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Abstract  
 
Security continues to be a critical issue in the safe operation of electronic voting machines. Risk 

assessment is the process of determining if a particular voting system is at risk and what steps can be 
taken to mitigate the risk. We propose an iterative risk assessment process using threat trees. This 
process involves using a voting system risk taxonomy to categorize a threat, a schema to express 

logical hypothesis about a threat, generating a threat tree through functional decomposition, 
expressing threat instance semantics as nodal properties with metrics, validating the threat instance 
through independent representations, and finally pruning the tree for enhanced usability and 
understandability. This process provides guidance to an analyst in using threat trees to conduct risk 

assessment of electronic voting systems. Because this process is based on abstract and extendable 
structures, it facilitates the comparison and validation of independent risk evaluations. Prospective 
voting system risk assessment metrics are provided. 

 
Keywords: electronic voting systems, risk assessment, threat trees, taxonomy 
 

 
1.  INTRODUCTION 

In their 2004 seminal work Kohono, Stubblefield, 
Rubin and Wallach (2004) et al. closed the book 
on the question of whether security mechanisms 

were critical to safe operation of electronic 

voting machines. Their analysis showed that 
there were many critical vulnerabilities in a 
widely used voting system. That work also 
precipitated a firestorm of vulnerability analyses 
that further confirmed that existing electronic 
voting system security mechanisms were 
insufficient to ensure election integrity.  

This paper represents a first step in providing 
guidance to analysts for systematically 
determining if particular voting systems are at 

risk and to identify steps that can mitigate that 
risk. There is significant work documented in the 
literature regarding fault analysis (Clifton, 1999) 
and threat tree analysis (Schneier, 1999; Uppal, 
2007; Evans, Heinbuch, Kyle, & Porokowski, 

2004), but our work details a specific approach 
for specifying voting system threats that can 
facilitate risk analysis. 

As information systems go, voting applications 
are relatively simple. Their core function is to 
capture the will of the eligible voters. There are 
no complex algorithms; addition is simple 

arithmetic and the numbers are relatively small, 
as computer computations go.  

mailto:yasinsac@gmail.com
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On the other hand, voting systems have been 
under attack for centuries, with malicious parties 
trying to influence, or control electoral 
outcomes. An important challenge to conducting 

effective elections is to protect against these 
manipulative threats. 

In this paper, we introduce a process for 
identifying, categorizing, specifying, validating, 
and pruning voting system threats. At the core 
of this process is the threat tree. 

A threat tree is a data structure for representing 

the steps that an attacker would take to exploit 
a vulnerability in order to accomplish malicious 
intent. While there has recently been much 

discussion of voting system threats and 
numerous voting system security vulnerability 
assessments, (Black Box Voting, 2005); 

Yasinsac, Wagner, Bishop, Baker, Medeiros, 
Tyson, Shamos, & Burmester, 2007; Gardner, 
Yasinsac, Bishop, Kohno, Hartley, Kerski, 
Gainey, Walega, Hollander, & Gerke, 2007; 
California Secretary of State, 2007; Epstein, 
2007; & Alaska, 2008) we are unaware of any 
systematic or formal effort  to catalog, specify, 

and validate voting system threat trees. 

Threat trees allow the analyst to (1) 
Descriptively name nodes as threat goals and 
steps (2) Graphically express logical 

relationships between nodes and (3) Define 
attack goal and step semantic properties as 
nodal attributes. Collectively these three 

characteristics allow the abstraction and 
precision that are necessary to reason 
comparatively about fundamentally different 
threats. 

The remainder of this paper provides a detailed 
description and discussion of the risk 

assessment process followed by a brief 
summary. 

2.  VOTING SYSTEM RISK ASSESSMENT 
PROCESS 

The purpose of the voting system risk 

assessment process is to provide guidance to an 
analyst in using threat trees to conduct risk 

analysis of voting systems. The power of this 
process derives from the use abstraction to 
produce artifacts that categorize and illuminate 
important voting system security issues while 
facilitating a balance between detail and 
complexity. These artifacts, because they are 
based on generalizations that are flexible and 

extensible yet explicit in their construction, 

enable an analyst to compare and validate 
independent evaluations of risk. In other words, 
these generalizations provide a common 
structure upon which to express individual 

perceptions, metrics, and analyses. 

The threat tree generation process consists of 
six iterative steps (see Figure 1). The first step 
is to identify the threat as a high level attack 
goal. In the second step, the analyst rigorously 
defines the high level goal by assigning relevant 
parameters from the voting system attack 

taxonomy, creating new taxonomy parameters 
where necessary. This level of detail provides 
the foundation for the refinement step that 

follows. 

