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 We analyze how advice from an AI affects complementarities between humans and AI, in particular what 
humans know that an AI does not know:  “unique human knowledge.”  In a multi-method study consisting 
of an analytical model, experimental studies, and a simulation study, our main finding is that human choices 
converge toward similar responses improving individual accuracy.  However, as overall individual accu-
racy of the group of humans improves, the individual unique human knowledge decreases.  Based on this 
finding, we claim that humans interacting with AI behave like “Borgs,” that is, cyborg creatures with strong 
individual performance but no human individuality.  We argue that the loss of unique human knowledge 
may lead to several undesirable outcomes in a host of human–AI decision environments.  We demonstrate 
this harmful impact on the “wisdom of crowds.”  Simulation results based on our experimental data suggest 
that groups of humans interacting with AI are far less effective as compared to human groups without AI 
assistance.  We suggest mitigation techniques to create environments that can provide the best of both worlds 
(e.g., by personalizing AI advice).  We show that such interventions perform well individually as well as in 
wisdom of crowds settings. 
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Introduction  

The expectations and uncertainty about how artificial intelli-
gence (AI) will change the workplace appear boundless.  
Machines now routinely do many tasks not considered 
amenable to automation even a decade ago.  However, even 
if full automation becomes a technical possibility, many 
tasks will probably still rely on human input, as ethical 
(Awad et al. 2018) or legal (Kingston 2016) challenges 
related to fully automated systems remain unresolved.  Also, 
because humans routinely provide complementary capa-
bilities to algorithms, combining humans with machines 
potentially leads to superior outcomes. 
 
We contribute to the growing field of AI-advised human 
decision making where humans receive an AI-based 
suggestion before making final decisions.  Possible appli-
cations are discussed in Bansal et al. (2019a) and include 
medical decision making (e.g., Bayati et al. 2014 on the 
prediction of readmission rates to support physicians) or 
legal support (e.g., Angwin et al. 2016 on recidivism 
prediction to support judges).  The focus of this stream of 
literature is to maximize performance.  In contrast, we focus 
on an effect that has been neglected so far, that is, the 
implications of AI advice on unique human knowledge (i.e., 
the knowledge a human has, but the AI does not).  Unique 
human knowledge has a positive effect on many collab-
orative work environments (Krishnan et al. 1997; Nijstad 
and Stroebe 2006; Paulus and Brown 2007).  As a proof of 
concept, we test the consequences of the effect of AI advice 
on unique human knowledge by considering crowd-based 
aggregation mechanisms, which Surowiecki (2004) referred 
to as the “wisdom of crowds.”  Examples of successful 
wisdom of crowds applications include financial forecasting 
(Kelley and Tetlock 2013) and prediction markets (Wolfers 
and Zitzewitz 2004). 
 
Unique human knowledge results in complementarity 
between humans and AI.  Its existence is widely accepted in 
the literature on AI-advised human decision making (e.g., 
Bansal et al. 2019a, Bichler et al. 2010, Tan et al. 2018, and 
Zhang et al. 2020).  The possibility that humans working 
with AI lose their unique knowledge (i.e., their 
complementarity) can be extremely detrimental to long term 
performance, continuous improvement, and innovation.  
According to Paulus et al. (2019), complementarity is 
essential for groups to arrive at innovative and productive 
ideas.  Exposure to diverse perspectives can increase crea-
tivity (Nijstad and Stroebe 2006; Paulus and Brown 2007), 
and even top-management performance correlates with 
complementarity (Krishnan et al. 1997).  Page (2007) 
models the value of diversity for collective knowledge in the 
so-called diversity prediction theorem, where collective 

performance is stated as a function of individual perfor-
mance and prediction diversity.  However, when humans 
lose this complementarity by losing their unique knowledge, 
the decisions of each individual human start mirroring those 
of other humans and that of the AI.  Thereby, humans start 
acting more like machines or cyborgs (“Borgs”); they strive 
for perfection but are only as perfect as the AI algorithm with 
which they are working.  Humans thus lose their ability to 
improve upon the mechanistic decision making, based on 
past observations and the data that AI decisions are based on.  
We demonstrate that one impact of this loss of uniqueness 
makes humans less effective as a group in the wisdom of 
crowds environments. 
 
Modern AI systems are based on training data observed from 
practice and are not explicitly based on human-defined rules.  
Thus, AI decision rules that are derived from data differ from 
human decision rules, leading to structural complemen-
tarities between humans and AI.  Therefore, there are task 
instances where a human performs better than AI due to 
“unique human knowledge.”  However, losing this unique 
human knowledge makes humans risk becoming Borgs (i.e., 
working to produce similar outcomes for similar problems 
without bringing their unique perspective to bear). 
 
We explore the nature of this loss and its effect by examining 
the following three broad research questions both analy-
tically and experimentally: 
 
• How does AI advice impact human decision accuracy 

and unique human knowledge? 
 

• How can the negative effect of AI advice on unique 
human knowledge be mitigated? 

 
• What are the consequences of a loss of unique human 

knowledge on the wisdom of crowds? 
 
We develop an analytical modeling framework to develop 
and support our hypotheses from the perspective of rational 
decision makers.  We then perform a series of experiments 
to demonstrate that our theoretical insights are empirically 
supported.  While we recognize that, post factum, a host of 
theoretical frameworks can support similar results, it is quite 
remarkable that a simple analytical framework can highlight 
such a critical finding that has been largely ignored in the 
literature. 
 
Our key insight is that AI advice can decrease the comple-
mentary knowledge between humans and the AI, particularly 
the unique knowledge of humans, even if the system 
successfully lifts individual human performance above the 
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level of a superior AI.  This result enables a novel and 
unexplored understanding of the effects of AI advice on 
decision making. 
 
We test two different interventions to mitigate the decrease 
in unique human knowledge:  
 
• Presenting the AI’s certainty of its suggestion to human 

decision makers.  Since a modern AI can determine its 
own uncertainty (Zhang et al. 2020) and quantify its 
accuracy (e.g., confidence interval, probability of 
correct identification), we can communicate AI cer-
tainty to humans.  Such an intervention should help 
humans react better to AI advice by providing a better 
differentiation between correct and incorrect AI advice.  
Presenting AI certainty improves human perception of 
the AI’s error boundary (Bansal et al. 2019b, p. 2, refer 
to it as considering “when does the AI err?”).  Therefore, 
providing AI certainty should mitigate the reduction in 
unique human knowledge since humans are then in a 
better position to ignore incorrect AI suggestions. 
 

• Provide personalized AI suggestions to human decision 
makers.  Again, coupling the AI’s ability to judge its 
own certainty with the modern AI’s ability to learn from 
human behavior, this intervention personalizes the help 
to human decision making by monitoring individual 
reactions to correct and incorrect advice and then selec-
tively providing the advice.  In other words, the AI esti-
mates the benefit of correct advice and negative impact 
of incorrect advice for a particular individual.  It then 
determines whether to make suggestions. 

 
Our results indicate that both interventions managed to 
mitigate the decrease in unique human knowledge. 
 
We then investigate the impact of AI advice on collective 
decision making by investigating a wisdom of crowds 
setting.  We demonstrate a serious pitfall of AI advice:  while 
the AI advice improves the performance of individuals and 
smaller groups, it significantly harms the performance of 
larger groups.  When we test the impact of our interventions 
that mitigate the decrease in unique human knowledge, our 
first intervention does not fully overcome the pitfalls of AI 
advice to larger groups.  While the decrease of unique human 
knowledge is mitigated by communicating AI certainty, the 
performance of crowds in which all individuals received AI 
certainty was still inferior to the performance of crowds in 
which no individual received any AI suggestions.  On the 
other hand, our second intervention seems to be quite pro-
mising.  Humans who received personalized AI suggestions 

performed well both individually as well as in groups of all 
sizes. 
 
The remainder of this paper is structured as follows.  First, 
we review the most current advances in the field of AI-
advised human decision making.  We also summarize the 
foundations of wisdom of crowds mechanisms and the 
antecedents of performance of such approaches.  The subse-
quent section presents an analytical model explaining the 
effects of AI advice on human accuracy and unique human 
knowledge, the effectiveness of our two interventions, and 
possible results of applying these interventions in wisdom of 
crowds settings.  We then present the details of our three 
experimental studies and the individual-level results.  
Following the individual level results, we present the conse-
quences of AI advice and the effectiveness of our intervene-
tions in wisdom of crowds settings.  Finally, we conclude 
with a summary of results, their implications, and the 
limitations of this study. 

Literature Review 
 
In this section, we discuss recent works on AI-advised 
human decision making, especially with respect to inte-
grating measures of AI certainty.  We then summarize the 
main attributes of wisdom of crowds mechanisms.  The 
effect of advanced information technologies on human 
decision making can be traced back to the seminal frame-
work presented by Huber (1990) and empirically discussed 
by Leidner and Elam (1995).  Huber generally states that 
computer-assisted decision-support enables better decisions 
based on two dimensions:  on an organizational level, the use 
of advanced information technologies enables a higher level 
of organizational intelligence, while on a decision-making 
level, the quality and quantity of information sources and the 
focus on decision making itself is positively affected.  While 
this past research identifies complementary skills of tech-
nology, such as the ability to better apply organizational 
processes (without actually labeling it as such), we are, 
however, not aware of any research that explicitly discusses 
the effect of advice on performance-enhancing complemen-
tarities as they pertain to the execution of tasks. 
 
Recently, a literature stream has evolved around AI-advised 
human decision making, where “a user takes action recom-
mendations from an AI partner for solving a complex task” 
(Bansal et al. 2019a, pp. 2429).  A vibrant topic in this 
research stream is whether including additional information 
about AI advice, such as certainty measures, increases 
performance.  To ensure humans can assess AI’s uncertainty, 
Zhou and Chen (2019) propose a stylized framework for 
integrating uncertainty in human–AI decision-making 
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environments by creating an uncertainty-performance-
interface.  In a similar vein, Bansal et al. (2019a) and Bansal 
et al. (2019b) state that humans’ mental model of the AI’s 
error boundary is crucial for realizing complementarities 
between humans and AI.  They designed a set of abstract 
experiments to test whether humans can estimate the error 
bounds of a system and conclude that AI systems need to be 
compatible with humans’ mental model.  In other words, a 
system should consistently perform well in conditions in 
which human expectation is that the system will perform 
well.  If a system is created or updated in an incompatible 
way—one in which it does not perform well against human 
expectation—the overall human–AI system performance 
suffers.  Studies that test the results of AI providing its 
certainty (or related measures) lead to inconclusive results.  
In a deception detection experiment, where genuine and 
deceptive hotel reviews have to be classified, Lai and Tan 
(2019) find that adding explanatory information to AI 
suggestions significantly increases performance.  However, 
even in the best case, the AI-advised human accuracy 
remains below pure AI performance.  In a follow-up study, 
Lai et al. (2020) show a use case in which training and 
tutorials for users lead to an improved performance of 
humans.  Nonetheless, in their study, AI-advised human 
accuracy remains below pure AI accuracy by a large margin 
as well.  Thus, the beneficial effects of additional informa-
tion related to AI certainty on AI-advised human accuracy 
could be explained by an increased adherence with AI 
advice.  In a case study in which AI confidence scores and 
explanations were added to AI suggestions in a prediction 
task, Zhang et al. (2020) do find indications that humans rely 
more on the AI when confidence is communicated, but do 
not see a significant increase in final prediction accuracy.  A 
similar “null” result was found by Carton et al. (2020), who 
leverage interpretable machine learning algorithms to 
explain predictions of toxic online behavior detection tasks 
to human decision makers.  Presenting AI suggestions biases 
humans toward the AI prediction; however, adding an 
explanation does not lead to significant effects on user 
accuracy or agreement to AI predictions.  We conclude that 
the literature consistently shows a benefit of AI advice on 
accuracy.  While there are theoretical indications that pro-
viding AI certainty to human decision makers should 
increase accuracy, there is mixed evidence in experimental 
studies.  However, to the best of our knowledge, there is no 
study discussing the effect of AI advice on unique human 
knowledge.  Unique human knowledge is particularly 
important in decision environments including groups of 
humans, such as wisdom of crowds. 
 
The wisdom of crowds (Surowiecki 2004) describes the col-
lective opinion or knowledge of a group of people achieved 
by aggregation of individual knowledge.  A popular example 

is Galton’s report of an ox weight-judging competition with 
approximately 800 participants (Galton 1907).  The vox 
populi, in this case the median issued weight of the ox, was 
within 1% of the truth.  Many follow-up studies demonstrate 
the power of simple crowd aggregation algorithms con-
sidering means, medians or modal choices.  In a study on the 
value of diversity in simulations of artificial problem 
solvers, Hong and Page (2004) demonstrate that combining 
a variety of different agents might outperform combining 
just the best-performing, yet similar, agents.  Page (2008) 
summarizes these findings, connects them to the wisdom of 
crowds, and develops the diversity prediction theorem.  It 
states that the error of a group is positively correlated with 
the individual error and negatively correlated with the diver-
sity of its members.  Hong et al. (2016) synthesized three 
necessary conditions to realize the full potential of crowds:  
members should (1) hold diverse opinions (2) make 
independent decisions, and (3) have their own local and 
decentralized knowledge sources.  Only few studies mention 
situations in which a reduction of diversity due to a concen-
tration of expertise goes hand in hand with an increase in 
crowd performance.  By putting higher weights on individ-
uals with high relative performance and lower weights on 
individuals with low relative performance, Budescu and 
Chen (2015) achieve superior results.  A main factor that 
decreases diversity is communication between crowd mem-
bers.  Lorenz et al. (2011) show negative effects of social 
influence on diversity and on crowd performance.  Crowds 
in which subjects can reconsider initial estimates after being 
informed of other responses perform worse.  A more 
nuanced conclusion stems from Becker et al. (2017), where 
decentralized communication networks among crowd mem-
bers could increase crowd performance, whereas centralized 
networks led to detrimental effects.  By eliminating public 
knowledge in crowd stock forecasting, Da and Huang (2020) 
could increase diversity among subjects and resulting crowd 
performance.  We conclude that most research on wisdom of 
crowds validates the diversity prediction theorem:  de-
creasing diversity, that is, a decreasing level of unique 
knowledge, typically leads to a decrease in crowd perfor-
mance.  However, we are not aware of studies that test the 
effect of individual (AI-based) advice on crowd diversity, 
individual performance, and crowd performance.  Next, we 
develop a theoretical analytical framework to generate 
predictions and testable hypotheses for the AI-advised 
decision making setting. 

