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Abstract

While traditional information systems research
emphasizes understanding of end users from per-
spectives such as cognitive fit and technology
acceptance, it fails to consider the economic
dimensions of their interactions with a system.
When viewed as economic agents who participate
in electronic markets, it is easy to see that users’
preferences, behaviors, personalities, and ulti-
mately their economic welfare are intricately linked
to the design of information systems. We use a
data-driven, inductive approach to develop a
taxonomy of bidding behavior in online auctions.
Our analysis indicates significant heterogeneity
exists in the user base of these representative
electronic markets. Using online auction data
from 1999 and 2000, we find a stable taxonomy of
bidder behavior containing five types of bidding
strategies. Bidders pursue different bidding stra-
tegies that, in aggregate, realize different winning
likelihoods and consumer surplus. We find that
technological evolution has an impact on bidders’
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strategies. We demonstrate how the taxonomy of
bidder behavior can be used to enhance the
design of some types of information systems.
These enhancements include developing user-
centric bidding agents, inferring bidders’ under-
lying valuations to facilitate real-time auction cali-
bration, and creating low-risk computational plat-
forms for decision making.

Keywords: Electronic markets, online auctions,
bidding strategies, user behavior taxonomy, smart
agents, valuation discovery, calibration, simulation

Introduction I

Using information technology as a key ingredient,
electronic markets match globally dispersed
buyers and sellers, facilitate transactions, and
provide the necessary regulatory institutional infra-
structure (Bakos 1998). Electronic markets can
also be characterized as economic information
systems. Consequently, we argue their design
has to incorporate the economic dimensions of
users’ interactions with the system. In this paper,
we use business-to-consumer (B2C) online auc-
tions as a representative electronic market and
adopt a data-driven, inductive approach for devel-
oping a taxonomy of bidder behavior. Bidders
pursue different bidding strategies that realize
different chances of winning and different levels of
consumer surplus. We demonstrate how the tax-
onomy of bidder behavior can be used to enhance
the design of economic information systems. This
includes developing user-centric bidding agents,
inferring bidders’ underlying valuations to facilitate
real-time auction calibration, and creating low-risk
computational platforms for decision making.

Our objective is to show how individuals use
economic information systems in different ways.
This is particularly apparent in the instance of on-
line auctions because the outcomes map directly
to users’ pockets. Nonetheless, the necessity of
considering the economic impact of an information
system’s design is being recognized across a
broad range of applications. For instance, Ba et
al. (2001) illustrate the importance of considering
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the interests and incentives of users in such areas
as distributed decision support systems, knowl-
edge management, and e-business supply-chain
coordination.

This study contributes to the literature by ad-
dressing the following three research questions:

(1) Is there a systematic way of characterizing
bidding strategies in online auctions?

(2) How do different bidding strategies affect
bidders’ economic welfare? Do certain stra-
tegies lead to higher economic rents than
others?

(3) How can the findings from these two ques-
tions be used to enhance the design of online
auctions?

Overall, we find a stable taxonomy of bidder
behavior containing five types of bidding stra-
tegies. Differences among the strategies are
defined by (1) bidders’ decisions about entering
and exiting the mechanism and (2) their number of
bids. Because these factors also coincide with the
price formation process, we show how our tax-
onomy can be used to design the next generation
of online auctions using dynamic mechanism-
design principles. The taxonomy assists in devel-
oping smart, user-centric bidding agents and with
drawing statistical inferences about bidders’
valuations as an auction progresses. An auc-
tioneer can take advantage of these inferences to
perform real-time calibration of auctions by
changing mechanism-design parameters such as
bid increments. Understanding the taxonomy of
bidders’ behaviors is also useful in creating com-
putational simulation platforms. These can be
used to conduct risk-free, decision theoretic
analysis of online auctions.

The paper proceeds as follows. First, we briefly
review the auction format discussed in this
paper—namely, the multiunit online Yankee
auction. In the next section, we develop our
bidder taxonomy by presenting a conceptual
model and providing a theoretical basis for the
strategic variables selected. We then discuss the



data and present the classification methodology.
Next, we report the results of the classification and
analyze the economic welfare of the identified
strategies and the likelihood each has of winning.
In the same section, we discuss these implica-
tions from a longitudinal perspective and briefly
touch upon user-learning effects. We conclude by
discussing three specific applications of our
findings.

The Yankee Auction I

In a Yankee auction, there are multiple identical
units for auction, and each auction specifies mini-
mum starting bids and bid increments. Bidders
may purchase more than one unit, but they all
must be purchased at the same price. Bidders
desiring more than one unit are required to make
lumpy bids (Tenorio 1999). With lumpy bids,
bidders demand several units at the same price.
They are not permitted to specify a demand sche-
dule, detailing how many units they are willing to
buy at a certain price. For example, a bidder
wanting five units in a Yankee auction that started
at $40 and had a $20 bid increment is not per-
mitted to bid $100 for three and $80 for two items
at the same time.? Therefore, demand reduction,
which can occur when bidders are allowed to
present a demand curve (Ausubel 2002; Lucking-
Reiley 1999), is not an issue. Bidding takes place
progressively until a predetermined time period
expires. All winning bidders pay their own prices.
Ties are broken first by price, second by quantity,
and third by time. For example, suppose two
bidders are competing for four available units.
One bids $10 for three units, while the other bids
$10 for one. If a new bidder bids $12 for one unit,
that bidder becomes the highest winning bidder
and leaves three units for lower-priced bidders.
The bidder at $10 for three will remain a winning
bidder because of greater quantity. The bidder at
$10 for one will be bumped from the highest

2puction sites such as Ubid and Onsale require credit-
card-based name-and-address verification of bidders.
This requirement exists primarily to prevent shill bidding,
but it also effectively constrains full demand schedule
specification.
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bidder list. If both had bid for two units, the bidder
with the earliest initial bid would remain a winner.

A Yankee auction terminates on or after® a pre-
announced closing time, and winning bidders pay
the amount they last bid to win the auction. In
multiunit settings, this rule often leads to bidders
paying different amounts for the same item. The
soft closing time provides a disincentive to last-
minute bidding and is designed to attract bids
early in the auction. Successful Yankee auctions
on the Internetinclude Ubid.com and Onsale.com.