 

 

Figure 1. Risk Assessment Process. 

In the fundamental step of the process, threat 

tree generation, the analyst conducts functional 
decomposition, recursively expanding each node 
into its requisite tasks. The recursive functional 
decomposition continues until the threat is 
refined sufficiently to conduct the necessary 
analysis. The result of this step is a threat tree.  

With the threat tree defined, each node is 
assigned attributes that capture properties that 
are relevant to the analyst. These attributes may 
be metrics, data points that allow analysts to 
compute metrics, or simply observations that 
provide the analyst a point of reference for their 

analytical processes. They differ from the 

taxonomy parameters in that while taxonomy 
parameters are generic threat properties that 
allow threat categorization, these attributes are 
specific to the analyst's risk assessment goals. 

In the fifth step, the analyst iterates the first 
four steps to validate and enhance the threat 
tree. Each of the first four steps increases 

specificity, adding detail to the threat processes 
and properties.  
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In the final step, the analyst prunes the threat 
tree through abstraction leaving a threat tree 
that is well understood and whose threat 
instances can be comparatively analyzed.  

The remainder of this section contains a detailed 
description of each step in using the voting 
system risk assessment process. 

2.1.  IDENTIFY THE THREAT 

The first step is to identify the high level threat. 
The analyst may derive high level threats 
through literature searches, brainstorming, 

personal experience, newspaper articles, etc. To 
be most useful, the identified threat's impact 

must be tangible and measurable. For example, 
the threat: "Remove a ballot from a ballot box" 
is concrete while "Change an election result" is 
inherently ambiguous. 

2.2.  APPLY THE TAXONOMY 

The second step of the process requires the 
analyst to define the high-level threat in abstract 
yet precise terms. In order for these definitions 
to be useful in making independent comparisons 
and analysis, threats must be categorized 
according to a common structure. We offer a 

voting system threat taxonomy for this purpose. 
Our extensible voting system risk taxonomy can 

capture important properties of voting system 
vulnerability and those that may seek to create 
corresponding exploits. This taxonomy employs 
a hierarchical structure based on attribute n-
tuples , where the lower levels comprehensively 

describe the properties of the parent. 

2.2.1.  TAXONOMY CLASSIFICATION 

Taxonomy fundamentally classifies the target 
group. That is, it provides commonality among 
group members in a way that can facilitate 
understanding and application. For example, our 

proposed taxonomy provides a mechanism for 
analysts to more precisely capture the threats 
that they are expected to analyze. This 

abstraction may be realized by searching, for 
example, against attribute wild cards, i.e. all 
attacks that accomplish wholesale impact, or all 
attacks that involve rogue poll workers. 

These abstractions may allow elections officials 
to devise procedures that can systematically 
mitigate the defined threats. For example, 
preventing voters from accessing removable 
media eliminates the class of attacks that pairs 
the following:  

<Role(Voter), AttackVector(RemovableMedia)>  

Similarly, if the voting system does not include 
commercial off the shelf software, then all 
attacks associated with the attribute 

<Software(COTS)> are eliminated. 

Finally, the taxonomy can allow the analyst to 
identify and syntactically prohibit conflicting 
attributes. For example, it may not be possible 
to conduct a DoS attack after the voting period 
ends. We term these “constraints” in the 
taxonomy and represent them as predicate 

pairs, e.g.: 

<Objective(DoS), Phase(AfterVotingPeriod)> 

One challenge of modeling any process or issue 
is to decide what level of detail is optimum. 
Excessive detail can unnecessarily complicate 
the model, while too little detail can limit its 

usefulness. Our voting system threat taxonomy’s 
present form is easily extensible. As threat 
attributes emerge, they may be added to the 
tree depth or items of less interest may be 
removed. Moreover, the model can be 
automated to prompt manual entry guided by 
the taxonomy’s syntax.  

The content of the threat taxonomy is based on 
an extensive review of the extant literature and 
the experience and expertise of the authors. The 

taxonomy was constructed in a top-down 
process where each logical structure block was 
decomposed into non-overlapping sub-block 
structures. 

We provide our voting system threat taxonomy 
as Appendix A. 

2.2.2.  SCHEMA 

The voting system risk taxonomy enables the 
analyst to consistently classify threats through a 
common syntax. However, the usefulness of the 

resulting artifacts will be limited if 1) the analyst 
does not have a means of consistently 
expressing the logical hypothesis engendered by 

the definition of an attack and 2) a consistent 
means of expressing terms contained in those 
hypothesis. A schema serves both needs. 