Theoretical Framework:  Individual 
Decision Making  
  
We propose a theoretical framework based on a simple 
discrete choice model.  Please find a summary of the relevant 
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notation in the Appendix.  We first set up a model for the 
computation of baseline performance of human accuracy, AI 
accuracy, unique human knowledge, and unique AI knowl-
edge.  We then consider the impact of our interventions on 
these factors.  Based on the theoretical results, we derive 
testable hypotheses.  For individual effects, we have two sets 
of hypotheses:  (1) impact on human performance and 
(2) impact on unique human knowledge.  As we discuss 
different treatments, we derive hypotheses regarding the 
impact of the interventions on both measures. 
 
Let us now provide our model description. A task 𝑡𝑡 ∈ 𝒯𝒯 =
{1. .𝑇𝑇} is to select the correct choice out of 𝑐𝑐 ∈ 𝒞𝒞 = {1. .𝐶𝐶} 
possible choices, where, without loss of generality, 𝑐𝑐 ∈ {1} 
represents the correct choice, and 𝑐𝑐 ∈ {2. .𝐶𝐶} represent 
incorrect choices. We further define 𝑝𝑝𝑡𝑡𝑡𝑡 to be the probability 
that a human selects choice 𝑐𝑐 in task 𝑡𝑡, where ∑ 𝑝𝑝𝑡𝑡𝑡𝑡 =𝑐𝑐∈𝒞𝒞
1.  Therefore, a human selects the correct choice for a task 𝑡𝑡 
with probability 𝑝𝑝𝑡𝑡1. 
 
The expected performance of a human over a set of tasks 𝑡𝑡 ∈
𝒯𝒯 is 

 1
𝑇𝑇
�𝑝𝑝𝑡𝑡1
𝑡𝑡∈𝒯𝒯

 (1) 

 
Next, we characterize the nature of AI advice. For each 
possible choice 𝑐𝑐 of a task 𝑡𝑡, the AI estimates a likelihood 
𝑙𝑙𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴 of being correct. AI chooses the option with the highest 
likelihood  and communicates its advice to a human.  We 
define the AI advice 𝑎𝑎𝑡𝑡𝑡𝑡 to be 1, if the AI recommends choice 
𝑐𝑐 at task 𝑡𝑡, and 0 otherwise. Thus, the performance of the AI 
over a set of tasks 𝑡𝑡 ∈ 𝒯𝒯 can be defined as: 
 

 1
𝑇𝑇
�𝑎𝑎𝑡𝑡1
𝑡𝑡∈𝒯𝒯

 (2) 

 
Note that the definition of human and AI performance 
differs: While human choice is probabilistic, that is, they 
select a certain choice with a certain probability, the AI 
always selects the choice with the highest likelihood 𝑙𝑙𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴 . 
Thus, the expected human performance equals the average 
probability of selecting the correct choice over all task 𝑝𝑝𝑡𝑡1, 
while the AI performance equals the sum of selected correct 
choices divided by the number of tasks. We now analytically 
characterize the complementary knowledge between a 
human and the AI. We define “unique AI knowledge” 
(UAK) for the case where the AI is correct (𝑡𝑡 ∈ 𝒯𝒯𝐴𝐴𝐴𝐴) and a 
human is incorrect. Similarly, we define “unique human 
knowledge” (UHK) for the case where the AI is incorrect 
(𝑡𝑡 ∈ 𝒯𝒯𝐴𝐴𝐴𝐴���) and a human is correct. Thus, for a given human, 
over a set of tasks 𝑡𝑡 ∈ 𝒯𝒯, we can define expected unique AI 

knowledge (UAK) and expected unique human knowledge 
(UHK): 
 

𝑈𝑈𝑈𝑈𝑈𝑈 =
1
𝑇𝑇�max(0,𝑎𝑎𝑡𝑡1 − 𝑝𝑝𝑡𝑡1)
𝑡𝑡∈𝒯𝒯

 

=
1
𝑇𝑇 � 1 − 𝑝𝑝𝑡𝑡1
𝑡𝑡∈𝒯𝒯𝐴𝐴𝐴𝐴

 

 

 
 
(3) 

𝑈𝑈𝑈𝑈𝑈𝑈 =
1
𝑇𝑇�max (0,𝑝𝑝𝑡𝑡1 − 𝑎𝑎𝑡𝑡1)
𝑡𝑡∈𝒯𝒯

=
1
𝑇𝑇 � 𝑝𝑝𝑡𝑡1
𝑡𝑡∈𝒯𝒯𝐴𝐴𝐴𝐴����

 
 
(4) 

 
Note that 𝑈𝑈𝑈𝑈𝑈𝑈 − 𝑈𝑈𝑈𝑈𝑈𝑈 = 1

𝑇𝑇
∑ (1 − 𝑝𝑝𝑡𝑡1)𝑡𝑡∈𝒯𝒯𝐴𝐴𝐴𝐴 − 1

𝑇𝑇
∑ 𝑝𝑝𝑡𝑡1𝑡𝑡∈𝒯𝒯𝐴𝐴𝐴𝐴����  

= 1
𝑇𝑇
∑ 𝑎𝑎𝑡𝑡1𝑡𝑡∈𝒯𝒯 − 1

𝑇𝑇
∑ 𝑝𝑝𝑡𝑡1𝑡𝑡∈𝒯𝒯 , which is the difference between 

AI and human performance.  The expected common knowl-
edge (tasks that both a human and the AI solve correctly) is 
1
𝑇𝑇
∑ 𝑝𝑝𝑡𝑡1𝑡𝑡∈𝒯𝒯𝐴𝐴𝐴𝐴 , and the expected missing knowledge (tasks that 

neither a human nor the AI solve correctly) is 1
𝑇𝑇
∑ (1 −𝑡𝑡∈𝒯𝒯𝐴𝐴𝐴𝐴����

𝑝𝑝𝑡𝑡1). We denote 𝑈𝑈𝑈𝑈𝑈𝑈
𝑈𝑈𝑈𝑈𝑈𝑈

 as relative unique human knowledge. 
 
In the following subsections, we focus on two measures of 
interest:  First, we consider effects on final performance, and 
second, we consider effects on unique human knowledge. 
We focus specifically on the latter as unique human knowl-
edge is an indicator for the value a human can contribute to 
collaborative work environments. 

Effect of AI Advice on Performance 

We assume that the AI advice increases the probability that 
a human will select the recommended choice, and decreases 
the probability of a human selecting any other choice. We 
denote the effect of AI advice on a human decision for task 
𝑡𝑡 as 𝑒𝑒𝑡𝑡 ∈ (0,∞). The probability of selecting choice 𝑐𝑐 after 
receiving AI advice 𝑝𝑝𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴 can be defined as follows: 
 

𝑝𝑝𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴 =
𝑝𝑝𝑡𝑡𝑡𝑡 + 𝑎𝑎𝑡𝑡𝑡𝑡 ⋅ 𝑒𝑒𝑡𝑡

1 + 𝑒𝑒𝑡𝑡
 (5) 

 
If 𝑒𝑒𝑡𝑡 = 0, the AI advice is ignored. The larger the value of 
𝑒𝑒𝑡𝑡, the more the advice is followed by a human. The effect 
of AI advice on the performance of an individual for task 𝑡𝑡 
can be derived as 
 

Δ𝐴𝐴𝐼𝐼𝑡𝑡 = (𝑎𝑎𝑡𝑡1 − 𝑝𝑝𝑡𝑡1)
𝑒𝑒𝑡𝑡

1 + 𝑒𝑒𝑡𝑡
 (6) 

 
which is positive for 𝑎𝑎𝑡𝑡1 = 1 and negative for 𝑎𝑎𝑡𝑡1 = 0. We 
refer to this as benefit of correct advice (𝑎𝑎𝑡𝑡1 = 1) and harm 
of incorrect advice (𝑎𝑎𝑡𝑡1 = 0).  
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The total effect of AI advice on expected human perfor-
mance over a set of tasks 𝑡𝑡 ∈ 𝒯𝒯 can be derived as 
 

Δ𝐴𝐴𝐴𝐴 =
1
𝑇𝑇
�(𝑎𝑎𝑡𝑡1 − 𝑝𝑝𝑡𝑡1)

𝑒𝑒𝑡𝑡
1 + 𝑒𝑒𝑡𝑡𝑡𝑡∈𝒯𝒯

 (7) 

 
Let 𝑒𝑒𝐴𝐴𝐴𝐴represent the strength of effect of AI advice for all 
tasks where the AI advice is correct, that is, 𝑒𝑒𝑡𝑡 = 𝑒𝑒𝐴𝐴𝐴𝐴  for  𝑡𝑡 ∈
𝒯𝒯𝐴𝐴𝐴𝐴, and 𝑒𝑒𝐴𝐴𝐴𝐴��� represent the strength of effect of AI advice for 
all tasks where the AI advice is incorrect, that is, 𝑒𝑒𝑡𝑡 =
𝑒𝑒𝐴𝐴𝐴𝐴��� for  𝑡𝑡 ∈ 𝒯𝒯𝐴𝐴𝐴𝐴���. Let δ𝑒𝑒 denote the scaling factor on the 
effect of correct advice relative to incorrect advice such that 

δe  𝑒𝑒𝐴𝐴𝐴𝐴����

1+𝑒𝑒𝐴𝐴𝐴𝐴����
= 𝑒𝑒𝐴𝐴𝐴𝐴

1+𝑒𝑒𝐴𝐴𝐴𝐴
 .  Then, we can define the total effect of AI 

advice on human performance a set of tasks 𝑡𝑡 ∈ 𝒯𝒯in terms 
of UAK and UHK as follows: 
 
 

Δ𝐴𝐴𝐴𝐴 = δe  
𝑒𝑒𝐴𝐴𝐴𝐴���

1 + 𝑒𝑒𝐴𝐴𝐴𝐴���
𝑈𝑈𝑈𝑈𝑈𝑈 −

𝑒𝑒𝐴𝐴𝐴𝐴���

1 + 𝑒𝑒𝐴𝐴𝐴𝐴���
𝑈𝑈𝑈𝑈𝑈𝑈 (8) 

 
 

δe >
𝑈𝑈𝑈𝑈𝑈𝑈
𝑈𝑈𝑈𝑈𝑈𝑈

⇒ Δ𝐴𝐴𝐴𝐴 > 0 (9) 

 
This leads to our first theoretical proposition. 
 
Proposition 1. The overall performance effect of AI advice 
is positive, if the scaling factor of the effort of correct advice 
δ𝑒𝑒 is greater than the relative unique human knowledge 𝑈𝑈𝑈𝑈𝑈𝑈

𝑈𝑈𝑈𝑈𝑈𝑈
. 

 
Thus, the effect of AI advice depends on the potential of 
(correct) AI advice (𝑈𝑈𝑈𝑈𝑈𝑈), the risk of (incorrect) AI advice 
(𝑈𝑈𝑈𝑈𝑈𝑈), and the human ability to differentiate between 
correct and incorrect advice (𝛿𝛿𝑒𝑒).  Depending on the effect 
strength of correct and incorrect advice, the total effect of AI 
advice on human performance lies between minus 𝑈𝑈𝑈𝑈𝑈𝑈, that 
is, losing all unique human knowledge, and 𝑈𝑈𝑈𝑈𝑈𝑈, that is, 
gaining all unique AI knowledge. If δ𝑒𝑒 is greater than one 
(that is, if correct advice has a stronger effect than incorrect 
advice), AI advice can be beneficial even if AI performance 
is worse than human performance.  
 
Our first hypothesis makes the following assumptions that 
are commonly made in the literature:  
 
i) Complementarities exist (𝑈𝑈𝑈𝑈𝑈𝑈,𝑈𝑈𝑈𝑈𝑈𝑈 > 0) (see Tan et 

al. 2018 or Zhang et al. 2020); 
 

ii) AI accuracy is at least on par with human accuracy 
(𝑈𝑈𝑈𝑈𝑈𝑈 ≥ 𝑈𝑈𝑈𝑈𝑈𝑈) (see Russakovsky et al. 2015 for image 
classification challenges); and  

 

iii) Humans are able to differentiate between correct and 
incorrect advice (𝛿𝛿𝑒𝑒 > 1) (see Bonaccio and Dalal 2006 
for human advice taking, and Bansal 2019b for AI 
advice).  

 
Note that if (i) and (iii) apply, it is not necessary that AI 
accuracy exceeds human accuracy. Still, AI algorithms out-
perform humans in a growing number of applications, 
including the automatic detection of skin cancer (Esteva et 
al. 2017) or games like Poker (Moravčík et al. 2017) and Go 
(Silver et al. 2016). 
 
Hypothesis 1a: Human accuracy increases when receiving 
AI advice. 