Conceptual Model I

Here we focus on developing an empirically driven
taxonomy of bidder behavior in online auctions. A
robust taxonomy can then be used to perform ex
post theory building, shedding light on what drives
real online bidders to make their bidding deci-
sions. We do not begin with a theory and then
attempt to prove or disprove it. Rather, we begin
with an area of interest (in our case, the largely
ignored aspects of bidder behavior). Relevant
insights are allowed to emerge. We have a strong
reason for employing this research strategy.
Auction design has been the focus of significant
theoretical (for a review, see McAfee and McMillan
1987; Milgrom 1989; Myerson 1981; Rothkopfand
Harstad 1944) and experimental attention (for a
review, see Kagel and Roth 1995). It has even
been the subject of some limited empirical work
(Laffont et al. 1995; Paarsch 1992). However,
most research focuses on the bid-taker’s perspec-
tive and assumes a certain bidder behavior. In
the traditional closed, face-to-face auction setting,
it was reasonable to assume that bidders be-
longed to a homogenous, symmetric, risk-neutral
group who adopted Bayesian-Nash equilibrium
strategies.* While tenable in the context of face-

3Most auctions have a “going, going, gone” period such
that the auction terminates after the closing time has
passed and no further bids are received in the last five
minutes.

4Bayesian games are games of incomplete information
in which each agent knows her own payoff function but
at least one agent exists who is uncertain about another
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to-face, single-item auctions, this set of assump-
tions quickly breaks down with most multiunit
online auctions (Bapna et al. 2003a). It is well
known that the computation of equilibrium bidding
strategies is intractable in these auctions (Nautz
and Wolfsetter 1997).

In addition, the existing literature is outside the
Internet environment. Significant structural
changes resulting from the online environment
challenge some of the existing theory’s core
assumptions. The most salient of these, tracing
its origin to the fundamental requirement of pur-
suing a classical game-theoretic analysis, is the
ex ante, exogenously known number of bidders.
However, this assumption is readily violated in
online auctions. Forexample, recent analysis with
eBay data reveals that bidder entry is influenced
endogenously by the hidden reserve price
adopted by the sellers (Bajari and Hortascu 2001).

Our adoption of an inductive approach to devel-
oping a bidder taxonomy challenges the notion
that one can build a theory by assuming a single
bidder type. Our reasoning is consistent with
Engelbrecht-Wiggans’ (2000) suggestion that

There is a lot to be learned from trying to
understand why real bidders do the
things that they do. When actual
behavior differs from that predicted by
the theory, it is all too easy to dismiss
the actual bidders as being simple.
Instead, we should ask if it is the theory
that is being simple.

With this quote in mind, we investigate whether
heterogeneity exists in bidder behavior in online
auctions. Given the longstanding assumption of
homogenous, rational, strategic bidders, this
investigation represents a new way of thinking. It
is important to note that we are not seeking to
derive an ex ante explanatory model of hetero-
geneous user behavior in online auctions.

player’s payoff function. In the context of a Bayesian
game, a Bayesian-Nash equilibrium is one in which each
player’s course of action is a best response to the other
players’ strategies.
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Instead, we focus on understanding different
bidding behaviors to help further the design of
online auctions.

Model Description

Using several theoretically motivated parameters,
we developed a model for exploring user hetero-
geneity (Figure 1). If heterogeneity in bidding be-
haviorindeed exists, it is worthwhile to analyze the
impact of the different strategies on the likelihood
of winning and on consumer surplus. We also
evaluate longitudinal shifts in bidding behavior.

The vertical parentheses around the bidder
strategy properties box are used to indicate the ex
ante unknown number of bidding strategies.®
Taken together, the dotted, downward arrow and
box represent the fact that after we observe
empirical regularities in bidding strategies, we
hope to explain some of them based on factors
such as bidding cost, exogenous signals, and
endogenous design choices.

Identification of Strategic Variables:
Theoretical Considerations

Our initial challenge was to identify observable
classification variables that could be collected by
an unbiased, automated agent. The variables had
to have a sound theoretical basis in the auction’s
price formation process. In addition, we wanted to
work with variables that could subsequently be
used to influence the economic welfare of the
agents (auctioneer and/or bidders) by imple-
menting mechanism-design changes. Therefore,
we were not interested in measuring intrinsic
bidder attributes like risk profile that could not be
altered by modifying the mechanism.

5This is based on the cardinality notation in mathe-
matics.
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Figure 1. Conceptual Model: A Taxonomy of Bidder Behavior and Resulting

Consequences

We chose three strategic variables—time of entry,
time of exit, and number of bids—and then carried
out a multi-attribute bidder classification proce-
dure.

Time of Entry (TOE)

The time at which a bidder chooses to enter the
auction directly influences the auction’s partici-
pation level and its price-formation process. Not
surprisingly, Klemperer (2000) argues that at-
tracting entry is a pillar of good auction design.
TOE is treated as a variable in this study, which is
a departure from most auction-theory literature. It
is necessary, however, in the context of a globally
dispersed, online user base. Auction-theory
literature typically takes the number of bidders as
exogenously given (Laffont et al. 1995; Paarsch
1992).5 Engelbrecht-Wiggans (1987) found that
the auctioneer realized higher expected revenue
by choosing a reserve price that led to a larger

®Notable exceptions to this approach are Engelbrecht-
Wiggans (1987) under the independent private-values
model and Harstad (1990) under the common-values
model.

number of bidders. In contrast, Harstad (1990)
points out that a seller often benefits more from an
auction with fewer participants because, given
common values, fewer participants implies a
higher chance of winning. Thus, each bidder may
settle for lower expected profit. Levin and Smith
(1994) also claim that the presence of too many
bidders hurts welfare because of higher coordi-
nation costs.

The TOE variable captures the bidder's nor-
malized auction entry time. Our automated data
collection agent can monitor this variable. Thus,
it is not subject to biases that might arise in
survey-collected data. In addition, it can be
influenced by the endogenous mechanism-design
rules chosen by auctioneers (Bajari and Hortascu
2001; Engelbrechtt-Wiggans 1987). Depending
on the auction mechanism design, TOE could
indicate the strategic value of a bidder’s response.
For instance, we have seen that late entry is
strategic in single-unit auctions with hard closing
times, such as those on eBay (Roth and
Ockenfels 2002). On the other hand, if the time
priority of a bid is used as a bid preference order
mechanism, like in multiunit Yankee auctions at
Ubid.com, and if there is a going-going-gone
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period, it may be better to bid once early and
again at a later time. From the bidders’ perspec-
tive, an early bid gets a foot in the auction door. It
is also likely to provide an exogenous signal about
the level of competition. Both Ubid and eBay
promote early bidding behavior.