We generate voting system threat tree 

definitions and schema by creating logical 
hypothesis regarding prospective voting system 
attacks and we capture that hypothesis as n-
tuple expressions. For example, we posit, as 
definition, that the only two overarching voting 
system attack goals are to either alter or ensure 
a contest result or to negatively impact voter 
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confidence. We capture that hypothesis as 
follows: 

VSAttack = <AlterContestDecision, 
UndermineVoterConfidence> 

We similarly posit that there are only four ways 
that an attacker can alter a contest decision, 
given as: 

AlterContestDecision = <AddVotes, 
DeleteVotes, FlipVotes, AlterCount> 

Further, votes are either physical or electronic, 
so: 

DeleteVotes= 

<DeleteAcceptedBallotsPhysical, 
DeleteAcceptedBallotsElectronic> 

Finally, we propose the following hypothesis 
regarding any attacker's ability to delete an 
accepted physical ballot, stated as a schema: 

schema: 
DeleteAcceptedBallotsPhysical.[Phase].[Cont
rol] = <GainPrivateAccessToABPs. 

RemoveABPsFromControlledCustody, 

MoveABPsToPrivateSpace> 

This schema stands as a template or skeleton for 
any voting system attack that involves deleting 

physical ballots.  

The definitions and schema above reveal the 
pseudo-formal language approach that we 
adopt. Our conventions include: 

• Use short phrases coupled as long 
words, with the first letter of each word 
in caps 

• Only abbreviate well known terms or 
phrases 

• Establish a data dictionary of node 
names 

We provide an extended set of definitions and 
schema as Appendix B. 

2.3.  GENERATE THREAT TREE 

Step three involves the recursive functional 
decomposition of a threat into a collection of 
goals and steps necessary to carry out a threat. 
The recursive functional decomposition 
continues until the threat is refined sufficiently 
to conduct the necessary analysis. The result of 

this step is a threat tree. 

2.3.1.  THREAT TREES 

For our purposes, a threat defines the process 
that one or more attackers might take to 
accomplish a malicious act in an election. The 

"tree" is a powerful abstraction that graphically 
captures relationships among nodes that are 
hierarchically connected by directional edges, 
while allowing analysts to express individual 
node properties as nodal attributes. The tree 
structure allows a systematic approach to threat 
analysis, including facilitating abstraction and 

decomposition and allows analysts to categorize 
goals and steps so they can focus on those that 
are most critical. 

For threat trees to be most useful, node names 
must capture the node's core function, whether 
the node is a goal or a step. Short, succinct 

names allow the analyst to recognize the 
collective meaning of the tree based on node 
type, name, and connectivity. 

2.3.2.  THREAT TREE COMPONENTS 

In order to leverage tree structures to represent 
threat processes, we define voting system threat 
trees so that their graphical properties capture 

important process relationship properties. We 
accomplish this by establishing the three node 
types of AND, OR, and TERMINAL . 

Subordination reflects specification through 
functional decomposition, so nodes higher in the 
tree are abstractions of subordinate nodes. All 
nodes that are immediately subordinate to an 

AND node must be carried out in order to meet 
higher level goals, while OR node subordinates 
reflect alternate means to accomplish an 
intended function. TERMINAL nodes have no 
subordinates, thus reflect the primitive 
operations (i.e. steps) that accomplish the 

modeled threat, while AND and OR nodes reflect 
intermediate attack goals. We provide a glossary 
of terms related to voting system threat trees as 
Appendix C. Figure 2 illustrates a generic threat 
tree composed of AND [A, D], OR [B, I], and 
TERMINAL [C, E, F, G, H, J, K] nodes. 

A tree represents many threat instances, or 

attacks, as a combination of TERMINAL nodes 
that satisfy the logical requirements of the tree. 
For example, in order to realize threat A, an 
attacker would have to carry out goals B, C and 
D. Accomplishing E, F, or G would accomplish B, 
while H and J or K would be needed to 
accomplish D. Thus, <E, C, H, K> is one attack 

represented in Figure 1, as is <G, C, H, K>. 
There are four other TERMINAL node (step) 
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combinations (threat instances) that realize 
threat A. 

 

 

Figure 2. Generic Voting System Threat Tree. 

We can identify several properties of the threat 
instances captured in this tree without knowing 

any of the nodes' semantic properties. We know 
for example that:  

• The tree depth  is four and its breadth  is 
seven 

• This tree represents exactly six distinct 
threat instances 

• Each threat instance requires four steps 
(i.e. four TERMINAL nodes) 

• Nodes C and H are necessarily steps in 
every threat instance 

These are computations that can be applied to 
all tree structures and all other routine tree 
algorithms and provability properties similarly 

apply to these trees. Thus, we know that 
splitting a TERMINAL node into an OR node 
doubles the number of represented distinct 
attack instances. If the split is an AND node, it 
adds one step to each attack instance that 
includes the replaced node. The practical 
importance of these properties and 

computations will be evidenced in the validation 
of threat tree metrics. 