Effect of AI Advice on Unique 
Human Knowledge 

We denote the unique human knowledge after receiving AI 
advice as 𝑈𝑈𝑈𝑈𝐾𝐾𝐴𝐴𝐴𝐴, and the effect of AI advice on unique 
human knowledge as Δ𝑈𝑈𝑈𝑈𝐾𝐾𝐴𝐴𝐴𝐴. Based on our analytical 
framework, these can be derived as 

 

𝑈𝑈𝑈𝑈𝐾𝐾𝐴𝐴𝐴𝐴 =
1
𝑇𝑇
� 𝑝𝑝𝑡𝑡1𝐴𝐴𝐴𝐴

𝑡𝑡∈𝒯𝒯𝐴𝐴𝐴𝐴����
 (10) 

 

Δ𝑈𝑈𝑈𝑈𝐾𝐾𝐴𝐴𝐴𝐴 = −
1
𝑇𝑇
� 𝑝𝑝𝑡𝑡1

𝑒𝑒𝑡𝑡
1 + 𝑒𝑒𝑡𝑡

𝑡𝑡∈𝒯𝒯𝐴𝐴𝐴𝐴����
 (11) 

 
To provide the intuition for our second hypothesis, we 
present a simplification in the expression for Δ𝑈𝑈𝑈𝑈𝐾𝐾𝐴𝐴𝐴𝐴  using 
𝑒𝑒𝐴𝐴𝐴𝐴���: 
 

Δ𝑈𝑈𝑈𝑈𝐾𝐾𝐴𝐴𝐴𝐴 = −
𝑒𝑒𝐴𝐴𝐴𝐴���

1 + 𝑒𝑒𝐴𝐴𝐴𝐴���
𝑈𝑈𝑈𝑈𝑈𝑈 (12) 

 
Thus, AI advice decreases UHK for any positive effect of 
incorrect AI advice.  In other words, unless humans have a 
perfect ability to distinguish between correct and incurrect 
AI advice, the AI advice reduces unique human knowledge.  
Therefore, we can derive our second testable hypothesis: 
 
Hypothesis 1b: Unique human knowledge decreases when 
receiving AI advice. 
 
Both the merits of AI advice on human performance and the 
pitfalls of AI advice on unique human knowledge relate to 
the effect of AI advice on human decision making, and, 
especially, human capability in distinguishing between 
correct and incorrect advice. Next, we derive the conditions 
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for two possible interventions that may reduce the decline in 
unique human knowledge:  
 
1) The AI provides its certainty along with the advice. This 

can be seen as the case where humans react to the AI 
based on its certainty. As discussed earlier, knowing AI 
certainty may allow humans to better distinguish 
between correct and incorrect advice. 

 
2) The AI learns about the effect of its advice on a human’s 

decision making, and decides whether an individual 
should be provided a suggestion or not for each task.  
This is essentially equivalent to the case where the AI 
reacts to humans based on its assessment of human 
capability. 

Providing AI’s Certainty 

To model the impact of providing the AI’s level of certainty 
(AI certainty) to humans, we introduce a scaling parameter 
𝑠𝑠𝑡𝑡 ∈ (0,∞) that describes the change in the effect of AI 
advice, 𝑒𝑒𝑡𝑡 , if AI certainty is communicated, leading to the 
following probability of selecting choice 𝑐𝑐 at task 𝑡𝑡:  
 

𝑝𝑝𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝑝𝑝𝑡𝑡𝑡𝑡 + 𝑎𝑎𝑡𝑡𝑡𝑡 ⋅ 𝑠𝑠𝑡𝑡 ⋅ 𝑒𝑒𝑡𝑡

1 + 𝑠𝑠𝑡𝑡 ⋅ 𝑒𝑒𝑡𝑡
 

 
(13) 

Consequently, the effect of receiving AI certainty on 
expected performance of task 𝑡𝑡 is 
 

Δ𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡 = (𝑎𝑎𝑡𝑡1 − 𝑝𝑝𝑡𝑡1)
𝑒𝑒𝑡𝑡

(1 + 𝑒𝑒𝑡𝑡)
𝑠𝑠𝑡𝑡 − 1

(1 + 𝑠𝑠𝑡𝑡 ⋅ 𝑒𝑒𝑡𝑡)
 (14) 

 
Note that Δ𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡 measures the additional effect of providing 
AI certainty on top of providing AI advice. The expression 
above reflects that communicating AI certainty for task 𝑡𝑡 has 
a positive effect on the expected performance in the 
following cases: 
 
1) 𝑎𝑎𝑡𝑡1 − 𝑝𝑝𝑡𝑡1 > 0, that is, the AI advice is correct, and 𝑠𝑠𝑡𝑡 −

1 > 0, that is, receiving AI certainty increases the 
effect.  
 

2) 𝑎𝑎𝑡𝑡1 − 𝑝𝑝𝑡𝑡1 < 0, that is, the AI advice is incorrect, and 
𝑠𝑠𝑡𝑡 − 1 < 0, that is, receiving AI certainty decreases the 
effect.  

 
In all other cases communicating AI certainty has either no 
effect or a negative effect on human performance. 
 

 

Effect on Human Performance 

The total effect of receiving AI certainty on human per-
formance over a set of tasks 𝑡𝑡 ∈ 𝒯𝒯 can then be written as 
 

Δ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

=
1
𝑇𝑇
� (1 − 𝑝𝑝𝑡𝑡1)

𝑒𝑒𝑡𝑡
(1 + 𝑒𝑒𝑡𝑡)

𝑠𝑠𝑡𝑡 − 1
(1 + 𝑠𝑠𝑡𝑡 ⋅ 𝑒𝑒𝑡𝑡)

𝑡𝑡∈𝒯𝒯𝐴𝐴𝐴𝐴

−
1
𝑇𝑇
� 𝑝𝑝𝑡𝑡1

𝑒𝑒𝑡𝑡
(1 + 𝑒𝑒𝑡𝑡)

𝑠𝑠𝑡𝑡 − 1
(1 + 𝑠𝑠𝑡𝑡 ⋅ 𝑒𝑒𝑡𝑡)

𝑡𝑡∈𝒯𝒯𝐴𝐴𝐴𝐴����
 

(15) 

 
Again, we consider an effect strength of advice of 𝑒𝑒𝐴𝐴𝐴𝐴 for 
tasks where the AI advice is correct, and of 𝑒𝑒𝐴𝐴𝐴𝐴��� for tasks 
where the AI advice is incorrect. We further consider a 
scaling effect of communicating AI certainty of 𝑠𝑠𝐴𝐴𝐴𝐴 for tasks 
where the AI advice is correct, and of 𝑠𝑠𝐴𝐴𝐴𝐴��� for tasks where the 
AI advice is incorrect. Analogous to the relative effect 
strength δe, we denote δs as a scaling factor on the effect of 
receiving the AI’s certainty for correct advice relative to 

incorrect advice with δs  𝑠𝑠𝐴𝐴𝐴𝐴����−1
1+𝑠𝑠𝐴𝐴𝐴𝐴����⋅𝑒𝑒𝐴𝐴𝐴𝐴����

= 𝑠𝑠𝐴𝐴𝐴𝐴−1
1+𝑠𝑠𝐴𝐴𝐴𝐴⋅𝑒𝑒𝐴𝐴𝐴𝐴

. While δe 
symbolizes the human ability to differentiate between 
correct and incorrect advice, δs symbolizes the human 
ability to react differently to low and high AI certainty values 
(assuming that correct advice is associated with higher 
certainty values). Note that a negative value of 𝑠𝑠𝐴𝐴𝐴𝐴��� − 1 
relates to a reduction of the effect of AI advice. 
 

Δ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝑒𝑒𝐴𝐴𝐴𝐴���

1 + 𝑒𝑒𝐴𝐴𝐴𝐴���
𝑠𝑠𝐴𝐴𝐴𝐴��� − 1

1 + 𝑠𝑠𝐴𝐴𝐴𝐴��� ⋅ 𝑒𝑒𝐴𝐴𝐴𝐴���
(δeδs 𝑈𝑈𝑈𝑈𝑈𝑈

− 𝑈𝑈𝑈𝑈𝑈𝑈) 
(16) 

i) 
δe >

1
δs
𝑈𝑈𝑈𝑈𝑈𝑈
𝑈𝑈𝑈𝑈𝑈𝑈

⇒ Δ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 > 0 if 𝑠𝑠𝐴𝐴𝐴𝐴��� − 1

< 0, 𝑠𝑠𝐴𝐴𝐴𝐴 − 1 > 0, 𝛿𝛿𝑠𝑠 < 0  
 

(17) 

ii) 
δe <

1
δs
𝑈𝑈𝑈𝑈𝑈𝑈
𝑈𝑈𝑈𝑈𝑈𝑈

⇒ Δ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 > 0 if 𝑠𝑠𝐴𝐴𝐴𝐴��� − 1 

< 0, 𝑠𝑠𝐴𝐴𝐴𝐴 − 1 < 0, 𝛿𝛿𝑠𝑠 > 0  
 

(18) 

iii) δe >
1
δs
𝑈𝑈𝑈𝑈𝑈𝑈
𝑈𝑈𝑈𝑈𝑈𝑈

⇒ Δ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 > 0 if 𝑠𝑠𝐴𝐴𝐴𝐴��� − 1

> 0, 𝑠𝑠𝐴𝐴𝐴𝐴 − 1 > 0, 𝛿𝛿𝑠𝑠 > 0 
(19) 

 
We can now derive our second theoretical proposition. 
 
Proposition 2. The overall performance effect of providing 
AI certainty is positive in the following three cases:  
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i) Providing AI certainty decreases the effect of incorrect 
AI advice, and increases the effect of correct advice 
(δs < 0): Then, for a positive performance effect, 
unique human knowledge has to be greater than zero.  

 
ii) Providing AI certainty decreases the effect of incorrect 

AI advice, and decreases the effect of correct advice 
(δs > 0): Then, for a positive performance effect, the 
scaling factor of the effort of correct advice (δ𝑒𝑒) has to 
be smaller than the relative unique human knowledge 
weighted by one over the effect of communicating 
certainty (δ𝑠𝑠).  
 

iii) Providing AI certainty increases the effect of incorrect 
AI advice, and increases the effect of correct advice 
(δs > 0): Then, for a positive performance effect, the 
scaling factor of the effort of correct advice (δ𝑒𝑒) has to 
be greater than the relative unique human knowledge 
weighted by one over the effect of communicating 
certainty (δ𝑠𝑠). 

 
Obviously, providing the AI’s certainty increases perfor-
mance if it increases the effect of correct advice and 
decreases the effect of incorrect advice as in case (i). If 
providing the AI’s certainty decreases both the effect of 
correct and incorrect AI advice as in case (ii), the total effect 
benefits from low levels of human ability to differentiate 
between correct and incorrect advice δe and high levels of 
relative unique human knowledge. If providing the AI’s 
certainty increases both the effect of correct and incorrect AI 
advice as in case (iii), the total effect benefits from high 
levels of human ability to differentiate between correct and 
incorrect advice δe and low levels of relative unique human 
knowledge. Note that high levels of relative unique human 
knowledge indicate high risk and small potential of AI 
advice, while low levels of relative unique human knowl-
edge indicate low risk and large potential of AI advice. 
 
According to Bansal et al. (2019b), reporting AI certainty 
enables humans to better assess the AI’s error boundaries, 
that is, to better distinguish between cases where the AI is 
correct or incorrect. This corresponds to condition (i)  above, 
that is, reporting AI certainty should decrease the effect of 
AI advice when it is incorrect, and increase the effect of AI 
advice when it is correct. We can now base our next 
hypothesis related to the impact of AI advice on human 
accuracy when receiving AI certainty for its choice. 
 
Hypothesis 2a: Human accuracy increases when receiving 
the AI’s certainty. 

 

Effect on Unique Human Knowledge 

We denote the total effect of receiving the AI’s certainty on 
unique human knowledge over a set of tasks 𝑡𝑡 ∈ 𝒯𝒯 as 
Δ𝑈𝑈𝑈𝑈𝐾𝐾𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐: 
 

Δ𝑈𝑈𝑈𝑈𝐾𝐾𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
1
𝑇𝑇
� 𝑝𝑝𝑡𝑡1

𝑒𝑒𝑡𝑡
(1 + 𝑒𝑒𝑡𝑡)

1 − 𝑠𝑠𝑡𝑡
(1 + 𝑠𝑠𝑡𝑡 ⋅ 𝑒𝑒𝑡𝑡)

𝑡𝑡∈𝒯𝒯𝐴𝐴𝐴𝐴����
 (20) 

 
We consider the effect of incorrect AI advice 𝑒𝑒𝐴𝐴𝐴𝐴���, and the 
effect of incorrect AI advice 𝑠𝑠𝐴𝐴𝐴𝐴���: 
 

Δ𝑈𝑈𝑈𝑈𝐾𝐾𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝑒𝑒𝐴𝐴𝐴𝐴���

1 + 𝑒𝑒𝐴𝐴𝐴𝐴���
1 − 𝑠𝑠𝐴𝐴𝐴𝐴���

1 + 𝑠𝑠𝐴𝐴𝐴𝐴��� ⋅ 𝑒𝑒𝐴𝐴𝐴𝐴���
𝑈𝑈𝑈𝑈𝑈𝑈 (21) 

 
As 𝑒𝑒𝐴𝐴𝐴𝐴����

1+𝑒𝑒𝐴𝐴𝐴𝐴����
> 0 and 1 + 𝑠𝑠𝐴𝐴𝐴𝐴��� ⋅ 𝑒𝑒𝐴𝐴𝐴𝐴��� > 0, the effect on unique 

human knowledge is positive if 𝑠𝑠𝐴𝐴𝐴𝐴��� < 1, that is, if com-
municating AI certainty decreases the effect of AI advice for 
incorrect advice. With the same reasoning as above, we 
derive the next hypothesis. 
 
Hypothesis 2b: Unique human knowledge increases by 
providing the AI’s certainty. 

