costs of the steps required to carry out
threat instance (a, i). For example. if <E, C, H,
K> is instance 1 of threat A, as shown in Figure
1 on page 5 above, we compute:

C(A,1) = C(E) + C(C) + C(H) + C(K)

Journal of Information Systems Applied Research (JISAR) 4 (1)
 April 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 11

www.aitp-edsig.org /www.jisar.org

Thus, the fundamental voting system threat tree
unit of evaluation is horizontal. That is, metrics
are assigned at the TERMINAL nodes and those
values are accumulated by threat instance,

which reflects the tree's greatest specificity level
and the level where the metric is assigned.

2.5. VALIDATE THREAT TREE

Since there are no well known metrics, metric
validation is essential to the voting system risk
assessment process. One way to approach
validation is through comparing independent

representations. With voting system threat
trees, if metrics have suitable computational

properties, we can use redundancy by
comparing expert assessment against computed
values.

To accomplish this validation, an analyst would

employ a five stage analysis.

1. Select a metric that that can be assigned
based on expert opinion

2. Create an algorithm for computing a
parent node's metric based on the child
metric values8.

3. Apply expert metric evaluation rules to

every node in the tree

4. Compute the metric value for each goal

node and

5. For non-terminal nodes, compare the
value assigned in Step 3 to the value
that is vertically computed from its
subordinate nodes in Step 4.

To illustrate, consider the simple [hypothetical]
threat tree in Figure 3 with the nodes:

A: Threaten voting equipment

B: Create malware

C: Install the malware

D: Design attack

E: Gain necessary knowledge

F: Determine sleepover location

G: Gain access to sleepover location at an
appropriate time.

Figure 3. Simple, Generic Threat Tree.

We now conduct the five stage analysis:

1. Select cost metric C

2. Compute the cost of a parent as the sum
of the cost of the children

3. For instructional purposes, assume that
the analyst opinion review assigns the
cost of each node to be:

(1) C(A) = 75, C(B) = 10, C(C) = 100,
C(D) = 5, C(E) = 5, C(F) = 50, C(G) =

100

4. We compute the cost of the non-terminal
nodes is:

(2) C(A) = 160, C(B) = 10, C(C) = 150

5. Comparison of evaluations (3) and (4)
reveals an inconsistency between the
expert analysis and computed analysis

at the highest level, which would not be
surprising. It also reveals an
inconsistency between the expert
evaluation at the intermediate level for
node C, suggesting reanalysis of
assigned values for nodes F and G, or

consideration of re-examining node C's
decomposition.

Journal of Information Systems Applied Research (JISAR) 4 (1)
 April 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 12

www.aitp-edsig.org /www.jisar.org

2.6. PRUNE THREAT TREE

The goal of pruning the threat tree is to strike a
balance between abstraction and detail. The tree
must have sufficient detail to be useful and

understandable by the analyst. However, too
much detail creates a model that is
unnecessarily complex. Complexity creates
excessive cognitive load for the analyst
(reducing understandability) while potentially
make quantitative analysis of the tree’s metrics
intractable (reducing usefulness).

For example, in the simplified threat tree
depicted in Figure 2, assume that step E (Gain
necessary knowledge) was originally

decomposed into two additional OR steps: “H:
Interview insider” OR “I: Review software
components”. Perhaps the analyst constructing

the threat tree, after validating the tree’s
metrics, determined that considering whether
the attacker interviewed a vendor employee OR
obtained a copy of a software component for
private review was extraneous to understanding
the likelihood and impact of the attack.
Therefore, to reduce the complexity of the tree,

make the tree more understandable and usable,
these two steps were pruned from the threat
tree.

3. SUMMARY

In this paper, we propose a voting system risk
assessment process that leverages three
characteristics of threat trees: the ability to (1)

Descriptively name nodes as threat goals and
steps (2) Graphically express logical
relationships between nodes and (3) Define
attack goal and step semantic properties as
nodal attributes. Collectively these three
characteristics allow the abstraction and

precision that are necessary to reason
comparatively about fundamentally different
threats.