We are aware of only two other studies that have
attempted to model the bidders’ arrival process
into online auctions. Vakrat and Seidmann (2000)
empirically found that the minimum initial bid,
which is positively correlated with TOE, is
negatively correlated with the number of bidders.
They also found that the overall arrival process,
collectively represented by the time of entry and
the time of exit, influences whether an increased
dispersion in bidders’ valuations leads to an
increase or decrease in an auction’s price. Inthe
context of group-buying (a different dynamic
pricing electronic market than considered here),
Kauffman and Wang (2001) found that the
number of existing orders has a significant posi-
tive effect on new orders placed during each
three-hour period. This result indicates the
presence of a positive participation externality.

Time of Exit (TOX)

To couple the auction’s endogenous entry process
with its final price formation process, we also need
to look at bidders’ time of exit (their last bid). We
hope to conduct a multi-attribute classification.
TOX, when combined with TOE, lets us examine
interaction effects among several dimensions of
bidding strategies. In some implementations of
the Yankee mechanism, a bidder’s time priority is
established by her first bid; thus, there is an
incentive to bid early. Yet in related single-item
eBay auctions, many experienced bidders do not
enter until the last minute to avoid early price wars
and signaling (Roth and Ockenfels 2002). This
prevalent behavior in eBay has been termed
sniping. Given the relative ease of connecting to
an auction Website (as opposed to traveling to an
auction house), the two conflicting incentives
could be easily resolved by adopting the following
strategy: place one early bid to establish time
priority, and then snipe during the auction’s
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closing stages to compete at the margin. Hence,
rather than observing just one dimension (namely,
the time of entry), we include the time of exit in the
analysis to identify more-complex and more-
interesting bidding patterns. Note that bidders
using both TOE and TOX in their bidding strategy
will place multiple bids in an auction, which leads
us to the next variable of interest.

Number of Bids (NOB)

NOB refers to the frequency with which a bidder
updates her bids and so reflects her level of
involvement in an auction. It is also a proxy for
the value of bidders’ time. ltis intuitive to assume
that bidders with higher bidding cost will bid less
frequently than those with lower bidding costs.
Consider three different users: first, an extremely
busy but sophisticated user who is adept at
obtaining exogenous pricing information (say,
using price-comparison agents such as
mysimon.com) for products; second, a naive
bidder who does not fully understand strategic
behavior and has very little time to monitor an
auction; and third, a gamer who simply enjoys the
competition of outbidding fellow bidders. The
single common factor that distinguishes these
three bidders is the total number of bids (NOB)
they make in the progressive Yankee auction.

Internet auctions typically take longer than their
face-to-face counterparts and hence present a
significantly different bidding-cost structure. In
addition to the fixed cost of the Internet connection
fee, a monitoring and bidding cost exists. The
latter includes the opportunity cost of dialing up to
the Internet, locating the auctioned item, filling out
the bidding form, and confirming the bid, as well
as the overall opportunity cost of foregoing alter-
native solutions like using a posted price (Easley
and Tenorio 2002). These costs can be signifi-
cantly higher than the corresponding bidding costs
in traditional counterparts such as an English
auction at an auction-house. High bidding costs
can deter a bidder from conducting the successive
bidding (also known as rafchet bidding or
pedestrian bidding) that is common in traditional
auctions. On the other hand, auction sites like



eBay and Ubid make bidding agents available to
help reduce this cost. These agents typically
behave in a pedestrian manner, bidding the mini-
mum required bid at any given time. Itis not clear
whether this strategy dominates from the per-
spective of winning an auction and/or maximizing
surplus.

Herschlag and Zwick (2000) describe a type of
bidder addicted to online auctions. Again, this
phenomenon underscores the importance of
recognizing different bidder behaviors. If these
addicts constituted the majority of bidders, a
sealed-bid auction would be less popular than
auctions offering both posted price and auction
mechanisms.

If an auctioneer’s objective is to attract Web
traffic, which may be the case if large numbers of
bidders are addicts, then higher levels of NOB
would give tertiary benefits from prolonged expo-
sure to the Website. On the other hand, if the
auctioneer is trying to get bidders to reveal their
maximum willingness to pay early on, as in the
case of eBay, then high levels of NOB could be a
design concern. High levels of NOB correspond
to a pedestrian bidding strategy or to the use of
automated bidding agents programmed to behave
in a pedestrian fashion.

Time of entry (TOE), time of exit (TOX), and
number of bids (NOB) must be considered jointly.
They meet the criteria of being observable, theo-
retically relevant, and manipulable by mechanism-
design changes.

Classification Methodology Il

Automated Agent-Based
Data Collection

We programmed an automated agent to capture
information directly from auction Websites. The
HTML documents containing a particular auction’s
product description, minimum required bid, lot
size, and current high bidders were captured
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every five minutes. The raw HTML data was then
piped into a Visual Basic parsing module that
condenses the entire information for an auction
(including all of the submitted bids) into a single
spreadsheet. Excel was initially used to identify
the levels of our three variables. We were careful
to screen out auctions in which (1) sampling loss
occurred (due to occasional server breakdowns)
or (2) insufficient interest existed in the auction
(some auctions did not attract any bidders). Data
collection lasted over two non-consecutive six-
month periods in 1999 and 2000. There was a
year's gap between the end of the first data
collection and the start of the second. Because
one of our objectives is to look for any longitudinal
shifts in aggregate strategic behavior, the gap in
the data-collection periods ensures the disconti-
nuity required to count experience and exposure
as a factor.

There are 4,580 distinct bidders in our dataset.
One consequence of the online environment is
that, after the one-time registration cost, there is
next to no cost for visiting an auction site and
placing a ridiculously low bid. Such frivolous
bidding could potentially introduce bias in data
analysis. Therefore, we defined a bidder as fri-
volous if his final bid was less than 80 percent of
the value of the marginal bid. After performing a
series of data cleaning and transformation exer-
cises, we obtained 9,025 unique bidding data
points from 3,121 valid bidders participating in 229
auctions. All of the auctions sold computer
hardware or consumer electronics. We stored this
information in a normalized Access Database to
facilitate querying.