We also know that canonical limitations that 
apply to tree structures also apply to our voting 
system threat tree, most importantly that their 
size expands rapidly relative to their breadth 

and depth. In our approach, tree depth is 
controlled by the level of detail necessary to 
describe the goal or activity represented in the 
node. These decisions are made by the analyst. 

For example, if a particular threat may involve 
the task of "Picking a lock", one analyst may 
encode that task as a TERMINAL node, while 
another may encode it as an AND node with the 

subordinate TERMINAL nodes of "Acquire 
necessary skill and knowledge" AND "Attain 
Necessary Access" AND "Acquire necessary 
tools" AND "Pick the lock". The latter approach 
adds one level of depth to its branch.  

Note that we intentionally avoid temporal 
notions of step or goal sequencing in the tree's 

graphical representation. If sequencing is 
important to a specific analysis, temporal 
dependencies may be expressed as nodal 

properties. 

2.4.  ASSIGN NODAL PROPERTIES 

At this stage in the process, the focus shifts 

from the syntax of generic threat categorization 
to the semantics of the primitive operations 
(steps) of a threat in the context of a specific 
risk assessment. The analyst must define a 
threat instance for an attack (a realization of a 
threat) and assign attributes specific to the 
threat instance. The two attributes required by 

our process are likelihood and impact. Likelihood 
is the probability that an attack will be realized 
and impact measures the consequences of an 
attack. Both likelihood and impact are expressed 

and measured as quantifiable metrics. 

2.4.1.  THREAT INSTANCE 

The unit of evaluation for voting system threat 

trees is a threat instance, or equivalently, an 
attack, thus an attack is the realization of a 
threat. We choose to focus on primitive 
operations (steps) because steps can be 
associated with a metric. For example, an 
analyst can estimate how much or how little of 

some resource is required to carry out a given 
set of steps. A goal represents an attacker's 
purpose or objective. As such, it is more difficult 
to assign quantifiable metrics to a purpose or 
objective than it is to a concrete activity or 

sequence of steps. 

Metrics are important because they allow the 

analyst to compare and validate independent 
evaluations. This allows the analyst to reason 
comparatively about fundamentally different 
threats to voting systems. However, it is not 
always possible or feasible to provide direct 
evaluations of all possible sets of primitive 
operations or steps in a threat tree because of 

the potential for state space explosion.   



Journal of Information Systems Applied Research (JISAR) 4 (1) 
  April 2011 
 

 

©2011 EDSIG (Education Special Interest Group of the AITP)                                            Page 9 

www.aitp-edsig.org /www.jisar.org 

  

We use goal nodes to abstract multiple sets of 
steps into a single logical unit of evaluation and 
thus mitigate this problem. Abstraction can 
reduce tree depth and make evaluation 

tractable. For example, in Figure 2, if we 
understood the properties of node I sufficiently 
to collapse it into a TERMINAL node, thus 
eliminating nodes J and K, it would reduce the 
number of threat instances by half (from six to 
three). Thus, it may make sense to decompose 
goals in order to reason about them, but where 

that understanding is sufficiently detailed, to 
evaluate the tree at a higher abstraction level to 
reduce the evaluation state space. 

2.4.2.  THREAT INSTANCE METRICS 

Threat tree nodes may have many, sometimes 
seemingly contradictory, properties that dictate 

or influence a goal or step's occurrence 
LIKELIHOOD or its potential IMPACT. These are, 
of course, the two parameters for assessing 
voting system risk. Voting systems in the United 
States are highly complex. Consequently, risk 
LIKELIHOOD and IMPACT are varied and difficult 
to capture and express. It is not uncommon for 

two highly qualified election experts to disagree 
vehemently regarding the voting system risk.  

We highlight some voting system threat node 
attributes that capture a perspective of each of 

these properties in this section. 

2.4.2.1.  LIKELIHOOD METRICS 

We may measure LIKELIHOOD and IMPACT as a 

continuous variable on a 0 to 1 scale. For the 
former, 0 (as the lower LIKELIHOOD extreme) 
would indicate that the event will not (or cannot) 
occur, while 1 (at the upper extreme) means 
that the event is certain to occur. For the latter, 
0 would reflect no impact while a catastrophic 

result would represent the opposite extreme 
impact. Alternatively, a simple three step 
discrete metric of high, medium, and low could 
also represent LIKELIHOOD and/or IMPACT. 