The provision of a voting system risk taxonomy
and schema facilitates the comparison and

validation of independent risk evaluations. That
is, because the taxonomy provides a common

syntax for categorizing threats and the schema
provides a means of expressing logical
hypothesis in consistent terms, the risk
assessment of independent analysts can be
compared in a logical and quantifiable manner.
Further, because this process is based on
abstract, extendable and common structures, it

can be effective for facilitating group risk
assessment. Rather than comparing independent

risk evaluations after the fact, analysts can work
collectively through each phase of the process.

Future research should include a vetting or
validation of the schema and taxonomy by

voting systems domain experts.

4. ACKNOWLEDGEMENT

This work was supported in part by the Election
Assistance Commission under grant EAC-RDV08-
R-001.

5. REFERENCES

Alaska, (2008) Election Security Project, Division

of Elections, January 18, 2008. Retrieved on
June 2010 from
http://www.elections.alaska.gov/election_se
curity.php.

Black Box Voting, (2005) The Black Box Report,
SECURITY ALERT: Critical Security Issues

with Diebold Optical Scan Design. Retrieved
June 2010 from
http://www.blackboxvoting.org/BBVreport.p
df.

Brennan Center (2006) The Machinery of
Democracy: Protecting Elections in an
Electronic World, Brennan Center Task Force

on Voting System Security, Lawrence

Norden, Chair.

California Secretary of State, (2007) UC Final
Reports for the Top-to-Bottom Review (July-
Aug. 2007). Retrieved on June 2010 from
http://www.sos.ca.gov/elections/elections_v
sr.htm.

Clifton, E. (1999) Fault Tree Analysis - A History.
Proceedings of the 17th International
Systems Safety Conference.

Epstein, J. (2007) Improving Kentucky’s
Electronic Voting System Certifications.
Letter to Kentucky Attorney General,

September 27, 2007. Retrieved on June
2010 from

http://ag.ky.gov/NR/rdonlyres/1B3F7428-
0728-4E83-AADB-
51343C13FA29/0/votingexpertletter.pdf.

Evans, S., Heinbuch, D., Kyle, E., & Prokowski,
J. (2004) Risk-based Systems Security

Engineering: Stopping attacks with
intention, IEEE Security & Privacy 2(6) 59-
62.

Gardner, R., Yasinsac, A., Bishop, M., Kohno, T.,
Hartley, Z., Kerski, J., Gainey, D., Walega,

Journal of Information Systems Applied Research (JISAR) 4 (1)
 April 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 13

www.aitp-edsig.org /www.jisar.org

R., Hollander, E., & Gerke, M. (2007)
Software Review and Security Analysis of
the Diebold Voting Machine Software”, Final
Report For the Florida Department of State,

July 27, 2007. Retrieved on June 2010 from
http://election.dos.state.fl.us/pdf/SAITreport
.pdf.

Kohno, T., Stubblefield, A., Rubin, A., &
Wallach, D. (2004) Analysis of an Electronic
Voting System. IEEE Symposium on Security
and Privacy, May 9-12, 27-40.

Schneier, B. (1999) Attack Trees. Dr. Dobb's
Journal, December, 24(12).

Uppal, V. (2007) The Importance of Threat
Modeling, IRM Research White Paper.
Retrieved June 2010 from
http://www.irmplc.com/downloads/whitepap

ers/Threat_Modelling.pdf

Yasinsac, A, Wagner, D., Bishop, M., Baker, T.,
Medeiros, D., Tyson, G., Shamos, M., &
Burmester, M. (2007) Software Review and
Security Analysis of the ES&S iVotronic

8.0.1.2 Voting Machine Firmware, Final
Report, Security and Assurance in
Information Technology Laboratory, Florida
State University, February 23. Retrieved on
June 2010 from
http://election.dos.state.fl.us/pdf/FinalAudR
epSAIT.pdf.