Data Analysis of K-Means Clustering

We used an efficient K-means clustering ap-
proach to evaluate heterogeneity in bidding
behavior. A key factor in choosing this method
was its proficiency in handling large datasets like
ours. Our bidder data point is a vector of three
variables: NOB, TOE, and TOX. If heterogeneity
exists along these three dimensions, we expect
the data vectors to form several clusters in the
three-dimensional space. Well-formed clusters
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are characterized by small intra-cluster distance
and large inter-cluster distance.

The algorithm partitions N data points into K
disjoint subsets s;, each containing n; data points,
to minimize the sum-of-squares:

x, is a vector representing the n data point and u;
is the centroid, the center of mass, of the data
points in s, The algorithm consists of a re-
estimation procedure that initially assigns the data
points to the K sets at random. The centroid is
then computed for each set. These two steps are
alternated until no further change occurs in the
assignment of the data points. Because the K-
means algorithm starts with a specification of K
number of clusters, it converges to local optima.
A potential limitation of this approach is the a
priori specification of the number of clusters, K. In
our context, we do not know in advance how many
different bidding behaviors exist. To address this
problem, we developed a method of obtaining an
efficient clustering similar to Ray and Turi’s (1999)
method. This procedure iteratively tries out dif-
ferent values of K and selects the one with the
highest dissimilarity ratio. The dissimilarity ratio
measures the dispersion of the different clusters.

Toillustrate the method, first consider the average
distance of each point to its local cluster center:
intra-cluster distance. Clustering with the smallest
intra-cluster distance is wusually preferable.
Because intra-cluster distance is relative to the
number of clusters, a large number of clusters
generate a small intra-cluster distance. However,
generating too many clusters can be avoided by
simultaneously considering intercluster distance.
Intercluster distance is represented by the
minimum distance among the different clusters.
The larger this amount, the more dispersed the
clusters are. Dissimilarity ratios are calculated by
dividing intercluster distance by intra-cluster
distance. The most-valuable clustering has the
largest dissimilarity ratio.

28 MIS Quarterly Vol. 28 No. 1/March 2004

Table 1 shows the dissimilarity ratios for the data
from 1999 and 2000. The ratio initially increases
and then decreases as K increases, with the
largest dissimilarity in both cases occurring for
K = 5. Therefore, the analysis identifies five
distinct classes of bidders in each year.

ANOVA is typically used with K-means clustering
to test the null hypothesis that no significant
differences exist among the cluster centers.” The
results in Tables 2 and 3 show that the null hypo-
thesis is rejected for both years.

Bidder Strategy Analysis I

This section discusses the strategic implications
of different bidder behaviors as represented by the
five clusters in each year.

1999 Bidder Classes

Table 4 contains the classification results for the
1999 data. The values present descriptive statis-
tics of the data in each cluster.

We name each class of bidders based on the
unique characteristics conveyed by the corre-
sponding parameter values. The first cluster is
early evaluator. These bidders place just one bid
during the early stages of the auction, possibly
reflecting their maximum willingness to pay. A
middle evaluator differs only in that their one
maximum bid is submitted in the middle of the
auction. This could reflect either their arrival
process or the fact that they may simply observe
the auction’s initial progress and base their bids
on the actions of other bidders. Both strategies
show that bidders think they can assess the true

"While there is no consensus on what constitutes an
appropriate test for “goodness” of clustering, the rejec-
tion of the null hypothesis of ANOVA, the descriptive
statistics for different clusters, and the ability to
meaningfully interpret different clusters are considered
primary ways of identifying a good clustering.
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Table 1. K= 5 Has Highest Dissimilarity Ratio for Both Years

Dissimilarity

. 1999 0.305 0.509 0.514 0.509 0.456 0.414 0.404 0.397'
Ratio

2000 0.308 | 0.308 | 0.430 | 0423 | 0.346 | 0.338 | 0.332 | 0.331

Table 2. 1999 Cluster Result ANOVA

Mean Square Mean Square
Variable Cluster Error F Significance
Number of Bids 108.940 312 348.823 .000
Time of First Bid 1377.022 1.300 1059.564 .000
Time of Last Bid 857.199 .935 916.585 .000

Table 3. 2000 Cluster Result ANOVA

Mean Square Mean Square
Variable Cluster Error F Significance
Number of Bids 1057.672 1.191 888.139 .000
Time of First Bid 1304.543 2.106 619.569 .000
Time of Last Bid 1343.145 1.779 755.195 .000

market value of items being auctioned and try to
bid that amount early to win. If their hypotheses
were correct, we would expect them to pay less
than other winners. On the other hand, they may
run the risk of bidding more than required to win.
Evaluators minimize the time cost of monitoring
auctions. Although they may pay more than other
winners, they gain a risk-aversion premium by
minimizing the chance of being priced out of an
auction.

The opportunists in the third column are late
bidders. While related to snipers in single unit
eBay auctions (Roth and Ockenfels 2002), oppor-
tunists differ from snipers because of the exis-
tence of a going-going-gone period in Yankee
auctions. In addition, because of the larger
strategic space in multiunit auctions (in the form of
multiple potential winning slots), the notion of /ast-

minute bidding (Roth and Ockenfels 2002) needs
to be extended to our notion of /ate bidding.

The fourth column in the 1999 data corresponds
to what we call the sip-and-dippers class of
bidders. These bidders usually place two bids.
They bid once early in the auction, clearly to
establish their time priority® and perhaps to assess
the competition. They subsequently revise their
bids only toward the end of the auction. These
bidders are behaving strategically. They incur
little time cost, but they enter the auction early to
hold a time priority. Note that such behavior is
practical only in an online environment.