Personalized Suggestions 

The second intervention assumes that the effect of AI advice 
differs among individual humans ℎ ∈ ℋ = (1 …𝐻𝐻). 
Humans might differently benefit from correct advice or be 
harmed by incorrect advice. The AI decides based on the 
individual human ℎ and the task 𝑡𝑡 whether to provide advice. 
We denote 𝑑𝑑𝑡𝑡ℎ ∈ {0,1} as this decision. We assume that 
personalized AI suggestions do not differ from regular AI 
suggestions when they are made. Thus, the probability of 
selecting choice 𝑐𝑐 is 
 

𝑝𝑝𝑡𝑡𝑡𝑡ℎ
𝐴𝐴𝐴𝐴−𝑝𝑝𝑝𝑝𝑝𝑝 =

𝑝𝑝𝑡𝑡𝑡𝑡 + 𝑑𝑑𝑡𝑡ℎ ⋅ 𝑎𝑎𝑡𝑡𝑡𝑡 ⋅ 𝑒𝑒𝑡𝑡ℎ
1 + 𝑑𝑑𝑡𝑡ℎ ⋅ 𝑒𝑒𝑡𝑡ℎ

 (22) 

 
Consequently, the effect of providing personalized advice 
(versus always providing the advice) on expected 
performance of task 𝑡𝑡 is 

Δ𝑝𝑝𝑝𝑝𝑟𝑟𝑡𝑡ℎ = (𝑎𝑎𝑡𝑡1 − 𝑝𝑝𝑡𝑡1ℎ)
𝑒𝑒𝑡𝑡ℎ

(1 + 𝑒𝑒𝑡𝑡ℎ)
𝑑𝑑𝑡𝑡ℎ − 1

(1 + 𝑑𝑑𝑡𝑡ℎ ⋅ 𝑒𝑒𝑡𝑡ℎ) (23) 
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Note that Δ𝑝𝑝𝑝𝑝𝑟𝑟𝑡𝑡ℎ measures the additional effect compared to 
providing regular AI advice as in (5). The effect of 
personalized advice concentrates on tasks where 𝑑𝑑𝑡𝑡ℎ = 0, 
that is, where no advice is provided. The effect is beneficial 
in cases of incorrect advice, and detrimental in cases of 
correct advice. Note that the AI likelihood 𝑙𝑙𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴 estimates the 
probability that the advice is correct. The AI has to decide 
whether to withhold the advice if the expected benefit of 

providing correct advice 𝑙𝑙𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴(1 − 𝑝𝑝𝑡𝑡1ℎ) 𝑒𝑒𝑡𝑡ℎ
𝐴𝐴𝐴𝐴

1+𝑒𝑒𝑡𝑡ℎ
𝐴𝐴𝐴𝐴 does not exceed 

the expected harm of providing incorrect advice (1 −

𝑙𝑙𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴)𝑝𝑝𝑡𝑡1ℎ
𝑒𝑒𝑡𝑡ℎ
𝐴𝐴𝐴𝐴����

1+𝑒𝑒𝑡𝑡ℎ
𝐴𝐴𝐴𝐴����: 

 

Δ𝑝𝑝𝑝𝑝𝑟𝑟𝑡𝑡ℎ = −𝑙𝑙𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴(1 − 𝑝𝑝𝑡𝑡1ℎ)
𝑒𝑒𝑡𝑡ℎ𝐴𝐴𝐴𝐴

1 + 𝑒𝑒𝑡𝑡ℎ𝐴𝐴𝐴𝐴

+ (1 − 𝑙𝑙𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴)𝑝𝑝𝑡𝑡1ℎ
𝑒𝑒𝑡𝑡ℎ𝐴𝐴𝐴𝐴
���

1 + 𝑒𝑒𝑡𝑡ℎ𝐴𝐴𝐴𝐴
��� 

(24) 

 
Thus, the performance effect of withholding AI advice on a 
specific task is positive, if the likelihood of correct advice is 
below the ratio of harm of incorrect advice and the sum of 
the harm of incorrect and the benefit of correct advice. 
 

𝑙𝑙𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴 <
𝑝𝑝𝑡𝑡1ℎ

𝑒𝑒𝑡𝑡ℎ𝐴𝐴𝐴𝐴
���

1 + 𝑒𝑒𝑡𝑡ℎ𝐴𝐴𝐴𝐴
���

𝑝𝑝𝑡𝑡1ℎ
𝑒𝑒𝑡𝑡ℎ𝐴𝐴𝐴𝐴
���

1 + 𝑒𝑒𝑡𝑡ℎ𝐴𝐴𝐴𝐴
��� + (1 − 𝑝𝑝𝑡𝑡1ℎ) 𝑒𝑒𝑡𝑡ℎ𝐴𝐴𝐴𝐴

1 + 𝑒𝑒𝑡𝑡ℎ𝐴𝐴𝐴𝐴

= 𝑟𝑟ℎ (25) 

 
We denote 𝑟𝑟ℎ as the critical ratio of an individual human. 
 

Effect on Human Performance 

Let 𝒯𝒯(𝑙𝑙𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴 < 𝑟𝑟ℎ) be the set of tasks, where the AI certainty 
𝑙𝑙𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴 < 𝑟𝑟ℎ. We denote Δ𝑈𝑈𝑈𝑈𝐾𝐾ℎ = 1

𝑇𝑇
∑ 𝑝𝑝𝑡𝑡1ℎ𝑡𝑡∈𝒯𝒯𝐴𝐴𝐴𝐴����(𝑙𝑙𝑡𝑡𝑡𝑡

𝐴𝐴𝐴𝐴<𝑟𝑟ℎ)  as the 
“conserved” unique human knowledge due to not receiving 
AI advice, and Δ𝑈𝑈𝑈𝑈𝐾𝐾ℎ = 1

𝑇𝑇
∑ (1 − 𝑝𝑝𝑡𝑡1ℎ)𝑡𝑡∈𝒯𝒯𝐴𝐴𝐴𝐴(𝑙𝑙𝑡𝑡𝑡𝑡

𝐴𝐴𝐴𝐴<𝑟𝑟ℎ)  as the 
potentially “lost” unique AI knowledge due to withholding 
AI advice. The ratio Δ𝑈𝑈𝑈𝑈𝐾𝐾ℎ

Δ𝑈𝑈𝑈𝑈𝐾𝐾ℎ
 is denoted as change in relative 

unique human knowledge. We can derive the total effect of 
personalizing AI advice for a human ℎ over a set of tasks 𝑡𝑡 ∈
𝒯𝒯 as follows: 
 

Δ𝑝𝑝𝑝𝑝𝑟𝑟ℎ = Δ𝑈𝑈𝑈𝑈𝐾𝐾ℎ
𝑒𝑒ℎ𝐴𝐴𝐴𝐴
���

1 + 𝑒𝑒ℎ𝐴𝐴𝐴𝐴
��� − Δ𝑈𝑈𝑈𝑈𝐾𝐾ℎ

𝑒𝑒ℎ𝐴𝐴𝐴𝐴

1 + 𝑒𝑒ℎ𝐴𝐴𝐴𝐴
 (26) 

 

The net effect of personalizing advice can be expressed as 
the difference between expected mitigation of reduction of 
unique human knowledge due to incorrect AI advice (with 
𝑙𝑙𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴 < 𝑟𝑟ℎ) and the missed benefit of unique AI knowledge 
due to correct AI advice (with 𝑙𝑙𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴 < 𝑟𝑟ℎ).  
 

𝛿𝛿𝑒𝑒ℎ <
Δ𝑈𝑈𝑈𝑈𝐾𝐾ℎ
Δ𝑈𝑈𝑈𝑈𝐾𝐾ℎ

⇒ Δ𝑝𝑝𝑝𝑝𝑟𝑟ℎ > 0 (27) 

 
We can now derive our third theoretical proposition. 
 
Proposition 3. The overall performance effect of per-
sonalizing AI advice is positive in the following case: The 
scaling factor of the effort of correct advice (δ𝑒𝑒ℎ) is smaller 
than the change in relative unique human knowledge. 
 
Interestingly, human ability to effectively differentiate 
between correct and incorrect advice 𝛿𝛿𝑒𝑒ℎ decreases the 
potential benefit of personalized AI advice, whereas the 
ability of an AI to differentiate between tasks with unique AI 
knowledge and unique human knowledge (i.e., change in 
relative unique human knowledge) increases the potential 
benefit of personalized AI advice.  
 
We can now specify our next hypothesis, conservatively, 
regarding the effect of personalized advice on human 
performance: 
 
Hypothesis 3a: Human accuracy does not decrease when 
AI advice is personalized. 

Effect on Unique Human Knowledge 
 
We denote the effect of providing personalized AI advice on 
unique human knowledge as Δ𝑈𝑈𝑈𝑈𝐾𝐾ℎ

𝑝𝑝𝑝𝑝𝑝𝑝: 
 

Δ𝑈𝑈𝑈𝑈𝐾𝐾ℎ
𝑝𝑝𝑝𝑝𝑝𝑝 =

𝑒𝑒ℎ𝐴𝐴𝐴𝐴
���

1 + 𝑒𝑒ℎ𝐴𝐴𝐴𝐴
��� Δ𝑈𝑈𝑈𝑈𝐾𝐾ℎ (28) 

 
Thus, as long as the AI withholds any incorrect advice, and 
humans put any weight on incorrect advice, providing AI 
advice individually has a positive effect on unique human 
knowledge. Consequently, we can specify our final hypothe-
sis regarding the impact of personalized advice on unique 
human knowledge: 
 
Hypothesis 3b: Unique human knowledge increases when 
AI advice is personalized. 
 
In summary, our theoretical framework predicts that AI 
advice increases human performance, but decreases unique 
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human knowledge. Our two interventions, at least, retain the 
benefits of AI advice on individual performance (i.e., 
individual performance does not reduce in comparison to a 
case in which there is no intervention) while mitigating the 
loss in unique human knowledge.  

Theoretical Framework: Wisdom 
of Crowds   
 
We discuss wisdom of crowds setting to illustrate the 
potential effect of AI advice on environments where 
decisions are based on multiple human opinions. In a 
wisdom of crowds setting, a group of 𝑛𝑛 humans solve tasks 
𝑡𝑡, that is, to select the correct choice out of 𝐶𝐶 possible 
choices. We denote the number of humans selecting choice 
𝑐𝑐 as 𝑛𝑛𝑐𝑐. The modal choice, that is, max (𝑛𝑛𝑐𝑐 , 𝑐𝑐 ∈ 𝒞𝒞 =
{1 …𝐶𝐶}), is defined to be the group choice. 
 
Illustrative Example. To motivate the effect of AI advice 
on wisdom of crowds settings, we start with a simple 
illustrative example of two choices and three individuals 
(i.e., 𝐶𝐶 = 2, 𝑛𝑛 = 3), and a set of homogenous tasks 𝑡𝑡 ∈ 𝒯𝒯 
with 𝑝𝑝𝑡𝑡1 = 0.7 for all 𝑡𝑡 and  1

𝑇𝑇
∑ 𝑎𝑎𝑡𝑡1𝑡𝑡∈𝒯𝒯 = 0.75, that is, an 

average human accuracy of 0.7 and an average AI accuracy 
of 0.75. For this example, let us assume the extreme case: 
that humans always follow AI advice and, therefore, 
improve individually by five percentage points to an 
accuracy of 0.75. However, if all humans follow the AI 
signal, they are all correct or all incorrect for the same task, 
making the AI choice the modal choice for each task. 
Consequently, the group performance equals 0.75 for all 
possible group sizes. Now consider a case in which there is 
no AI advice.  In this case, humans decide independently of 
one another and the group results follow a binomial 
distribution with a probability distribution of 𝑃𝑃𝑡𝑡(𝑛𝑛𝑡𝑡1,𝑛𝑛) =

𝑛𝑛!
𝑛𝑛𝑡𝑡1!(𝑛𝑛−𝑛𝑛𝑡𝑡1)!

𝑝𝑝𝑡𝑡1
𝑛𝑛𝑡𝑡1(1 − 𝑝𝑝𝑡𝑡1)𝑛𝑛−𝑛𝑛𝑡𝑡1; then, the resulting group 

accuracy is ∑ 𝑃𝑃(𝑛𝑛𝑡𝑡1,𝑛𝑛)𝑛𝑛
𝑛𝑛𝑡𝑡1=�

𝑛𝑛−1
2 �+1

. For our example, the 

group decides correctly if two or three of the group members 
select the correct choice, that is,  
 

𝑃𝑃𝑡𝑡(2,3) + 𝑃𝑃𝑡𝑡(3,3) =
3!

2! 1!
0.720.31 +

3!
3! 0!

0.730.30

= 0.784 > 0.75. 
 
While this example is illustrative, we can show that for any 
case where the correct choice is more likely to be selected 
than the incorrect choice (𝑝𝑝𝑡𝑡1 > 0.5), the group accuracy 
will exceed any potential AI performance (< 1). The proba-
bility of an incorrect group decision equals the cumulative 
binomial distribution function ∑ 𝑃𝑃𝑡𝑡(𝑛𝑛𝑡𝑡1,𝑛𝑛)0.5⋅𝑛𝑛

𝑛𝑛𝑡𝑡1=0 . As no 
closed-form solution exists, we make use of Hoeffding’s 

inequality (Equation (29), Hoeffding 1963), that provides an 
upper bound for the cumulative distribution function for 𝑘𝑘 <
𝑛𝑛𝑛𝑛 (𝑘𝑘 being number of successes). Thus, for 𝑝𝑝 > 0.5  and 
𝑘𝑘 = 0.5 ⋅ 𝑛𝑛 we can derive the following: 
 

𝐹𝐹(𝑘𝑘,𝑛𝑛, 𝑝𝑝) ≤ exp�−2𝑛𝑛 �𝑝𝑝 −
𝑘𝑘
𝑛𝑛�

2

� (29) 

� 𝑃𝑃𝑡𝑡(𝑛𝑛𝑡𝑡1,𝑛𝑛)
0.5⋅𝑛𝑛

𝑛𝑛𝑡𝑡1=0

≤ exp(−2𝑛𝑛(𝑝𝑝𝑡𝑡1 − 0.5)2) (30) 

 
As (𝑝𝑝𝑡𝑡1 − 0.5)2 > 0, the right-hand side of (30) is 
decreasing in 𝑛𝑛 and converging toward zero. We may derive 
the fourth proposition: 
 
Proposition 4. For settings with two choices and a higher 
probability to select the correct choice, a group size exists in 
which the group accuracy exceeds any threshold accuracy 
value below one.  
 