Yasinsac A. & Bishop, M. (2008) The Dynamics
of Counting and Recounting Votes, IEEE
Security and Privacy Magazine, 6(3) 22-29.

Editor’s Note:

This paper was selected for inclusion in the journal as a CONISAR 2010 Distinguished Paper. The
acceptance rate is typically 7% for this category of paper based on blind reviews from six or more
peers including three or more former best papers authors who did not submit a paper in 2010.

Journal of Information Systems Applied Research (JISAR) 4 (1)
 April 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 14

www.aitp-edsig.org /www.jisar.org

Appendix A. Voting System Threat Taxonomy

VSRisk = <Attack, Impact, Likelihood>

Impact = <Magnitude, ContestBreadth, NumberOfContests, Persistence>

Magnitude = <Retail, Wholesale, CloseRace>

ContestBreadth = <Federal, State, Local>

NumberOfContests = <SingleContest, MultipleArbitraryContests,

MultipleContestsOfGivenType>

Persistence = <SingleElection, MultipleCycles, Perpetual>

Likelihood = <Low, VeryLow, UnMeasurable, UnImaginable>

Attack = <VS, Command, VSRiskTo, Environment, Protocol, MaliciousIntruder+>

VS = <PCOS, CCOS, VBM, VBP, DRE, PBHC, IV, BMD>

Command = <Adjustable, Precision>

Adjustable = <ChangeOnDemand, LimitedChange, FireAndForget>

Precision = <Candidate, Contest, Party>

VSRiskTo = <ElectionAccuracy, VoteAttribution, VoterConfidence>

ElectionAccuracy = <VoteError, AccumulationError>

VoteAttribution = <VoteBuying, VoteSelling, VoterCoersion>

Environment = <Vulnerability, Phase>

Vulnerability = <Software, Hardware>

Software = <VendorFirmware, COTS, ElectionDefinition>

ElectionDefinition = <BallotDef, ConfigItems>

Phase = <BeforePollsOpen, DuringVoting, AfterPollsClose>

Protocol = <Objective+, AttackVector+, Tree>

Objective = <ChangeCount, DoS, VoteAttribution, DiscreditCount>

ChangeCount = <BallotStuffing, BallotDeletion, VoteFlipping>

VoteAttributionPurpose = <VoteBuying, VoteSelling, VoterCoersion,

GeneralIrritation>

DiscreditCount = <CountAuditMismatch, PublicAnomaly>

AttackVector = <VoterInput, SupervisorEntryDevice, RemovableMedia,

Network, VendorKey>

MaliciousIntruder = <Role, Skills, Resources>

Role = <Voter, PollWorker, Auditor, ElectionsOfficial, OfficeAdmin>

ElectionsOfficial = <Permanent, Temp>

Permanent = <County, State, Vendor>

Temp = <CountyOffice, Precinct>

Skills = <HighTech, TechFamiliar, SpecificSkills, TechNovice>

Journal of Information Systems Applied Research (JISAR) 4 (1)
 April 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 15

www.aitp-edsig.org /www.jisar.org

Appendix B. Voting System Threat Tree Schema

VSAttack = <AlterContestDecision, UndermineVoterConfidence>

AlterContestDecision = <AddVotes, DeleteVotes, FlipVotes, AlterCount>

UndermineVoterConfidence = <AlterAuditData, AlterContestTotals, DenialOfService,
CreateOperationalProblems>

DeleteVotes = <DeleteAcceptedBallotsPhysical, DeleteAcceptedBallotsElectronic>

AddVotes = <StuffPhysicalBallotBox, CreateBallotImages>

schema: DeleteAcceptedBallotsPhysical.[Phase].[Control] =

GainPrivateAccessToABPs

RemoveABPsFromControlledCustody

MoveABPsToPrivateSpace

DeleteAcceptedBallotsPhysical.[Phase:AVP].[Control:none] =

GainPrivateAccessToABPs

PollWorkerAutomatic or ElectionsOfficialAutomatic or TriggerPollingPlaceFireAlarm