8Ubid clearly indicates the time of a bidder’s first bid as
well as the time of the latest bid.
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Table 4. 1999 Data Cluster Centers (Time is Normalized on a 1 to 10 Scale)

Cluster Name
Early Middle Sip-and-
Cluster Dimensions Descriptive Statistics Evaluators Evaluators Opportunists Dipper Participators
Number of Bids Mean 1.1 1.20 1.7 2.12 3.86
Standard Deviation 0.39 0.55 0.58 0.32 1.11
Skewness 4.14 3.10 2.20 2.40 1.58
Kurtosis 19.25 10.64 4.31 3.80 2.79
Time of First Bid Mean 1.97 4.45 8.40 2.13 1.47
Standard Deviation 0.99 1.33 1.09 1.50 1.08
Skewness —-0.46 —-0.45 —0.56 0.59 0.87
Kurtosis -1.11 0.59 0.82 -0.53 0.13
Time of Last Bid Mean 2.09 4.77 8.72 8.26 8.59
Standard Deviation 0.95 1.01 1.01 1.46 1.29
Skewness -0.60 0.59 -0.25 -0.98 -1.02
Kurtosis -0.73 -0.34 -1.22 0.67 0.81
Number of Bidders 575 524 558 283 141




The last column corresponds to participatory
bidding (i.e., ratchet bidding or pedestrian
bidding). These bidders bid throughout the auc-
tion and are characterized by early entrance and
late exit. We hypothesize that they gain satisfac-
tion from the bidding and participation process.
Because participatory bidders incur a high moni-
toring cost and never bid more than the minimum
requirement, they should extract far more surplus
than the other classes. A high number of bid
revisions may also capture an exogenous signal
about an auction’s competition level. Wilcox
(2000) explained late bidding on eBay using this
notion, implying that bidders revised their
valuations as a result of other bids in the auction.
This implies a common-value setting (such as for
antiques) but fails to explain the prevalence of late
bidding in other distinctly private-value settings
(such as in our data set and Roth and Ockenfels’s
study of computers).

Even though participatory bidding behavior should
yield the highest expected surplus (because of its
high monitoring cost), the last row of Table 4
shows that it attracts the least number of bidders.
Interestingly, on average, participators only place
one more bid than sip-and-dippers. The relatively
low NOB level signals that participators signi-
ficantly value their time. Any technology that can
reduce participators’ monitoring and bidding costs
is likely to make the auction process more
attractive to them and will result in higher benefits
for the auctioneer.

Overall, Table 4 indicates that all clusters have
relatively peaked data for the number of bids.°
Also the skewness values are similar in size and
direction for clusters that may be related. For
example, the mean and standard deviation for
NOB are similar for early and middle evaluators.
However, the mean and standard deviation for
time of first and last bid are significantly different
for these two clusters. Because the kurtosis
values indicate relatively peaked data and the

®Note that the kurtosis values reported are adjusted
kurtosis values, i.e., the kurtosis for a normal distribution
would be zero.
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skewness is of the same order, there should be
significant separation between early and middle
evaluators along at least two of the three
dimensions.

2000 Bidder Classes

Table 5 shows the classification of bidding data for
2000. The bidding behaviors are consistent with
the 1999 behaviors, although subtle shifts in the
bidders’ strategies have occurred.

In 2000, four classes have the same bidding
characteristics as those in the 1999 dataset:
evaluators (early only for 2000), participators,
opportunists, and sip-and-dippers. However, a
new, distinct class of bidders has emerged.
Bidders in this class average 15 bid revisions per
auction. They also have early-entry and late-exit
features. By tracking these bidders in the original
bidding HTML pages, we found that they use
automatic-bidding agents provided by the
auctioneer. When using a bidding agent for
Yankee auctions, a bidder specifies their maxi-
mum price. The agent automatically revises the
bidder's bid if others outbid it, until the price
reaches the specified maximum. This strategy is
similar to participatory bidding except that its
bidding costs are minimal. Presumably, bidders
with high participation costs employ it.

No bidding agents existed in 1999. Also, recall
that our analysis revealed that bidders disliked
actively revising their bids. Thus, implementation
of agent-based bidding was a good decision on
the part of auctioneers. Whether this decision
was due to competitive pressure (from eBay) or
close attention to user behavior is unclear.
Interestingly, bidders continue to distinguish them-
selves according to their entry, exit, and bidding
costs. Indeed, the similarity between the 1999
and 2000 classes reflects remarkable stability.
The only new class in 2000 (the agent class)
results from a technological advance. This result
indicates that our classification approach identifies
an empirical regularity and that TOE, TOX, and
NOB define stable microsegments of bidders.
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Table 5. 2000 Data Cluster Centers (Time is Normalized on a 1 to 10 Scale)

Cluster Name
Early Sip-and- Agent
Cluster Dimensions Descriptive Statistics Evaluators Opportunists Dipper Participators Bidders

Number of Bids Mean 1.24 1.40 2.45 5.99 15.56
Standard Deviation 0.51 0.81 0.82 1.72 6.12
Skewness 2.10 2.48 1.33 0.82 1.70
Kurtosis 3.54 6.92 213 0.22 2.63
Time of First Bid Mean 1.99 7.55 1.22 1.93 1.50
Standard Deviation 1.49 1.55 1.10 1.85 1.57
Skewness 0.63 0.14 1.15 0.79 1.16
Kurtosis -0.79 -1.22 0.77 -0.77 0.80
Time of Last Bid Mean 2.53 8.08 8.02 7.53 7.81
Standard Deviation 1.88 1.56 1.41 2.4 219
Skewness 1.06 -0.28 -0.16 -0.85 -0.82
Kurtosis 1.32 -1.30 -1.06 -0.37 —-0.69

Number of Bidder 409 362 101 127 41




Middle-evaluators—bidders who enter at the
middle of an auction—are absent from the 2000
dataset. The descriptive statistics for the early
evaluators are quite similar in 1999 and 2000,
leading us to believe that clustering has not simply
aggregated the early and middle evaluators. We
believe that two factors underlie the disap-
pearance of middle evaluators:

(1) Bidders learned the importance of bidding
early to get time priority. Thus, they started
bidding early to increase their chances of
winning with a single bid. This outcome is
evident in the top-left cell of Table 6, where
middle evaluators have a significantly higher
winning percentage than early evaluators.
Note that time priority is more important for
evaluators and sip-and-dippers because they
make relatively fewer bids.

(2) Bidders have improved at estimating their bid
at an early stage of an auction. (As we show
in the next section, middle evaluators seemto
bid higher—perhaps influenced by higher
minimum bid requirements later in the auc-
tion—than early evaluators.)

Outcome Analysis of
Winning Percentage

We first determined whether the strategies differ
in the winning percentage they vyield to their
adopters. To do so, we tested the following hypo-
thesis using single-factor ANOVA with five levels
representing the different types of bidders.

H1: All bidding classes have similar
likelihoods of winning, as reflected
in the proportion of winners versus
losers.

Tables 6 and 7 display the summary results from
the ANOVA test for the two years. The significant
F-values indicate that we can reject the null hypo-
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thesis of equality of mean winning percentage
among the different bidder classes for both years.