The only absolute in estimating risk likelihood is 
that there are no absolutes. Issues of relativity, 
temporality, uncertainty, and other qualifications 

render even the most intuitively accurate 
assumptions invalid, or worse yet, 
counterproductive. The best that we can hope 
for is to leverage heuristics to find metrics that 
incorporate best practice experience and offer 
analysts a chance at estimating comparative 
risk. We offer a few such prospective voting 

system risk assessment metrics below. 

Cost. The resource commitment required to 
carry out a voting system attack always bounds 
the prospective attacker's options. Money, labor, 
time, and equipment are canonical resources 

that are represented in a cost metric.  

Necessary expertise. We may expect that a 
requirement for specialized knowledge or skill 
diminishes the likelihood of an attack occurring. 
The obvious likelihood limitation is that 
specialized expertise injects is to reduce the pool 
of potential attackers or increases the time and 

resources that an attacker needs to carry out 
the attack. It also likely indicates that there is 
an advanced sophistication, and a resulting 

elevated complexity, in the prospective attack.  

Detectability. Detection can enable prevention 
of many types of voting system attacks. It can 

also allow officials to punish perpetrators after 
the fact and can allow correction of damage 
caused by a voting system attack.  

We use the term "detectability" to capture the 
notion of how difficult or likely it is that an 
attack will be detected. We posit generally that 
attacks, events, and actions that are more likely 

to be detected are less likely to be attempted 
and that they are less likely to achieve 
maximum impact than those that are more 
difficult to detect.  

2.4.2.2.  IMPACT METRICS 

Generically, we think of threat IMPACT as the 
magnitude or degree of damage that will, or is 

expected to, occur as a result of a realized 
threat. In practice, IMPACT is context exclusive 
to the extent that the same voting system threat 
may have a catastrophic impact in one 
environment, but be essentially benign in a 
different environment. Assignment of the 

IMPACT metric is a major and important task of 
the analyst and requires significant subject 
matter expertise.  

The two primary overarching goals of voting 
system attacks are either to impact election 

integrity or to influence public's perception about 
the election. Thus, we partition IMPACT metrics 

according to these two aspects and address 
IMPACT as the magnitude of the effect on voting 
system integrity or public perception. 

2.4.2.3.  INTEGRITY IMPACT METRICS 

Voting system integrity attacks are what we 
think of when we discuss election fraud, that is, 
integrity attacks maliciously influence a contest 
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result in an election. This encompasses canonical 
election fraud issues, such as ballot stuffing.  

Voting system integrity attack impact ranges 
from deleting one legal vote (or equivalently, 

injecting one illegal vote) with no impact on any 
contest selection, to controlling the selected 
candidate or issue decision in all contests. Voting 
system integrity issues are either related to vote 
counting (process where each voter selection is 
added to the total, one by one) or aggregation 
(where subtotals are combined to reflect the 

cumulative result). The following metrics are 
illustrative (as opposed to comprehensive) and 
represent issues that are relevant to risk 

assessment.  

Without knowing a contest result a priori, an 
attack waged during the voting period has the 

best chance to be decisive if it can effect a large 
volume of votes . Such attacks are similar in 
many ways to wholesale purchasing tactics and 
the term "wholesale vote fraud" has become 
part of the election integrity vernacular. 
Wholesale attacks optimize effort-to-effect ratio, 
or more mathematically, retail attacks are linear 

in terms of the effort-to-effect ratio, while 
wholesale attacks are geometric (or exponential) 
in effort-to-effect ratio. 

Knowing the magnitude of change necessary to 

control an electoral decision can be important to 
an attacker, allowing a small number of votes to 
be decisive. We have recently seen two federal 

elections (Minnesota Senate 2008 election and 
New York's 2009 special election for their 20th 
Congressional district) decided by only a few 
hundred votes. Each of these contests was 
vulnerable to post voting period attacks where a 
relatively small malicious change could be 

decisive.  

2.4.2.4.  PUBLIC PERCEPTION IMPACT 
METRICS 

For a malicious party that desires to negatively 
influence election-related public perception, the 

prospective damage ranges from generating 
isolated incidents of misunderstanding to 

wrongfully creating widespread belief that one or 
more electoral decisions were influenced by 
error or malice. While election integrity attacks 
against voting systems predominantly involve 
data and processes that are integral to 
conducting an election, perception issues are 
uniformly driven through mass information 

dissemination media that is separate from the 
voting system. The voting system responsibility 

in this process is to be able to provide strong, 
accurate information about election activity. 
Thus, attacks on public perception are either 
voting system independent, or involve modifying 

data reported to public dissemination media, as 
reflected in the following illustrative metrics. 