Consequently, the probability that the alternative choice is 
the group choice decreases with increasing group size and 
converges toward zero.  Note that our model is much more 
general and subsumes this example as one of the possible 
environments.  In the following, we define the condition for 
a much more general setting where individual accuracies are 
heterogeneous and humans may or may not follow the AI 
advice even if it has a higher probability of being correct and 
AI advice simply changes the probability of selecting a 
choice with effect strength 𝑒𝑒𝑡𝑡 as discussed earlier in our 
model development. 

Group Accuracy with and Without AI Advice 
 
We can model the probability of a given outcome with a 
group of individuals using a multinomial distribution as 
follows:  
 

𝑃𝑃𝑡𝑡(𝑛𝑛𝑡𝑡1,𝑛𝑛𝑡𝑡2, … ,𝑛𝑛𝑡𝑡𝑡𝑡) =
𝑛𝑛!

∏ 𝑛𝑛𝑡𝑡𝑡𝑡!𝐶𝐶
𝑐𝑐=1

� 𝑝𝑝𝑡𝑡𝑡𝑡𝑛𝑛𝑡𝑡𝑡𝑡
𝐶𝐶

𝑐𝑐=1
 (31) 

 
The probability that a group of size 𝑛𝑛 selects choice 𝑐𝑐 for 
task 𝑡𝑡 is denoted as 𝑃𝑃𝑡𝑡𝑡𝑡𝑛𝑛  
 
𝑃𝑃𝑡𝑡𝑡𝑡𝑛𝑛 = 𝑃𝑃𝑡𝑡(𝑛𝑛𝑡𝑡1,𝑛𝑛𝑡𝑡2, … ,𝑛𝑛𝑡𝑡𝑡𝑡|𝑛𝑛𝑡𝑡𝑡𝑡 ≥ 𝑛𝑛𝑡𝑡𝑡𝑡 , 𝑖𝑖 ∈ {1. .𝐶𝐶}\𝑐𝑐) (32) 

Our tie-breaking rule assumes that ties are broken randomly. 
Accordingly, we compute 𝑃𝑃𝑡𝑡1𝑛𝑛  as follows:  

 

𝑃𝑃𝑡𝑡1𝑛𝑛 = � � �
1

��𝑛𝑛𝑡𝑡𝑡𝑡 ,𝑛𝑛𝑡𝑡𝑡𝑡 = 𝑛𝑛𝑡𝑡1��
𝑃𝑃(𝑛𝑛𝑡𝑡1,𝑛𝑛𝑡𝑡2, … ,𝑛𝑛𝑡𝑡𝑡𝑡)

𝑈𝑈𝐵𝐵𝑡𝑡𝑡𝑡

𝑛𝑛𝑡𝑡𝑡𝑡=𝐿𝐿𝐵𝐵𝑡𝑡𝑡𝑡

𝐶𝐶

𝑖𝑖=2

𝑛𝑛

𝑛𝑛𝑡𝑡1=�
𝑛𝑛−1
𝐶𝐶 �

 (33) 
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𝐿𝐿𝐿𝐿𝑡𝑡𝑡𝑡 = max�0,𝑛𝑛 −�𝑛𝑛𝑡𝑡𝑡𝑡

𝑖𝑖−1

𝑗𝑗=1

� − (𝐶𝐶 − 𝑖𝑖)(𝑛𝑛𝑡𝑡1) 

𝑈𝑈𝑈𝑈𝑡𝑡𝑡𝑡 = min�𝑛𝑛𝑡𝑡1,𝑛𝑛 −�𝑛𝑛𝑡𝑡𝑡𝑡

𝑖𝑖−1

𝑗𝑗=1

� 

 

The first sum considers the number of humans selecting the 
correct choice, where the lower bound ensures that outcomes 
exist where no other choice is selected more often. The 
second sum considers all other choices 𝑖𝑖, and the third sum 
considers the number of humans selecting choice 𝑖𝑖. The 
lower bound ensures that no choice needs to be selected 
more often than the correct choice: 𝑛𝑛 − ∑ 𝑛𝑛𝑡𝑡𝑡𝑡𝑖𝑖−1

𝑗𝑗=1  is the 
number of humans who haven’t selected a choice yet and 
(𝐶𝐶 − 𝑖𝑖)(𝑛𝑛𝑡𝑡1) is the maximum number of humans selecting 
the succeeding choices without exceeding the correct choice. 
The upper bound is the number of humans selecting the 
correct choice or the number of humans who haven’t 
selected a choice yet. For example, having 𝑛𝑛 = 3 humans 
and 𝐶𝐶 = 3 choices would lead to 𝑃𝑃𝑡𝑡13 = 1

3
𝑃𝑃(1,1,1) +

1
1
𝑃𝑃(2,0,1) + 1

1
𝑃𝑃(2,1,0) + 1

1
𝑃𝑃(3,0,0). Note that for 𝑛𝑛 ≤ 3, 

𝑃𝑃𝑡𝑡1𝑛𝑛 = 𝑝𝑝𝑡𝑡1. 

Effect of AI Advice on Wisdom of 
Crowds’ Performance 

As discussed earlier, AI advice changes the probability of 
selecting choice 𝑐𝑐 in task 𝑡𝑡 with effect strength 𝑒𝑒𝑡𝑡. We now 
adapt the probability of a given outcome of Equation (31) for 
correct AI advice (34) and incorrect AI advice (35). Note that 
for simplicity, we define the incorrect AI choice to be 𝑐𝑐 ∈
{2}, that is, 𝑎𝑎𝑡𝑡2 = 1.  
 

𝑃𝑃𝑡𝑡𝐴𝐴𝐴𝐴(𝑛𝑛𝑡𝑡1,𝑛𝑛𝑡𝑡2, … ,𝑛𝑛𝑡𝑡𝑡𝑡) = 
 

𝑛𝑛!
∏ 𝑛𝑛𝑡𝑡𝑡𝑡!𝐶𝐶
𝑐𝑐=1

𝑝𝑝𝑡𝑡1 + 𝑒𝑒𝑡𝑡
1 + 𝑒𝑒𝑡𝑡

𝑛𝑛𝑡𝑡1
�

𝑝𝑝𝑡𝑡𝑡𝑡
1 + 𝑒𝑒𝑡𝑡

𝑛𝑛𝑡𝑡𝑡𝑡𝐶𝐶

𝑐𝑐=2
 

(34) 

 
 

𝑃𝑃𝑡𝑡𝐴𝐴𝐴𝐴
���(𝑛𝑛𝑡𝑡1,𝑛𝑛𝑡𝑡2, … ,𝑛𝑛𝑡𝑡𝑡𝑡) = 

 
𝑛𝑛!

∏ 𝑛𝑛𝑡𝑡𝑡𝑡!𝐶𝐶
𝑐𝑐=1

𝑝𝑝𝑡𝑡1
1 + 𝑒𝑒𝑡𝑡

𝑛𝑛𝑡𝑡1 𝑝𝑝𝑡𝑡2 + 𝑒𝑒𝑡𝑡
1 + 𝑒𝑒𝑡𝑡

𝑛𝑛𝑡𝑡2
�

𝑝𝑝𝑡𝑡𝑡𝑡
1 + 𝑒𝑒𝑡𝑡

𝑛𝑛𝑡𝑡𝑡𝑡𝐶𝐶

𝑐𝑐=3
 

(35) 

 
Given the generalized nature of this formulation, it is not 
possible to obtain a closed-form analytical result regarding 
the size of a crowd without AI assistance that outperforms a 
crowd with AI assistance. However, the equations (34) and 
(35) easily lend themselves to exploration of the structure of 
results for any practical situation where the required 
probabilities can be calculated or empirically obtained. 

 
For example, we can compute the crowd performances 𝑃𝑃𝑡𝑡1𝑛𝑛  
for our experimental environment with 10 choices (i.e., 𝐶𝐶 =
10), assuming an effect size of 𝑒𝑒 = 0.5  and equal proba-
bilities for all non-correct choices with 𝑝𝑝𝑗𝑗 = 1−𝑝𝑝1

9
. Let us 

compare three different tasks with different human accuracy: 
a “difficult” task with 𝑝𝑝1 = 0.2, a “medium” task with 𝑝𝑝1 =
0.5, and an “easy” task with 𝑝𝑝1 = 0.8.  We vary the group 
size between 1 and 25, and illustrate the results in Figure 1. 
 
Note that with increasing group size, the probability that the 
crowd selects the choice with the highest probability 
increases. Thus, correct advice helps crowds to converge 
faster. However, after a certain group size, the effect is 
negligible. Incorrect advice slows down convergence (if the 
correct task still has the highest probability, as may be the 
case for easy tasks), or even turns convergence toward a 
performance of zero (if the correct task no longer has the 
highest probability, as may be the case for difficult tasks).  
 
For our examples, incorrect advice has a strong detrimental 
effect on group performance for all task types, while correct 
advice only has a strong beneficial effect for the difficult 
task. 
 
The performance of groups with AI advice depends on the 
ratio of correct and incorrect advice, that is, AI accuracy. 
With increasing group size, the relative benefit from correct 
advice deteriorates for cases where the initial probability for 
the correct choice is the highest. In Figure 2, we illustrate the 
results for human accuracies between 0.1 and 0.9 and AI 
accuracies between 0.1 and 0.9.  The values in the matrix 
represent the group size at which performance of groups 
without AI advice begins to outperform groups with AI 
advice (light grey area reflects that a single human out-
performs a human with AI advice). Human accuracy of 0.1 
illustrates a special case, where all choices have the same 
probability to be selected. If AI accuracy equals 0.1 as well, 
groups with and without AI advice perform equivalently for 
all group sizes (white area), while groups with AI advice 
outperform those without for all group sizes (dark grey area) 
if AI accuracy is greater than 0.1 and human accuracy is 0.1.  
In general, as group size grows, humans without AI assis-
tance will at some point outperform a same-sized group with 
AI assistance.  For example, if human accuracy is 0.5, and 
AI accuracy is 0.9, a group of 11 or more humans will 
perform better without AI advice as compared to the same 
number of humans with AI advice. 
 
Thus, for all situations where the correct choice has the 
highest probability of being chosen, there is a group size 
where groups without AI advice outperform those with AI 
advice, even for higher AI accuracies.
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Figure 1. Group Performance Based on Human Accuracy, Advice, and Group Size 
 

AI Accuracy          
0.9  >25 >25 16 11 7 5 4 3 
0.8  >25 21 12 8 5 4 3  
0.7  >25 16 9 5 4 3   
0.6  >25 12 6 4 3    
0.5  23 8 4 3     
0.4  15 5 3      
0.3  9 3       
0.2  3        
0.1          
 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
 Human Accuracy 

          
Groups with AI advice better for all group sizes    

Equivalent for all group sizes    
Groups without AI advice better beyond group size     

 

 

Figure 2. Comparison of Groups with and Without AI Advice Based on Human and AI Accuracy 
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The diversity prediction theorem (Page 2007) states that col-
lective performance depends on individual performance and 
prediction diversity. This statement alone makes it difficult 
to predict how AI suggestions will impact crowd perfor-
mance because while the AI advice increases individual per-
formance, it decreases unique human knowledge and, thus 
prediction diversity. In line with our model results, Hong et 
al. (2016) argue that in general, the importance of diversity 
increases with group size. Considering those theoretical 
considerations in line with Proposition 4 and the numerical 
results, we derive our next hypothesis. 
 
Hypothesis 4a: Benefit from wisdom of crowds decreases 
with the group size when receiving AI advice. 
 
The final hypotheses directly follow Page’s diversity pre-
diction theorem and our hypotheses on individual decision 
making. Compared to providing regular AI advice, both our 
interventions should at least maintain individual perfor-
mance while increasing unique human knowledge as 
measure for prediction diversity.  
 
Hypothesis 4b: Benefits from wisdom of crowds increase 
with the group size when receiving the AI’s certainty. 
 
Hypothesis 4c: Benefits from wisdom of crowds increase 
with the group size when AI advice is personalized. 
 
Next, we present our experiments to study individual 
decision making and to test the hypotheses derived from our 
theoretical model, before performing computational experi-
ments from the data collected in the individual decision-
making environments to simulate wisdom of crowds settings 
to validate the predictions of our model.  

Experimental Studies:  Individual  
Decision Making   

To empirically test our hypotheses, we conducted a set of 
experimental studies with human subjects. We address the 
questions whether humans can exploit complementarities 
with an AI, and how the level of unique human knowledge 
changes due to different types of advice. We provide an 
overview on our experiments and the high-level purpose of 
each experiment in Table 1. In Experiment 1, we initially test 
the consequences of AI advice and test the effect of 
presenting AI certainty along with AI suggestions. In 
Experiment 2, we explore the heterogeneity in human reac-
tions to advice. Finally, Experiment 3 focuses on the effect 
of personalized AI advice. 

We chose the context of image recognition for three main 
reasons: First, image recognition is a very generic task that 
all human subjects should be able to perform without any 
specific skills or training. In behavioral research, a common 
goal is to create a setting where insights also apply in other 
settings. It is assumed that observations in generic tasks can 
carry over to more specialized tasks, while contexts that do 
require specific training make results less generalizable. 
Second, image classification is a task that modern AI sys-
tems do well (Szegedy et al. 2015) and at least on par with 
human performance (Russakovsky et al. 2015). Third, image 
classification is a task where an AI based on a deep convo-
lutional neural network will use different solution methods 
to classify an image compared to any individual human. 
Thus, the AI should perform better than a given human on 
some images, but worse on other images, leading to the 
existence of unique AI knowledge and unique human 
knowledge.  