Subsequently, to compare the bidding strategies
with each other, we performed pairwise hypo-
thesis tests on the differences between winning
proportions. To deal with the a-inflation problem
associated with pairwise comparisons, we used
the Bonferroni adjustment to keep the experiment-
wide error rate to a level equal to 0.05. This
adjustment requires that the acceptable a-level be
divided by the number of comparisons we intend
to make—in our case 10. Thus, we consider a
test statistic to be significant if the associated p-
value is less than 0.005.

Tables 8 and 9 summarize the results of
hypothesis tests for 1999 and 2000 respectively.
Positive amounts imply that the row class has
higher average winner proportions than the
column class; lower amounts imply lower pro-
portions. Test statistics marked with an asterisk
indicate that they are significant at the Bonferroni-
adjusted overall a-level of 0.05.

The average winning percentage indicates what
fraction of a certain bidding strategy resulted in a
win. Opportunists and sip-and-dippers have
significantly higher winning proportions than
participators, evaluators, and agent bidders. This
result reflects that opportunists and sip-and-
dippers are generally more eager to win. It will be
interesting to see, therefore, whether they are
willing to pay a higher price in an auction.
Evaluators, participators, and agent bidders tend
to be more cautious. For instance, agent bidders
and most participators bid only a minimum
required increment each time. Evaluators
estimate a value for the product, submit a bid that
reflects their valuation, and do not update their
bid. Agent bidders use the bidding agent to
facilitate automatic bidding until it reaches their
predetermined highest bid. @ The strategies
adopted by these bidders are less focused on
winning than those of late bidders and more
focused on staying within a budget. They are
geared toward maximizing surplus.
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Table 6. ANOVA—Winning Proportions (1999 Data)

Source of Variation SS df MS F P-value F criteria
Between Groups 49.066 4 12.266 63.465 1.12E-50 2.376
Within Groups 401.246 2076 0.193
Total 450.311 2080

Table 7. ANOVA—Winning Proportions (2000 Data)

Source of Variation SS df MS F P-value F criteria
Between Groups 17.814 4 4.454 19.469 1.76E-15 2.380
Within Groups 245.448 1073 0.229
Total 263.262 1077

Table 8. Pairwise Comparison: Difference of Winning Proportions (1999 Data,

2,081 Bidders)

Cluster Name
t value Early Middle Sip-and-
(Average Winning %) Evaluators (15%) | Evaluators | Opportunisits Dippers
Middle Evaluators (22%) 3.13*
Opportunists (51%) 14.00* 10.50*
Sip-and-Dippers (48%) 10.37* 7.85* -0.48
Participators (24%) 2.31 0.42 -6.70* -5.58*

Table 9. Pairwise Comparison: Difference of Winning Proportions (2000 Data,

1,040 Bidders)

Cluster Name
t value Early Sip-and-
(Average Winning %) Evaluators (15%) | Opportunists | Dippers | Participators
Opportunists (70%) 5.21*
Sip-and-Dippers (74%) 4.75* 1.19
Participators (41%) -2.27 -5.99* -5.75*
Agent Bidders (27%) -3.93* —6.67* —-6.61* -2.02
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Outcome Analysis of Surplus

Before calculating a bidder’s relative surplus, the
bias that arises from the absolute dollar value of
the auction must be eliminated. To do so, we
calculate the normalized loss of surplus as

] _ Winni o . .
Normalized loss of surplus = Winning price — Marginal price rice Mgr inal price
Marginal price

where the marginal price is the lowest winning
price. We are interested in determining how the
various strategies compare in creating surplus.
Yankee auctions implement discriminatory pricing
mechanisms. Therefore, each winner pays his
own bidding price. Any amount paid above the
marginal price is the “money on the table.”

The analysis is similar to the analysis of winning
percentage. We use ANOVA to test the overall
equality of means. If ANOVA suggests significant
differences in the mean loss of surplus, we
conduct pairwise tests to compare the bidder
classes with each other. Our initial hypothesis is

H2: All bidding classes have the same
level of normalized loss of surplus.

Tables 10 and 11 present the summary results
from a single-factor ANOVA for the years 1999
and 2000. As before, the single factor has five
levels representing the different types of bidders.

In 1999, we are unable to reject the null hypo-
thesis of equality of mean normalized loss of
surplus among the different bidder classes. Thus,
we do not pursue any further pairwise compari-
sons. In 2000, however, a significant difference in
the mean normalized loss of surplus exists among
the five bidder classes.

It is interesting to relate this phenomenon to two
other distinguishing features of the year 2000
bidder classes. Recall, the middle evaluators
disappeared in 2000. Also, note from Tables 8
and 9 that the overall winning percentages for
2000 are higher than those for 1999. Together,
these phenomena suggest that greater separation
exists among the strategies in 2000. We believe
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these results reflect that bidders better execute
their chosen strategies in 2000.

To compare the 2000 bidder classes with each
other, we conducted Bonferroni-adjusted pairwise
testing. A test statistic is significant if the asso-
ciated p-value is less than 0.005. These are
marked with an asterisk in Table 12. Because the
measurement is on the loss of surplus, note that
a positive (negative) statistic means the row class
has higher (lower) average normalized loss of
surplus than the column class.

The results indicate that the agent bidders are
best at maximizing surplus. Next best are partici-
pators, followed by opportunists, sip-and-dippers,
and evaluators. On average, early evaluators
have the largest losses of surplus and highest
standard deviation among all classes.

A key element in determining the effectiveness of
the evaluator strategy is a bid’s proximity to the
marginal price. Informed bidders bid early and
close to the marginal price to help maximize their
surplus. A significant proportion of early evalua-
tors, however, bid high early and leave significant
money on the table. Participators are cautious
and avoid bidding higher than necessary. Like
early evaluators, agent bidders preset a highest
bid. The automatic-bidding agent will always bid
a minimum required amount, however, rather than
leave money on the table. Because of their late
bidding, opportunists and sip-and-dippers in-
crease their likelihood of winning but leave money
on the table.

Another research objective we had was to deter-
mine whether users’ bidding strategies evolved
over time. We study this question by comparing
the proportions of winners in each class in 1999
and 2000 (Figure 2).