RemoveABPsFromControlledCustody

StealBallotBox or RemoveBallotsFromBox

ConcealContraband

MoveABPsToPrivateSpace

DeleteAcceptedBallotsPhysical.[Phase:AVP].[Control:AcceptedBallotCoC] =

GainPrivateAccessToABPs,

PollWorkerAutomatic or ElectionsOfficialAutomatic or TriggerPollingPlaceFireAlarm,

RemoveABPsFromControlledCustody(Constraint(RiskCoCDetection)),

MoveABPToPrivateSpace

Schema: DeleteAcceptedBallotsElectronic.[Phase].[Control].[HackVector]

Phase = <BVP, DVP, AVP, DR>

HackVector = <Malware, SupervisorMode, BadData, NetHack, RemovableMediaHack>

Control = <CommonControl, EControl, PControl>

CommonControl = <RandomAudit, PollWatchers, TwoPersonIntergrity>

EControl = <L&STest, EquipCoC, ParallelTesting, HashCodeTest>

PControl = <VotableBallotCoC, AcceptedBallotCoC, BallotAccounting,
BallotWatermarking>

DeleteAcceptedBallotsElectronic.[Phase:Any].[Control:none].[HackVector:Malware] =

CreateMalware, InstallMalware

DeleteAcceptedBallotsElectronic.[Phase:DVP].[Control:none].[HackVector:Malware] =

CreateMalware(BVP, DVP), InstallMalware(BVP, DVP)

DeleteAcceptedBallotsElectronic.[Phase:DVP].[Control:L&ATest].[HackVector:Malware] =

CreateMalware, InstallMalware(Constraint(DefeatL&A or InstallAfterL&A))

file:///C:/Users/AppData/Local%20Settings/temp/Control.htm
file:///C:/Users/AppData/Local%20Settings/temp/CoC.htm

Journal of Information Systems Applied Research (JISAR) 4 (1)
 April 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 16

www.aitp-edsig.org /www.jisar.org

Appendix C. Voting System Threat Terminology

1. Attack. The specific actions that one or more attackers might take to accomplish a

malicious act in an election. Every attack represented in a threat tree is a threat

instance or, equivalently, a threat realization.

2. Branch. In a tree, a collection of connected nodes and their edges.

3. Directed (Edge or Graph). A directed edge is a non-symmetric edge that reflect

some type of ordering. Directed graphs employ only directed edges.

4. Edge. Connection between two nodes.

5. Goal. A inner node of a threat tree, i.e. a node that has subordinate nodes.

6. Node. A component of a voting system threat tree that represents a goal or step in

a voting system attack. In our model, there are three node types: AND, OR, and

TERMINAL.

7. Path. A set of nodes and edges that connect two nodes in a graph.

8. Step. A TERMINAL or leaf node that represents a single act or event in a voting

system attack.

9. Threat. The process that one or more attackers might take to accomplish a

malicious act in an election.

10. Threat Instance. A set of TERMINAL nodes that collectively satisfy all logical

requirements of the threat tree. Every threat instance represents a specific

prospective attack.

11. Threat Tree. A tree whose nodes represent goals and steps in voting system

attacks.

12. Tree. For our purposes, a tree is a directed acyclic graph where each node may have

two or more children and at most one parent node.

13. Voting System. Equipment (including hardware, firmware, and software),

materials, and documentation used to define elections and ballot styles, configure

voting equipment, identify and validate voting equipment configurations, perform

logic and accuracy tests, activate ballots, capture votes, count votes, reconcile

ballots needing special treatment, generate reports, transmit election data, archive

election data, and audit elections.