General Experimental Design 

In the experiment, the subjects had to assign a focal image 
(e.g., an image of a small black dog) to one of ten possible 
image classes. For each of the 10 classes, we showed the 
class name (for example the text “Swiss mountain dog” or 
“Boxer”) and 13 images that belong to that class, similar to 
Russakovsky et al. (2015). We sampled 100 images and the 
corresponding correct class labels from the ImageNet data-
base (www.image-net.org). All subjects classified the same 
100 focal images. Images contain different levels of subject-
tive difficulty; for example, humans may find classifying a 
firetruck more straightforward than identifying a specific 
breed of dog. After each classification, subjects reported 
how certain they were about their choice on a four-point 
scale (“Uncertain 1/4,” “Rather uncertain 2/4,” “Rather 
certain 3/4,” “Certain 4/4”). 
 
All studies include two main conditions: The subjects in the 
“No AI” conditions worked alone. They made the decisions 
by themselves and did not receive any help. In the “AI 
suggestion” conditions, subjects received advice from one of 
the best performing AIs for image classification— 
GoogLeNet Inception v3 (Szegedy et al. 2016). For each 
image, Inception assigns a certainty score to 1,000 possible 
classes.  This score represents the likelihood that the selected 
class is the true class for a given focal image. The AI, in our 
experiment, recommends the class with the highest certainty 
score to the subjects.  In our set of 100 images, the AI had 
an accuracy of 0.77, that is, it classified 77 of the 100 images 
correctly. Figures 3 and 4 show screenshots of those treat-
ments. They illustrate that the only difference between them 
is the AI’s suggestions.

 

http://www.image-net.org/
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Table 1.  Overview Experiments 
Experiment Purpose 

Experiment 1: AI advice and the effect of 
providing AI certainty 

• Effect of AI advice on human accuracy and unique human knowledge 
• Effect of providing the AI’s certainty on human accuracy and unique 

human knowledge 
Experiment 2: Heterogeneity in human 
reactions to AI advice 

• Effect of correct and incorrect AI advice on individual human accuracy 
(benefit and harm) 

Experiment 3: Personalizing AI advice • Effect of personalizing AI advice on human accuracy and unique human 
knowledge 

 
 

 

Figure 3.  Humans Without AI Advice (only four out of ten choices are shown) 
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Figure 4.  With AI Suggestions (only four out of ten choices are shown) 

 

 

We followed Nosek et al. (2018) and pre-registered the two 
confirmatory Experiments 1 and 3 (https://osf.io/b6se4/) at 
the Open Science Foundation (Foster and Deardorff 2017). 
This included our hypotheses, a power analysis to determine 
the sample size, the recruitment and data collection process, 
and the statistical analysis. Doing experimental work this 
way ensures that research is driven by theory and the 
reported results are not an outcome of ex post analysis. 

 

Measures 

As in our theoretical model, we are interested in two mea-
sures: human accuracy and unique human knowledge.  
Human accuracy is measured as the number of correctly 
classified images divided by the total number of images. 
Unique human knowledge is measured as the number of 
correctly classified images that the AI classified incorrectly,  
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divided by the number of images. We hypothesize, test and 
report based on both measures in the experiments. 
 
In the following, we describe the three experiments.  

Experiment 1:  AI Advice and the Effect 
of Providing AI Certainty 

Hypotheses and Study Design 

We set up Experiment 1 to test the initial hypotheses on the 
consequences of AI advice on human accuracy and unique 
human knowledge (Hypotheses 1a and 1b), and the effect of 
presenting AI certainty (Hypotheses 2a and 2b).  We com-
pare three experimental treatments in a fully randomized 
between-subjects design: Treatment 1 “No AI” and Treat-
ment 2 “AI suggestion” as described above, and an addi-
tional Treatment 3 “AI certainty,” where advice additionally 
includes information about the AI’s certainty. To ensure 
human subjects can easily understand the AI certainty and 
can relate it to their own level of certainty, we presented the 
AI certainty on the same four-point scale that the human 
used to report their own certainty (subjects were informed 
about the likelihoods of the categorical certainty scores and 
how they relate to average human performance).  
 
We summarize the four hypotheses we test in Experiment 1 
and how they relate to our treatments: 
 
• Hypothesis 1a: Human accuracy increases when 

receiving AI advice (accuracy in Treatment 1 is lower 
than accuracy in Treatment 2).  
 

• Hypothesis 1b: Unique human knowledge decreases 
when receiving AI advice (unique human knowledge in 
Treatment 1 is greater than unique human knowledge in 
Treatment 2). 

 
• Hypothesis 2a: Human accuracy increases when 

receiving the AI’s certainty (accuracy in Treatment 2 is 
lower than accuracy in Treatment 3).  
 

• Hypothesis 2b: Unique human knowledge increases 
when receiving the AI’s certainty (unique human 
knowledge in Treatment 2 is lower than unique human 
knowledge in Treatment 3). 

 
 

Study Protocol 

We performed the experiment on August 8, 2019. We 
preregistered a power analysis to determine our sample size. 
We decide to test for a small to medium-sized effect (d = 0.3, 
f = 0.15) assuming an alpha value of 0.05 and a power of 0.8 
(ANOVA with three groups). This results in a total sample 
size of 432. We targeted 150 per cell resulting in a total of 
450 subjects. We recruited 458 subjects on Amazon Mech-
anical Turk (MTurk). We only included subjects from the 
United States who had a positive rating of at least 90%, had 
not participated in related studies before, correctly answered 
an attention check, and met technical requirements regarding 
screen resolution.  
 
Subjects received $1 for participation, $1 for correctly esti-
mating the number of classified images (+/– five images) 
after the 100 classifications, and $0.05 for each correctly 
classified image. Subjects in Treatments 2 and 3 received an 
additional $0.50 for filling out a survey about their trust in 
the AI after the classification. Total payment could thus vary 
between $1 and $7 for Treatment 1, and between $1.5 and 
$7.5 for Treatments 2 and 3. 
 
Random assignment put 146 subjects into Treatment 1, 160 
subjects into Treatment 2, and 152 subjects into Treatment 
3. We collected information on the subjects’ gender, age, 
level of education, and income class. We control for these 
factors in robustness checks to make sure that the randomi-
zation did not systematically influence treatment effects. 
 
At the beginning of the experiment, subjects received basic 
information on the task and had to perform an attendance 
check. We informed them that they could only continue if all 
answers were correct. Afterward, they were randomly 
assigned to an experimental treatment and received instruct-
tions that only differed with respect to the advice provided. 
In the main task, subjects classified 100 images in random 
order. The possible classes for each image were presented in 
random order. After the classifications, subjects had to 
estimate the number of correctly classified images. They 
reported how they made the decisions, with the subjects of 
treatments with AI advice (Treatments 2 and 3) also an-
swering a questionnaire on human–computer trust covering 
the dimensions perceived reliability, perceived technical 
competence, understandability, faith, and personal attach-
ment (10 items from Madsen and Gregor 2000). The experi-
ment ended with a short demographic questionnaire. 
Subjects were then told the results and their payment. 
Average duration was 57.4 minutes, average pay excluding 
Amazon MTurk fees was $5.77. 
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Results 

We first test our pre-registered hypotheses2 on the effect of 
AI advice and providing AI certainty on human accuracy and 
unique human knowledge. Summary statistics for accuracy 
and unique human knowledge can be found in Table 2, the 
mean outcomes are illustrated in Figure 5. 
 
We present results on accuracy (Hypotheses 1a and 2a) and 
the interpretation of effect sizes (small, medium, large) 
according to Cohen (2013). The variance of accuracy is 
significantly different across experimental conditions 
(Levene test, F(2, 455) = 17.477, p < .001) and the means 
are significantly different as well (ANOVA with heterog-
eneous variances, F(2, 285.29) = 29.594, p < .001, η2 = .155, 
which represents a large effect). Post hoc comparisons with 
Tanhames T2 statistic for multiple comparisons suggest that 
accuracy with AI suggestion (Treatment 2, 0.799) is indeed 
significantly larger than without (Treatment 1, 0.681). This 
difference (11.8 percentage points) is significant (p < .001) 
and represents a large effect (d = .85). Additionally, showing 
the AI’s certainty in Treatment 3 created an average accu-
racy of 0.801. The difference between Treatments 2 and 3 is 
not significant (p > .99) and would represent not even a small 
effect (d = .02). 
 
Thus, we find support for Hypothesis 1a: accuracy improves 
when humans are provided AI suggestions. In addition to our 
pre-registered hypothesis we also conclude that human 
accuracy (0.799) exceeds the AI accuracy level of 0.770 
when AI suggestion is provided (p < .001). We do not find 
sufficient support for Hypothesis 2a, and cannot conclude 
that accuracy improves further when the AI provides infor-
mation about its certainty. 
 
The variances of unique human knowledge across treatments 
does not vary significantly according to a Levene test  
(F(2,455) = 1.807, p = .165). Analysis of variance indicates  
that the mean unique human knowledge differs across treat-
ments (F(2,455) = 47.336, p < .001, η2 = .172, which 
represents a large effect). Average unique human knowledge 
is .123 when humans are working alone, and AI suggestion 
reduces the unique human knowledge down to .073. Tukey’s 
honestly significant differences (HSD) indicates that this 
difference of five percentage points is significant (p < .001), 
and represents a large effect (d = 1.125). When we addi-
tionally present the AI’s certainty (Treatment 3), the unique 
human knowledge is .087. This is significantly different 

from both other treatments (p < .001 in both cases). The 
difference between Treatments 2 and 3 is 1.4 percentage 
points, which represents a small effect (d = .285).  Therefore, 
we find support for Hypotheses 1b and 2b, that is, unique 
human knowledge is reduced with AI suggestion, and pro-
viding information about the AI’s certainty partially 
mitigates this effect.  
 
As discussed earlier, Hypothesis 2a that posited a further 
increase in human accuracy when AI certainty is provided, 
was not supported. Our prediction based on our model was 
that humans would follow advice less often for images with 
low AI certainty and follow the AI’s advice more often when 
the AI is certain. Since the AI advice is more likely to be 
correct for high certainty values, hence, we expected an 
increase in accuracy.  However, that did not turn out to be 
the case. 
 
To explore this negative result further, we measure the effect 
of providing AI certainty on human accuracy on image level 
and differentiate between images where the AI advice was 
correct and where it was wrong. We further consider image 
difficulty as control variable, and differentiate between 
image difficulty from a human point of view (1 minus human 
accuracy in T1) and from an AI point of view (1 minus AI 
certainty score).  We run three regression models (Table 3) 
with human accuracy as the dependent variable. Model (1) 
was estimated without controls for image difficulty. Models 
(2) and (3) include controls for image difficulty from a 
human (model 2) and the AI (model 3) perspective. We use 
random effects models to capture image and subject hetero-
geneity. The results suggest that providing information about 
the AI’s certainty increases human accuracy by 0.059 for 
images where AI was wrong. However, we also see a 
negative interaction effect of providing AI certainty for 
images where the AI is correct: average accuracy actually 
declines for images where the AI’s suggestion was correct. 
Thus, providing AI certainty led to a consistent decrease of 
AI adherence. Note that, according to our theoretical model, 
this is potentially harmful if, as is the case in our experi-
ments, AI accuracy exceeds human accuracy (and unique AI 
knowledge exceeds unique human knowledge).   
 
In our survey questions on human–computer trust (Madsen 
and Gregor 2000), we observed that providing AI certainty 
led to a decrease of human trust in AI’s capabilities. As trust 
in AI is typically correlated with adherence to advice (see 
Glikson and Woolley 2020 for a review on trust in AI), the 

                                                 
2 Note that we preregistered hypotheses based on human–
human complementarities as well. As we focus on unique 

human knowledge (pre-registered as human–AI–comple-
mentarities), we skip those hypotheses. 
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Table 2.  Descriptive Statistics for Accuracy and Human–AI–Complementarity 
 Treatment n Minimum Average Median Maximum Std. Dev. 
Accuracy 
 1 146 .08 .681 .735 .89 .172 
 2 160 .06 .799 .82 .92 .098 
 3 152 .4 .801 .84 .94 .109 
Unique human knowledge    
 1 146 .01 .123 .13 .19 .043 
 2 160 0 .073 .08 .17 .046 
 3 152 0 .087 .10 .19 .049 

 

 

Figure 5.  Average Values for Accuracy and Unique Human Knowledge across Treatments (***p < 0.001) 
 
 

Table 3.  The Effect of Providing AI Certainty (T3) on Human Accuracy (1), Considering Image Difficulty 
from a Human Point of View (2), and from an AI Point of View (3) 

 Accuracy (1) Accuracy (2) Accuracy (3) 

Constant (T2, AI wrong) .318*** .505*** .328*** 

AI certainty (T3) .059*** .059*** .059*** 

Human difficulty   -.402***  

AI difficulty    -.018(*) 

AI correct .624*** .548*** .617*** 

AI certainty (T3) x AI correct -.074*** -.074*** -.074*** 

Adjusted R2 .408 .453 .408 
Significance values:  ***p < 0.001, **p < 0.01, *p < 0.05 (*)p < 0.1
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decreased adherence to AI advice when AI certainty was 
provided might be explained by the observed decrease in 
trust.  
 