From 1999 to 2000, a higher percentage of
bidders adopted the opportunistic strategy, while
fewer adopted the early-evaluator strategy.
Because evaluators leave the most money on the
table, itis not surprising that bidders learn through
experience to avoid this strategy. Once the
novelty of online auctions wears off, bidders be-
come more serious and adopt superior strategies.
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Table 10. ANOVA—Normalized Loss of Surplus (1999 Data)

Source of Variation SS df MS F P-value F criteria
Between Groups 0.025 4 0.006 1.261 0.284 2.385
Within Groups 3.428 698 0.005
Total 3.563 702

Table 11. ANOVA—Normalized Loss of Surplus (2000 Data)

Source of Variation SS df MS F P-value F criteria
Between Groups 0.222 4 0.056 4.016 0.003 2.385512
Within Groups 9.076 656 0.014
Total 9.298 660

Table 12. Pairwise Comparison:

Loss of Surplus (2000 Data)

Cluster Name
t value Early Sip-and-
(Average Winning %) Evaluators (7%) | Opportunists | Dippers | Participators
Opportunists (5%) -1.86
Sip-and-Dippers (6%) -0.62 1.07
Participators (2%) -3.3* -2.6* -2.57*
Agent Bidders (0%) -5.7* -8.79* —4.94* -3.75*

Another trend in 2000 is the small proportion of
bidders starting to make use of the bidding agent
provided by the auctioneer. The auctioneer
facilitates the agents for several reasons. First,
bidding agents help reduce the pressure of late
bidding by allowing the bidders to set their high
bid early. Second, it assumes some of the user’'s
bidding costs in the hope that more bidders will
participate. Third, if all bidders place high bids
through agents, the auction is transformed into a
sealed-bid auction where the highest bidder wins.
In 2000, the small number of bidders who used
agents realized the largest surplus. Recall from
the discussion following Table 7, however, that
agent bidders have alower winning likelihood than
opportunists and sip-and-dippers.
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Figure 2 shows that most bidders are either
opportunists or early evaluators who bid
infrequently. Thus, many bidders place a high
value on their time, which should motivate auction
designers to reduce the bidding cost.

User Learning Effects

We also wanted to isolate repeat bidders to see
whether they learned from experience. Unfor-
tunately, we obtained insufficient data on bidders
who bid in multiple auctions. Thus, our findings
here are tentative.
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Proportion of Bdder GQasses Year 1999

Mddle
Evaluators
Opportunists 25%
27%

Early
Evaluators
27%

Participators .
7% Sipand Dp
14%

Proportion of Bidder Classes Year 2000

Opportunists
35%
Particpators Early
0,
12% Evaluators
Agent bidders Sip and Dip 39%
4%

10%

Figure 2. Change in Bidder Classes (1999 to 2000)

We observed 92 repeat bidders. Among the
repeat bidders who won at least once, 70 percent
improved performance, 15 percent had no
change, and 15 percent dropped in performance.
In addition, we observed that 57 percent of the
repeat bidders switched from one strategy to
another. Bidders’ strategies frequently switch
between early evaluators and opportunists and
among sip-and-dippers, participators, and agent
bidders. However, no bidder switches between
participator and opportunist, and no bidder
switches from a participator to evaluator. One
bidder switched from opportunist to participator,
and another switched from evaluator to partici-
pator. These results indicate that bidders exhibit
a bidding pattern within a range of risk pre-
ferences and bidding costs.

Bidders who improved avoided being evaluators,
bid less aggressively (using only the minimum bid
increment), delayed bidding (to observe signals
from other bidders), and sometimes bid more
frequently at the end. We also found some
evidence of bidders taking advantage of time
precedence by bidding early.

Because we have identified five bidding strategies
and not all repeat bidders won, we had insufficient
data to perform rigorous statistical tests. Our

taxonomy provides a framework for future
researchers using larger data sets to further
explore learning effects.

Application of the
Bidder Taxonomy I

Our approach to examining bidder behavior in
online auctions reveals significant empirical
regularities, which lead to our taxonomy of bidding
behavior. The taxonomy identifies five distinct
bidding strategies in Yankee auctions. This result
can be viewed as a micro-segmentation of the
user base of online auctions, and it has interesting
practical applications in improving the design of
such auctions. In addition, knowledge of any
domain-specific strategy dominance can be
embedded within “smarter” bidding agents.

Designing Smarter Bidding Agents

Bidding has a high participation cost for many
bidders. Automated agents reduce bidding costs.
However, the motivations of those who provide
these agents need to be considered. Ubid’s “Bid
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Butler” and eBay’s proxy bidding agent are
examples of agents that have incentives aligned
with sellers. Often, the auctioneer is the seller
(e.g., Ubid), or the auctioneer’s revenue is directly
proportional to the selling price of items (e.g.,
eBay).

Our bidder behavior taxonomy can help with the
design of third-party bidding agents that are
aligned explicitly with the buyer. Smart bidding
agents are currently in their infancy. Bapna
(2003) contrasts the architecture of two third-party
bidding agents in the case of the strategically
simple, single-item auctions on eBay. Both
agents employ sniping behavior, which is con-
sidered optimal in auctions (like eBay) with a hard
closing time. If such agents were created for
more-general, more-complex multiunit auctions, it
would be a clear sign of a maturing market.
Ubid’s Bid Butler follows a simplistic participatory
strategy. Our empirical findings show that it does
not maximize the expected surplus of its users
because it does not recognize the combinational
aspects of multiunit auction bidding. A numerical
example shows that the same initial valuation
endowment yields different surpluses when users
bid at different times (Bapna et al. 2003a). This
example assumes that all participants want to
adopt a participatory bidding strategy, which is
consistent with the strategy adopted by current
bidding agents provided by Ubid and Onsale.

Example 1 — Consider the following hypothetical
scenario: Let there be three items for sale, let the
bid increment be $5, and let the opening bid be
$9. Let there be four individually rational bidders,
all adopting the participatory strategy. Let them
be A, B, C, and D with true valuations of $100,
$105, $106, and $107 respectively. Let A be the
marginal consumer.

»  Consider (after a certain time the auction has
been running) the case if we observe the fol-
lowing sequence of progressive bids:
D(89)—C(89)—B(89)—A(94)—B(94)—C(94)
—D(99)—C(99)—B(99)—STOP. At this
stage, A, the marginal consumer, will have to
bid $104 to get in. He will not because his
valuation is $100. Thus, the total revenue
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equals $297, and B, C, and D win at $99
each.