Elections officials uniformly rely on validation 
mechanisms both to ensure election integrity 
and to reassure the public of election accuracy. 
Virtually all validation mechanisms employ some 
type of redundancy, so attackers may attack 

either the primary electoral product or the 
validation data in order to create a negative 
perception (Yasinsac & Bishop, 2008). For 

example, ballot accounting procedures measure 
the number of ballots issued against the 
counted. A public perception attack may target 

the records of the number of ballots issued so 
that validation will suggest that there were more 
voters than ballots. The greater the disparity, 
the greater the potential to create negative 
public perception. 

2.4.3.  THREAT INSTANCE STOPPING 
FUNCTION 

A challenge to any system based on functional 
decomposition is how to fashion a stopping 
function. That is, it can be difficult to identify the 
best or most effective abstraction level to ensure 

that the decomposition process does not reach a 
point of diminishing returns. 

In our case, decomposition stops when the 

analyst can assign values to the nodal attributes 
with sufficient precision to accomplish the 
necessary global computations. For example, if 
our metric is cost, the analyst must decompose 
the task to the level that the cost of each step is 
clear and justifiably assigned. Justification may 

be based on the skill of the analyst or upon 
some predefined threshold, but the degree of 
precision is always dictated by the metric's 
context.  

Cumulative analysis must then begin at the 

TERMINAL nodes that comprise each threat 
instance, which is our unit of evaluation. To 

illustrate, we compute the cost (C) of instance 
(i) of threat (a) as (C(a, i)), which is the sum of 
the costs of the steps required to carry out 
threat instance (a, i). For example. if <E, C, H, 
K> is instance 1 of threat A, as shown in Figure 
1 on page 5 above, we compute: 

C(A,1) = C(E) + C(C) + C(H) + C(K) 
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Thus, the fundamental voting system threat tree 
unit of evaluation is horizontal. That is, metrics 
are assigned at the TERMINAL nodes and those 
values are accumulated by threat instance, 

which reflects the tree's greatest specificity level 
and the level where the metric is assigned. 

2.5.  VALIDATE THREAT TREE 

Since there are no well known metrics, metric 
validation is essential to the voting system risk 
assessment process. One way to approach 
validation is through comparing independent 

representations. With voting system threat 
trees, if metrics have suitable computational 

properties, we can use redundancy by 
comparing expert assessment against computed 
values.  

To accomplish this validation, an analyst would 

employ a five stage analysis. 

1. Select a metric that that can be assigned 
based on expert opinion 

2. Create an algorithm for computing a 
parent node's metric based on the child 
metric values8. 

3. Apply expert metric evaluation rules to 

every node in the tree  

4. Compute the metric value for each goal 

node and 

5. For non-terminal nodes, compare the 
value assigned in Step 3 to the value 
that is vertically computed from its 
subordinate nodes in Step 4. 

To illustrate, consider the simple [hypothetical] 
threat tree in Figure 3 with the nodes: 

A: Threaten voting equipment 

B: Create malware 

C: Install the malware 

D: Design attack 

E: Gain necessary knowledge 

F: Determine sleepover location 

G: Gain access to sleepover location at an 
appropriate time. 

 

 

Figure 3. Simple, Generic Threat Tree. 

We now conduct the five stage analysis: 

1. Select cost metric C 

2. Compute the cost of a parent as the sum  
of the cost of the children 

3. For instructional purposes, assume that 
the analyst opinion review assigns the 
cost of each node to be: 

(1) C(A) = 75, C(B) = 10, C(C) = 100, 
C(D) = 5, C(E) = 5, C(F) = 50, C(G) = 

100  

4. We compute the cost of the non-terminal 
nodes is: 

(2) C(A) = 160, C(B) = 10, C(C) = 150 

5. Comparison of evaluations (3) and (4) 
reveals an inconsistency between the 
expert analysis and computed analysis 

at the highest level, which would not be 
surprising. It also reveals an 
inconsistency between the expert 
evaluation at the intermediate level for 
node C, suggesting reanalysis of 
assigned values for nodes F and G, or 

consideration of re-examining node C's 
decomposition. 
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2.6.  PRUNE THREAT TREE 

The goal of pruning the threat tree is to strike a 
balance between abstraction and detail. The tree 
must have sufficient detail to be useful and 

understandable by the analyst. However, too 
much detail creates a model that is 
unnecessarily complex. Complexity creates 
excessive cognitive load for the analyst 
(reducing understandability) while potentially 
make quantitative analysis of the tree’s metrics 
intractable (reducing usefulness). 