When we compare mean accuracies from Treatment 1 and 
Treatment 2 in our first experimental study, we observe a 
gain of about 12 percentage points on average. While the AI 
advice boosts accuracy from 0.725 to 0.942 when it is 
correct, it deteriorates performance from 0.536 to 0.318 if it 
is incorrect. The former effect measures the “benefit” of 
correct advice, and the latter the “harm” of incorrect advice. 
However, individually, humans may react differently to 
advice:  decisions of some humans might be robust against 
incorrect advice if they have better judgement for a given 
image, while other individuals might adopt the AI sug-
gestion even if they themselves would have chosen the 
correct answer but were not confident about their own 
choice. Similarly, some subjects might be willing to accept 
correct advice if it is in conflict with their own judgement, 
while others will stick to their incorrect judgement.  There-
fore, we designed our next experiment to explore this 
phenomenon. 

Experiment 2:  Heterogeneity in  
Human Reactions to AI Advice 

Study Design 

The goal of this experiment is to explore heterogeneity in 
human reactions to AI advice, specifically expected benefit 
and harm. To do this, we test “No AI” and “AI Advice” in a 
within-subjects design, where each subject classifies each 
image twice: after a first classification without support, we 
show subjects the AI suggestion and they may reconsider 
their choice and switch to the AI suggestion. This experi-
ment is exploratory in nature and we did not preregister 
hypotheses.  
 
For each subject, we measure the accuracy before and after 
receiving AI advice, the difference between these accu-
racies, the average benefit of correct advice (that is, the 
number of images where the subject was wrong before and 
correct after receiving the advice divided by the number of 
images with correct AI advice), and the average harm of 
incorrect advice (that is, the number of images where the 
subject was correct before and wrong after receiving the 
advice divided by the number of images with incorrect AI 
advice). 

Study Protocol 
 
We performed the experiment on March 30, 2020. As we do 
not test any hypotheses, we did not preregister a power 
analysis to determine the sample size, and targeted 100 
subjects. We recruited 99 subjects on Amazon MTurk. The 
selection criteria were same as those in Experiment 1. Sub-
jects received a payment of $1.50 for participation, up to $1 
for correctly estimating the number of classified images (+/- 
five images), $0.50 for filling out the AI trust survey, and 
$0.04 for each correct classification, both before and after 
receiving AI advice. Total payment could vary between $2 
and $11. Average pay was $7.73 with an average duration of 
79.7 minutes.  

Results 

Table 4 shows summary statistics. In general, we could 
replicate the main results from Experiment 1, the effect of 
receiving advice being somewhat higher. All subjects 
improved due to AI advice. There was considerable variation 
across individuals for the benefit of correct advice and the 
harm of incorrect advice.  
 
To illustrate that this variation cannot be explained by 
different levels of AI adherence, we plot benefit and harm 
for all subjects in Figure 6. The raw data shows a lot of 
variety and no clear pattern. Thus, reactions to advice seem 
to differ across individuals. 
 
We can draw two conclusions from this exploration: 
 
(1) Overall, AI advice seems to be beneficial for humans. 

We did not observe even a single subject that lost 
accuracy due to the AI advice. 
 

(2) There is substantial heterogeneity in how incorrect 
advice harms human decision making, and how correct 
advice is beneficial. Therefore, a promising approach 
may be to design a personalized AI advice system that 
adapts to an individual by considering their individual 
expected harm or benefit based on the AI’s observation 
while working with that individual. 
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Table 4.  Descriptive Statistics for Accuracy Without/With AI Advice, Benefit and Harm of AI Advice 
 N Minimum Average Median Maximum Std. Dev. 

Accuracy without AI 99 .090 .607 .680 .850 .196 
Accuracy with AI 99 .290 .765 .810 .920 .120 
∆ accuracy with/without AI 99 .020 .158 .130 .540 .104 
Benefit 99 .039 .243 .208 .740 .135 
       
Harm 99 .000 .128 .130 .391 .081 

 
 

 
Figure 6.  Average Benefit of Correct Advice and Harm of Incorrect Advice Per Subject 

 
 
 
Experiment 3: Personalizing AI Advice 

Hypotheses and Study Design  

In Experiment 3, we test the remaining hypotheses on the 
effect of personalized AI advice on human accuracy and 
unique human knowledge. As derived in the theoretical 
model, in this case, the AI provides advice if the probability 
of correct advice at task 𝑡𝑡 exceeds a “critical ratio” based on 
expected harm of incorrect advice and expected benefit of 
correct advice of human ℎ: 
 
 

𝑙𝑙𝑡𝑡𝐴𝐴𝐴𝐴 <
ℎ𝑎𝑎𝑎𝑎𝑚𝑚ℎ

ℎ𝑎𝑎𝑎𝑎𝑚𝑚ℎ + 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡ℎ
 

 

The experiment compares the personalized AI advice based 
on the critical ratio with two benchmark conditions “No AI” 
and “AI Suggestion” as in Experiment 1. 
 
We split the 100 images in two sets of 50 images with similar 
attributes, such as average AI certainty, human performance, 
benefit of correct advice, and harm of incorrect advice. 
During the first set of 50 images, the AI “learns” about an 
individual, i.e., their expected benefit and harm when they 
receive AI advice. We test the three different experimental 
conditions during the second set of 50 images.  
 
The experimental design of the first 50 images is equivalent 
to Experiment 2. We calculate the average benefit of correct 
advice, harm of incorrect advice, and the critical ratio for 
each subject. To exclude participants who randomly click, 
only subjects who classified more than 15 images correctly 
before receiving AI advice proceed to the second part. The 
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remaining subjects received their payment and left the study. 
Note that this process takes place before subjects are 
assigned to treatments to avoid any influence on the results.  
For the second 50 images, subjects were assigned to one of 
three treatments3: Treatment 1’ (“No AI”) and Treatment 2’ 
(“AI suggestion”) serve as benchmarks, and correspond to 
Treatments 1 and 2 in Experiment 1. Treatment 3’ 
(“Personalized AI”) is the new condition. Here we only 
provide a suggestion to a human if the AI certainty score 
exceeds the human’s critical ratio. We pre-registered4 the 
experiment at the Open Science Foundation following the 
similar protocol as Experiment 1. 
 
Treatments 1’ and 2’ replicate our first experiment with a 
subset of images, so that we only hypothesize about effects 
between Treatments 2’ and 3’, that is, the effect of person-
alized advice. Based on our model, we restate our next set of 
hypotheses: 
 
• Hypothesis 3a: Human accuracy does not decrease 

when AI advice is personalized (accuracy in Treatment 
3’ is not lower than in Treatment 2’). 
 

• Hypothesis 3b: Unique human knowledge increases 
when AI advice is personalized (unique human knowl-
edge in Treatment 3’ is greater than in Treatment 2’). 

Study Protocol 

We performed the experiment on April 21, 2020. We 
preregistered a power analysis to determine our sample size: 
We decide to test for a small to medium-sized effect (d = 0.3, 
f = 0.15) assuming an alpha value of 0.05 and a power of 0.8 
(ANOVA with three groups). This results in a total sample 
size of 432. We targeted 150 per cell resulting in a total of 
450 subjects. After finishing the first set of 50 images, and 
after dismissing subjects with less than 16 images classified 
correctly, we randomly allocate subjects to treatments. As 
we expect that around 10% of subjects have to be dismissed 
after the first set of 50 images, we aimed for a total of 500 
subjects. We recruited 492 subjects on Amazon MTurk. The 
selection criteria equaled those in Experiment 1. Subjects 
received a payment of $1.50 for participation, $1.50 for 
classifying for the main experiment, and $0.05 for each 
correct classification, both before and after receiving AI 

                                                 
3 In contrast to Experiment 1, we denote the treatments as 1’ 
– 3’. 
 

advice. Total payment could vary between $1.50 and $10.50. 
Average pay was $7.90 with an average duration of 68.6 
minutes.  

Results 

We state summary statistics in Table 5 and illustrate the main 
outcomes in Figure 7. The variance of accuracy is signi-
ficantly different across experimental conditions (Levene 
test, F(2, 430)=7.7081, p <.001) and the means are signi-
ficantly different as well (ANOVA with heterogeneous 
variances, F(2, 284.46) = 28.99, p < .001, η2 = .127, which 
represents a medium effect).  Post hoc comparisons with 
Tanhames T2 statistic for multiple comparisons suggest that 
accuracy with AI suggestion (Treatment 2’: .773) is indeed 
significantly larger than without (Treatment 1’: .658). This 
difference (11.5 percentage points) is significant (p < .001) 
and represents a medium to large effect (d = .74). Showing 
personalized AI suggestions in Treatment 3’ led to an 
average accuracy of .795. The difference between Treat-
ments 3’ and 2’ is positive, yet not significant (p >  
.1); it would represent less than a small effect (d =.14). Thus, 
we find support for Hypothesis 3a: Accuracy does not 
decrease with personalized AI advice. We even find 
directional but nonsignificant support for better accuracy 
due to personalized advice. 
 
The variance of unique human knowledge is not signify-
cantly different across experimental conditions (Levene test, 
F(2, 430) = 0.117, p >.1), but the means are significantly 
different (ANOVA, F(2, 430) = 13.907, p < .001, η2 = .06, 
which represents a medium effect). Post hoc comparisons 
with Tukey’s HSD suggest that unique human knowledge 
with permanent AI suggestions (Treatment 2’, .074) is 
significantly smaller than without (Treatment 1’: .108). This 
difference (3.4 percentage points) is significant (p < .001) 
and represents a medium effect (d = .62). The personalized 
suggestions in Treatment 3’ created an average unique 
human knowledge of .097. Interestingly, the difference of 
1.1 percentage points between unique human knowledge in 
Treatments 1’ and 3’ is not significant (p > .1). The 
difference between Treatments 2’ and 3’ (2.3 percentage 
points) is significant (p < .01) and represents a medium 
effect (d = .40). Thus, we also find support for Hypothesis 
3b, as unique  human  knowledge  increased significantly by

4 Note that we preregistered hypotheses based on human–
human complementarities as well. As we focus on unique 
human knowledge (pre-registered as “human–AI comple-
mentarities”), we skip those hypotheses. 
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Table 5.  Descriptive Statistics for Accuracy and Human Knowledge 
 Treatment n Minimum Average Median Maximum Std. Dev. 

Accuracy 
 1’ 139 .180 .658 .700 .960 .165 
 2’ 146 .060 .773 .800 .940 .144 
 3’ 148 .100 .795 .840 .960 .159 
Unique human knowledge    
 1’ 139 .000 .108 .120  .054 
 2’ 146 .000 .074 .080 .200 .056 
 3’ 148 .000 .097 .100 .220 .057 

 
 

 
Figure 7.  Average Values for Accuracy and Unique Human Knowledge Across Treatments (***p < 0.001) 

 
 
 
 
personalizing AI suggestions compared to always providing 
AI suggestions. In comparison to humans without AI advice, 
providing personalized suggestions significantly increased 
accuracy without significantly decreasing unique human 
knowledge. 
 
The results for accuracy and unique human knowledge for 
the personalized AI resemble those of the third treatment 
from Experiment 1, where the AI certainty was provided. A 
difference between those approaches is that personalized AI 

prevents humans from converging toward false suggestions 
by not showing them.  
 
We argue that the loss of diversity in human knowledge 
might have a negative impact in many collaborative decision 
environments. As a proof of concept, we next extend our 
theoretical model to incorporate wisdom of crowds settings, 
then we will use the data from our experimental studies to 
perform computational simulations to test the effects of AI 
advice and our two interventions in wisdom of crowd 
settings.  
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Experimental Studies:  Wisdom 
of Crowds   

In the earlier sections, our experimental results verified our 
model prediction that AI advice can increase human 
accuracy, but reduces unique human knowledge. We now 
study possible consequences of this negative effect and 
evaluate mitigation strategies based on wisdom of crowds.  
Using our theoretical model, we could demonstrate that 
following a common signal by AI advice leads to detrimental 
crowd performance. Even if AI accuracy was largely above 
average human accuracy, there is a group size where “pure” 
human groups outperform groups with AI advice—as long 
as the correct choice has a higher probability of being chosen 
over any other available choice. This finding is in line with 
the literature in group decision making and wisdom of 
crowds. 
 
In the following, we make use of our experimental data to 
test our hypotheses. 

Simulation Setup and Hypotheses 

We simulated the wisdom of crowds, where the subjects of 
our different experimental treatments form “populations.” 
For each crowd, we randomly select a desired number of 
group members. The collective choice is the modal choice 
among group members. In case of ties, we randomly select 
one of the tied choices. We vary the group size between one 
and 15. To explore convergence for large groups, we also 
include group sizes of 99 and 100. For each group size we 
perform a Monte Carlo simulation with 1,000 iterations. In 
each iteration we randomly sample the group from the 
population and compute its choices for all 100 images. We 
restate our set of hypotheses: 
 
• Hypothesis 4a:  Benefit from wisdom of crowds 

decreases with the group size when receiving AI advice. 
 

• Hypothesis 4b:  Benefit from wisdom of crowds 
increases with the group size when receiving the AI’s 
certainty. 
 

• Hypothesis 4c:  Benefit from wisdom of crowds 
increases with the group size when AI advice is 
personalized. 

 
In the following, we conduct this wisdom of crowds analysis 
for the experimental conditions of Experiment 1 and 
Experiment 3. 

Wisdom of Crowds:  Experiment 1 

Figure 8 shows collective accuracies for populations without 
AI advice (Treatment 1), with AI suggestion (Treatment 2) 
and with AI suggestion and certainty (Treatment 3). The 
values for a group of one individual reflect the individual-
level results from the previous section, where humans with 
AI suggestion (Treatments 2 and 3) outperform those 
without (Treatment 1). Due to the random tie-breaking rule, 
group sizes of one and two lead to the same performance. 
 