* Next, consider the following sequence of
progressive bids: B(94)—C(94)—D(94)—
A(99)—D(99)—C(99)—B(104)—C(104)—
D(104)—STOP. Observe thatA, the marginal
consumer, is the first to get into the winners
list and hence the last to get out at that level.
At the terminal stage, A would have to bid
$104 to get in. He will not because his
valuation is $100. Thus, the total revenue
equals $312, and B, C, and D win the same
auction at $104 each.

Clearly, if we were B, C, or D, we would prefer to
maximize our chances of winning at $99 rather
than at $104. Bidding the marginal price is
achieved by coding a smart agent to “jump-bid,”
ensuring that it was the first to bid in the third-to-
last round, and hence the last to get outbid at that
level. This necessitates ensuring that the agentis
not the first to get into the winners list at the
penultimate level. m

The above example illustrates a case in which
bidders are likely worse off by adopting the
available pedestrian bidding agents. It shows how
an understanding of the bidder taxonomy
facilitates the creation of a jump-bidding agent.
Such agents can maximize a bidder's expected
surplus if programmed to make more than the
minimum bid. Recall from Table 7 that oppor-
tunists and sip-and-dippers outperform current
implementations of the bidding agents with
respect to winning likelihood. These two bidder
types are likely to dislike the current Bid Butler
because its pedestrian nature opposes their pri-
mary objective of winning. They may be bidders
who have budget constraints below their valua-
tions that limit the amount they can bid. For such
bidders, surplus is not a major issue but winning
likelihood is (Che and Gale 1998). With smart
agents, we expect bidders will be able to specify
their weights on surplus maximization and winning
likelihood. To the best of our knowledge, no such
smart agents exist for the multiunit auction. This
is a promising application for our taxonomy of
bidder behavior.



Valuation Discovery and Dynamic
Mechanism Design

Another unconsidered aspect of the online auction
environment is whether the technologically
enhanced information gathering and processing
capabilities might be used to perform real-time
valuation discovery and calibration. In brief, real-
time valuation discovery involves combining
standard Bayesian statistical inference techniques
with the bidder taxonomy to determine how much
of a current bid corresponds to a bidder’s true final
valuation. An auctioneer could then observe each
bid as it arrives and use historical valuation
distribution information and bidder behavior pat-
terns (from the taxonomy) to estimate each
bidder’s final willingness-to-pay. Our early experi-
mentation shows that we can estimate a Yankee
auction’s final price (within 10 percent) by the 40"
time percentile (Bapna et al. 2003b). This result
could be useful in setting dynamic buy-it-now
prices, which adjust themselves as the auction
progresses.

The Artificial Intelligence field already employs
value discovery models as components of bidding
agents. For example, Parkes and Ungar (2000)
use the notion of myopic best-response bidding
strategies among agents to illustrate how proxy
bidders employing this strategy can be shielded
from manipulation. Myopic best-response bidders
react to current information and fail to form a
strategy based on an auction’s complete strategic
space (as would be required by traditional auction
theory). Our findings and the taxonomy we have
developed corroborate this notion. Participators
and opportunists “myopically” maximize their
surplus when they formulate their bids. In con-
trast, early evaluators and sip-and-dippers are
more interested in maximizing their likelihood of
winning. Our taxonomy can serve as the basis
from which to derive valuation prediction methods
for different bidding behaviors.

The dynamic calibration of auction parameters is
one use of real-time valuation estimates. It has
long been believed that the expert auctioneer’'s
chant in a face-to-face auction maintains order in
the auction and the movement of bids:
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$100,000, | have $100,000! $120,000!
$130,000! | have $140,000 out back and
$150,000! Will you give me 175? 175!
2007 2007 250? Will you give me 2507
(Smith 1990, p. 9)

The expert auctioneer dynamically adjusts the bid
increment, thereby maximizing the economic
efficiency of the auction. A dynamic calibration
mechanism for online auctions, based on the
valuation prediction approach, would represent an
expert system akin to the real-world auctioneer.

General Purpose, Risk-Free, Decision-
Theoretic Computational Platform

The bidder behavior taxonomy can help create a
test bed for exploring new possibilities in online
auction design. Coupling a theoretical under-
standing of the revenue-generation process of
online auctions (Bapna et al. 2003a) with the
creation of bidding agents that replicate the
bidding strategies of real-world bidders can create
a simulation platform.  Simulations with high
inductive value should replicate the observed
auction’s winning bid structure statistically.
Because the winning bid structure (and thus
revenue) is affected by environmental parameters
like bidding strategies, the winning bid structures
cannot be replicated if the parameters inferred
from observed auctions are not specified with
appropriate granularity. If this condition is met
sufficiently, the environmental parameters can
then be modified to isolate and test the effects on
a given auction.

In the case of Yankee auctions, the simulation
platform could help investigate what impact rules
of auctions like bid increment and starting bid
amount have on an auctioneer’s revenue. Such a
tool would be cost effective and could be used ex
ante in a dynamic marketplace, potentially
avoiding many of the pitfalls that can emerge from
costly entrepreneurial ventures that resemble
uncontrolled field experiments.
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Conclusions I

We have created a taxonomy of online bidder
behavior and have examined the economic impact
of various bidder strategies in the context of the
popular Yankee auctions. Significant hetero-
geneity exists in the online bidder population, a
fact reflected in the five strategies we have
identified. Different combinations of time of entry,
time of exit, and the number of bids placed
characterize these strategies. We also observed
that users improve the execution of their bidding
strategies over time and respond to technological
advances in the market by adopting agent bidding
to lower their bidding costs. Our findings indicate
that agent bidders, followed by the participators,
have the highest levels of surplus, while
opportunists and sip-and-dippers have a higher
likelihood of winning an auction. Also, the
economic benefit of the agent bidder is predicated
on the strategies of other bidders. In the extreme
case of all bidders using the auctioneer’s agent,
the game is transformed into a sealed-bid auction,
and bidders with the highest valuations win the
items.

Our study reveals that an understanding of bidder
strategies is crucial to enhancing the design of
online auctions. We discuss how the taxonomy
can be critical in statistically predicting bidders’
valuations in real time. Finally, the taxonomy is
critical to creating risk-free simulation platforms
that can test the endogenous impacts of
mechanism-design choices.

Several bidding strategies are currently being
adopted in online markets. They all result in dif-
ferent economic consequences. Furtherresearch
is needed to understand bidders’ motivations in
adopting these strategies. We expect our tax-
onomy of bidder behavior to provide a basis for
future research.
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