For example, in the simplified threat tree 
depicted in Figure 2, assume that step E (Gain 
necessary knowledge) was originally 

decomposed into two additional OR steps: “H: 
Interview insider” OR “I: Review software 
components”. Perhaps the analyst constructing 

the threat tree, after validating the tree’s 
metrics, determined that considering whether 
the attacker interviewed a vendor employee OR 
obtained a copy of a software component for 
private review was extraneous to understanding 
the likelihood and impact of the attack. 
Therefore, to reduce the complexity of the tree, 

make the tree more understandable and usable, 
these two steps were pruned from the threat 
tree. 

3.  SUMMARY 

In this paper, we propose a voting system risk 
assessment process that leverages three 
characteristics of threat trees: the ability to (1) 

Descriptively name nodes as threat goals and 
steps (2) Graphically express logical 
relationships between nodes and (3) Define 
attack goal and step semantic properties as 
nodal attributes. Collectively these three 
characteristics allow the abstraction and 

precision that are necessary to reason 
comparatively about fundamentally different 
threats. 

The provision of a voting system risk taxonomy 
and schema facilitates the comparison and 

validation of independent risk evaluations. That 
is, because the taxonomy provides a common 

syntax for categorizing threats and the schema 
provides a means of expressing logical 
hypothesis in consistent terms, the risk 
assessment of independent analysts can be 
compared in a logical and quantifiable manner. 
Further, because this process is based on 
abstract, extendable and common structures, it 

can be effective for facilitating group risk 
assessment. Rather than comparing independent 

risk evaluations after the fact, analysts can work 
collectively through each phase of the process.  

Future research should include a vetting or 
validation of the schema and taxonomy by 

voting systems domain experts. 
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Appendix A. Voting System Threat Taxonomy 

 

VSRisk = <Attack, Impact, Likelihood> 

Impact = <Magnitude, ContestBreadth, NumberOfContests, Persistence> 

Magnitude = <Retail, Wholesale, CloseRace> 

ContestBreadth = <Federal, State, Local> 

NumberOfContests = <SingleContest, MultipleArbitraryContests,  

MultipleContestsOfGivenType> 

Persistence = <SingleElection, MultipleCycles, Perpetual> 

Likelihood = <Low, VeryLow,  UnMeasurable, UnImaginable> 

Attack = <VS, Command, VSRiskTo, Environment, Protocol, MaliciousIntruder+> 

VS = <PCOS, CCOS, VBM, VBP, DRE, PBHC, IV, BMD> 

Command = <Adjustable, Precision> 

Adjustable = <ChangeOnDemand, LimitedChange, FireAndForget> 

Precision = <Candidate, Contest, Party> 

VSRiskTo = <ElectionAccuracy, VoteAttribution, VoterConfidence> 

ElectionAccuracy = <VoteError, AccumulationError> 

VoteAttribution = <VoteBuying, VoteSelling, VoterCoersion> 

Environment = <Vulnerability, Phase> 

Vulnerability = <Software, Hardware> 

Software = <VendorFirmware, COTS, ElectionDefinition> 

ElectionDefinition = <BallotDef, ConfigItems> 

Phase = <BeforePollsOpen, DuringVoting, AfterPollsClose> 

Protocol = <Objective+, AttackVector+, Tree> 

Objective = <ChangeCount, DoS, VoteAttribution, DiscreditCount> 

ChangeCount = <BallotStuffing, BallotDeletion, VoteFlipping> 

VoteAttributionPurpose = <VoteBuying, VoteSelling, VoterCoersion,  

GeneralIrritation> 

DiscreditCount = <CountAuditMismatch, PublicAnomaly> 

AttackVector = <VoterInput, SupervisorEntryDevice, RemovableMedia,  

Network, VendorKey> 

MaliciousIntruder = <Role, Skills, Resources> 

Role = <Voter, PollWorker, Auditor, ElectionsOfficial, OfficeAdmin> 

ElectionsOfficial = <Permanent, Temp> 

Permanent = <County, State, Vendor> 

Temp = <CountyOffice, Precinct> 

Skills = <HighTech, TechFamiliar, SpecificSkills, TechNovice> 

  



Journal of Information Systems Applied Research (JISAR) 4 (1) 
  April 2011 
 

 

©2011 EDSIG (Education Special Interest Group of the AITP)                                            Page 15 

www.aitp-edsig.org /www.jisar.org 

Appendix B. Voting System Threat Tree Schema 

 

VSAttack = <AlterContestDecision, UndermineVoterConfidence> 

AlterContestDecision = <AddVotes, DeleteVotes, FlipVotes, AlterCount> 

UndermineVoterConfidence = <AlterAuditData, AlterContestTotals, DenialOfService, 
CreateOperationalProblems> 