The effect of AI advice on group performance changes 
quickly as the group becomes larger. The accuracy for 
humans with AI advice does not increase after reaching a 
certain group size: for AI advice without AI certainty, the 
accuracy reaches a level of .84 for group sizes above three, 
while it reaches a level of .86 for group sizes above four if 
AI certainty was added. Humans without AI advice keep 
improving over the entire spectrum. Starting with a group 
size of seven, human groups without AI advice outperform 
human groups with AI suggestions only. If AI suggestions 
are complemented with AI certainty, it takes groups of more 
than eleven humans without AI advice to outperform the 
groups with AI advice. 
 
To test our Hypotheses 4a and 4b, we run a simple linear 
regression analysis with the group accuracy as the dependent 
variable. As independent variables we consider: group size 
(between 1 and 15), AI advice (1 for Treatments 2 and 3), 
the interaction of group size and AI advice, AI certainty (1 
for Treatment 3), and the interaction of group size and AI 
certainty. For each treatment and group size, we consider the 
first 100 simulation instances. The regression results are 
summarized in the left column of Table 6. We obtain a 
significant negative interaction effect of AI advice and 
crowd size. Thus, humans with AI advice benefit less from 
crowd size compared to humans without AI advice, and we 
find support for Hypothesis 4a. Hypothesis 4b is also 
supported, as we find a significant positive interaction effect 
of AI certainty and crowd size. Thus, providing the AI’s 
certainty mitigates the loss of crowd benefit of AI advice. 
 
The results demonstrate that unique human knowledge is 
indeed essential. Although AI advice helps human decision 
makers to improve individually, the loss of unique human 
knowledge cancels out this improvement and ultimately 
leads to a deterioration of group performance. We identify 
two main reasons for this effect. First, the value of correct 
advice decreases by increasing group size, as groups are 
likely to select the correct decision without advice as well. 
Second, incorrect advice harms groups in two ways. Not 
only do humans who would have otherwise chosen the  cor-
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Figure 8.  Accuracy of Wisdom of Crowds:  Comparison Treatments 1–3 (Experiment 1) 

 
 
rect answer select the incorrect AI suggestion, but many 
humans who do not know the correct answer tend to select 
the AI suggestion, making it the modal choice.  
 
Overall, we can conclude that while AI advice helps 
individual performance, the reduction in unique human 
knowledge severely harms crowd performance. When very 
small in size, pure human groups are outperformed by 
crowds of humans that work with AI.  However, as the group 
size increases, even at modest sized groups (a computable 
threshold), the performance of human groups without AI 
assistance starts dominating performance of those with AI 
assistance. Finally, interestingly, note that a group of four 
humans provides more accuracy than the AI. 

Wisdom of Crowds: Experiment 3 

We now simulate wisdom of crowds based on a second set 
of 50 images for the three treatments of Experiment 3 with 
personalized AI advice. Figure 9 plots accuracies for popu-
lations without AI advice (Treatment 1’), with permanent AI 
advice (Treatment 2’), and with personalized AI advice 
(Treatment 3’). Treatments 1’ and Treatments 2’ replicate 
Experiment 1 with fewer images and new subjects. Again, 
group sizes of one and two lead to the results of single 
decision makers. 

Treatments 1’ and 2’ behave similar to Experiment 1, 
suggesting that the subset sufficiently represents the full 
image set. Similar to Experiment 1, humans in crowds larger 
than seven members outperform those with AI advice. 
Interestingly, Treatment 3’ outperforms all other treatments 
for all group sizes. Even for large groups with 100 subjects, 
humans with personalized AI suggestions are not out-
performed by those without AI advice, and outperform those 
always receiving AI suggestions by more than ten pe-
rcentage points. This suggests that personalizing AI advice 
is able to reduce the loss of unique human knowledge while 
maintaining the benefits of AI advice.  
 
To answer our Hypothesis 4c, we set up a regression analysis 
as in the previous section, replacing the independent variable 
AI certainty with AI personalization (1 for Treatment 3’). 
The regression results are summarized in the right column of 
Table 6. Again, we obtain a significant negative interaction 
effect of AI advice and crowd size, finding additional 
support for Hypothesis 4a. As we find a significant positive 
interaction effect of AI personalization and crowd size, we 
find support for Hypothesis 4c. Thus, personalizing the AI’s 
advice mitigates the loss of the crowd benefit of AI advice. 
Note that both the effect on intercept and the interaction with 
group size is stronger for personalizing AI advice compared 
to providing the AI’s certainty.
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Table 6.  Regression Results Group Accuracy in Wisdom of Crowds 

 Group Accuracy 
(Experiment 1) 

Group Accuracy  
(Experiment 3) 

Constant (T1) .726*** .692*** 

Group Size .012*** .014*** 

AI advice .091*** .109*** 

AI advice x Group size -.011*** -.011*** 

AI certainty .008*  
AI certainty x Group size .002***  
AI personalization  0.025*** 
AI personalization x Group Size  0.004*** 
Adjusted R2 .293 .334 

Significance values:  ***p < 0.001, **p < 0.01, *p <0.05 
 
 

 
Figure 9.  Accuracy Wisdom of Crowds:  Comparison Treatments 1’–3’ (Experiment 3) 
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Discussion and Conclusions 

Our research suggests that AI advice has two main effects. 
First, as expected and supported by a host of research, human 
performance can improve individually by receiving AI 
advice. However, we also highlight a hitherto undocumented 
effect: humans lose their unique knowledge, and conse-
quently complementarities with other human decision 
makers and the AI.  

Insights in Human-AI Collaboration 

Humans’ ability to improve individually from AI advice due 
to complementary knowledge is well documented in the 
literature. These complementarities allow AI-advised 
humans to exceed the AI performance. This potential is not 
often realized to the full extent, and humans working with 
AI often perform in between pure human and AI levels (e.g., 
Zhang et al. 2020). We were able to construct an envi-
ronment that leveraged AI’s ability to assess individual 
performance to provide selective advice such that our 
subjects could realize complementarities, surpassing their 
own and the AI’s level of performance. This result is 
encouraging. We demonstrate that the ability of humans to 
benefit from AI advice relates to the relative performance 
and the ability to differentiate between correct and incorrect 
advice. Thus, humans may even benefit from inferior advice 
if they are able to pick the instances where the AI performs 
better.   
 
The second effect, the decrease of unique human knowledge, 
also relates to complementary knowledge both among 
humans and between humans and the AI. Each human might 
follow different decision rules when performing the same 
task. Our analysis demonstrates that the complementarity 
reduction due to AI advice has dramatic effects on the 
wisdom of crowds. Keuschnigg and Ganser (2016) state that 
for discrete choice tasks, diversity seems to be less important 
than individual performance. They conclude that for group 
sizes up to well beyond the size of 20, ability dominates the 
performance. Our model and our results, however, indicate 
that groups of humans without AI advice could outperform 
those with AI advice, even for relatively small group sizes 
well below the size of 10. Please note that AI is trained by 
humans: for example, the ImageNet database used in this 
paper was annotated by MTurk workers. There are reports 
(Naylor 2021) that human annotators have incentives to 
behave in line with majority opinions—a behavior that 
eliminates unique human knowledge and diversity already 
during the creation of AI algorithms. This further stresses the 

importance of eliciting unique human knowledge in human–
AI collaboration. 

Implications for AI-Based Decision 
 Support Systems 

Our results have three main implications for the design of 
AI-assisted decision support environments. First, we demon-
strate that humans can realize complementarities with AI 
using a simple suggestion interface. In many applications 
where the focus is on the productivity of a single decision 
maker (or, for example, only two or three decision makers), 
this might provide a strong feature that can allow firms to 
combine human and artificial intelligence for superior per-
formance. Second, our results indicate that providing the 
same AI advice to a whole group of humans has significant 
downsides. In group decision making situations (e.g., when 
a group of demand planners is trying to forecast next 
quarter’s sales), complementarities between humans and AI 
may not be realized although they are crucial. In these situa-
tions, AI advice should not be a “one-size-fits-all” solution. 
Third, modern AI may use its abilities to measure its own 
certainty and to learn about the human interacting with it in 
order to overcome this issue. We propose a simple threshold 
rule that considers the expected harm and benefit of AI 
advice. It is encouraging that a simple rule like this one 
works well. Future research should focus on the develop-
ment of context-specific rules to improve the design of AI-
based advice. Overall, our results strongly suggest that 
application settings have to be considered carefully when 
deciding if and how AI advice should be built into the 
decision process.  

Limitations and Future Research 

We discuss three main areas of future research that that will 
be fruitful for researchers. First, our results provide a novel 
direction on the design of decision support environments that 
include AI assistance to improve human performance both 
individually and in groups. We demonstrated a way to design 
personalized AI advice in order to improve both individual 
and crowd performance.  However, there could be other 
ways in which AI assistance can be combined to benefit from 
accuracy of AI and diversity of thoughts from humans. 
Second, we found strong effects of AI advice on the wisdom 
of crowds and on individual confidence levels. This provides 
some indication for group behavior with and without AI. 
These could be challenged by researchers focusing on team 
behavior and interactions of individuals. The effects in real 
teams might depend on the type of task, so-called “eureka” 
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tasks (no specific knowledge is required to solve, and 
solutions can easily be confirmed when found) typically 
perform better in real teams (Cooper and Kagel 2005), while 
this is not necessarily the case for “non-eureka” tasks (Li et 
al. 2019). Third, one might focus on other forms of 
interactions with groups of humans or AI. We demonstrated 
that a group of humans with individual AI advice does 
perform well. However, there might be alternative setups of 
interaction that make use of existing complementarities, for 
example by creating a collaborative environment of AI 
modules and a group of humans. In general, future studies 
should investigate whether the loss of unique knowledge 
affects our capability to work in diverse environments. They 
should also study the long-term effect of AI advice on human 
performance in diverse work environments. 

Will Humans Become Borgs? 

When discussing our research, as in the title of this paper, 
we occasionally provoke our colleagues by asking whether 
humans that use AI advice become Borgs. While we 
intentionally exaggerate, the question triggers a useful 
debate. Humans improve by using AI, but their behavior 
converges leading to a loss of their complementarity with the 
AI and with other humans. This may prevent individuals 
from thinking about novel ideas and from being more useful 
contributors to a group. Diversity is a valuable asset which 
may enable humans to outperform Borgs (and AI) in the long 
term. However, we also demonstrate that AI could person-
alize its advice to mitigate this effect, keeping large stakes 
of human complementarities while benefitting from AI. 
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Appendix 
Mathematical Notation   

Individual Decision Making and AI Advice 
 
𝓣𝓣 = {𝟏𝟏. .𝑻𝑻} Set of tasks 

𝒯𝒯𝐴𝐴𝐴𝐴 Set of tasks, where the AI selects the correct option (𝑎𝑎𝑡𝑡1 = 1) 
𝒯𝒯𝐴𝐴𝐴𝐴��� Set of tasks, where the AI selects an incorrect option (𝑎𝑎𝑡𝑡1 ≠ 1) 
𝑝𝑝𝑡𝑡𝑡𝑡 Probability, that a human selects option 𝑐𝑐 in task 𝑡𝑡 
𝑝𝑝𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴 Probability, that a human selects option 𝑐𝑐 in task 𝑡𝑡 after receiving AI advice 
𝑎𝑎𝑡𝑡𝑡𝑡 1, if AI selects option 𝑐𝑐 in task 𝑡𝑡, 0 otherwise 
𝑒𝑒𝑡𝑡 Effect strength of AI advice of task 𝑡𝑡 
𝑒𝑒𝐴𝐴𝐴𝐴 Effect strength of correct AI advice 
𝑒𝑒𝐴𝐴𝐴𝐴��� Effect strength of incorrect AI advice 

δ𝑒𝑒 Scaling factor effect of correct advice relative to incorrect advice: δe  𝑒𝑒𝐴𝐴𝐴𝐴����

1+𝑒𝑒𝐴𝐴𝐴𝐴����
= 𝑒𝑒𝐴𝐴𝐴𝐴

1+𝑒𝑒𝐴𝐴𝐴𝐴
 

 
Providing AI’s Certainty 
 

𝑝𝑝𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 Probability, that a human selects option 𝑐𝑐 in task 𝑡𝑡 after receiving AI advice and the AI’s certainty 
𝑠𝑠𝑡𝑡 Change in the effect of AI advice, 𝑒𝑒𝑡𝑡 , if AI certainty is received, for task 𝑡𝑡 
𝑠𝑠𝐴𝐴𝐴𝐴 Change in the effect of correct AI advice 
𝑠𝑠𝐴𝐴𝐴𝐴��� Change in the effect of incorrect AI advice 

δs 
Scaling factor on the effect of receiving the AI’s certainty for correct advice relative to incorrect advice 

with δs  𝑠𝑠𝐴𝐴𝐴𝐴����−1
1+𝑠𝑠𝐴𝐴𝐴𝐴����⋅𝑒𝑒𝐴𝐴𝐴𝐴����

= 𝑠𝑠𝐴𝐴𝐴𝐴−1
1+𝑠𝑠𝐴𝐴𝐴𝐴⋅𝑒𝑒𝐴𝐴𝐴𝐴

 

 
Personalized Suggestions 
 
ℋ ∈ {1. .𝐻𝐻} Set of humans 
𝒯𝒯(𝑙𝑙𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴 < 𝑟𝑟ℎ) Set of tasks, where the AI withholds advice for human ℎ 
𝑝𝑝𝑡𝑡𝑡𝑡
𝐴𝐴𝐴𝐴−𝑝𝑝𝑝𝑝𝑝𝑝 Probability, that a human selects option 𝑐𝑐 in task 𝑡𝑡 after receiving personalized AI advice  
𝑑𝑑𝑡𝑡ℎ 1, if AI provides advice for task 𝑡𝑡 to human ℎ, 0 otherwise 
𝑙𝑙𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴 Ex-ante likelihood that the AI choice 𝑐𝑐 is the correct choice 
𝑟𝑟ℎ Critical ratio of harm of incorrect and the benefit of correct advice of human ℎ 
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