DeleteVotes = <DeleteAcceptedBallotsPhysical, DeleteAcceptedBallotsElectronic> 

AddVotes = <StuffPhysicalBallotBox, CreateBallotImages> 

schema: DeleteAcceptedBallotsPhysical.[Phase].[Control] =  

GainPrivateAccessToABPs 

RemoveABPsFromControlledCustody 

MoveABPsToPrivateSpace 

DeleteAcceptedBallotsPhysical.[Phase:AVP].[Control:none] =  

GainPrivateAccessToABPs 

PollWorkerAutomatic or ElectionsOfficialAutomatic or TriggerPollingPlaceFireAlarm 

RemoveABPsFromControlledCustody 

StealBallotBox or RemoveBallotsFromBox 

ConcealContraband 

MoveABPsToPrivateSpace 

DeleteAcceptedBallotsPhysical.[Phase:AVP].[Control:AcceptedBallotCoC] =  

GainPrivateAccessToABPs,  

PollWorkerAutomatic or ElectionsOfficialAutomatic or TriggerPollingPlaceFireAlarm, 

RemoveABPsFromControlledCustody(Constraint(RiskCoCDetection)), 

MoveABPToPrivateSpace 

Schema: DeleteAcceptedBallotsElectronic.[Phase].[Control].[HackVector] 

Phase = <BVP, DVP, AVP, DR>  

HackVector = <Malware, SupervisorMode, BadData, NetHack, RemovableMediaHack> 

Control = <CommonControl, EControl, PControl> 

CommonControl = <RandomAudit, PollWatchers, TwoPersonIntergrity> 

EControl = <L&STest, EquipCoC, ParallelTesting, HashCodeTest>  

PControl = <VotableBallotCoC, AcceptedBallotCoC, BallotAccounting, 
BallotWatermarking> 

DeleteAcceptedBallotsElectronic.[Phase:Any].[Control:none].[HackVector:Malware] =  

CreateMalware, InstallMalware 

DeleteAcceptedBallotsElectronic.[Phase:DVP].[Control:none].[HackVector:Malware] =  

CreateMalware(BVP, DVP), InstallMalware(BVP, DVP) 

DeleteAcceptedBallotsElectronic.[Phase:DVP].[Control:L&ATest].[HackVector:Malware] =  

CreateMalware, InstallMalware(Constraint(DefeatL&A or InstallAfterL&A)) 

  
  

file:///C:/Users/AppData/Local%20Settings/temp/Control.htm
file:///C:/Users/AppData/Local%20Settings/temp/CoC.htm


Journal of Information Systems Applied Research (JISAR) 4 (1) 
  April 2011 
 

 

©2011 EDSIG (Education Special Interest Group of the AITP)                                            Page 16 

www.aitp-edsig.org /www.jisar.org 

Appendix C. Voting System Threat Terminology 

1. Attack. The specific actions that one or more attackers might take to accomplish a 

malicious act in an election. Every attack represented in a threat tree is a threat 

instance or, equivalently, a threat realization.  

2. Branch. In a tree, a collection of connected nodes and their edges. 

3. Directed (Edge or Graph). A directed edge is a non-symmetric edge that reflect 

some type of ordering. Directed graphs employ only directed edges. 

4. Edge. Connection between two nodes. 

5. Goal. A inner node of a threat tree, i.e. a node that has subordinate nodes. 

6. Node. A component of a voting system threat tree that represents a goal or step in 

a voting system attack. In our model, there are three node types: AND, OR, and 

TERMINAL. 

7. Path. A set of nodes and edges that connect two nodes in a graph. 

8. Step. A TERMINAL or leaf node that represents a single act or event in a voting 

system attack. 

9. Threat. The process that one or more attackers might take to accomplish a 

malicious act in an election.  

10. Threat Instance. A set of TERMINAL nodes that collectively satisfy all logical 

requirements of the threat tree. Every threat instance represents a specific 

prospective attack. 

11. Threat Tree. A tree whose nodes represent goals and steps in voting system 

attacks.  

12. Tree. For our purposes, a tree is a directed acyclic graph where each node may have 

two or more children and at most one parent node. 

13. Voting System. Equipment (including hardware, firmware, and software), 

materials, and documentation used to define elections and ballot styles, configure 

voting equipment, identify and validate voting equipment configurations, perform 

logic and accuracy tests, activate ballots, capture votes, count votes, reconcile 

ballots needing special treatment, generate reports, transmit election data, archive 

election data, and audit elections.  

 

 
 


