
Information Systems Research
Vol. 16, No. 2, June 2005, pp. 169–185
issn 1047-7047 �eissn 1526-5536 �05 �1602 �0169

informs ®

doi 10.1287/isre.1050.0052
©2005 INFORMS

Toward Comprehensive Real-Time Bidder Support in
Iterative Combinatorial Auctions

Gediminas Adomavicius, Alok Gupta
Department of Information and Decision Sciences, Carlson School of Management, University of Minnesota,

321 19th Avenue South, Minneapolis, Minnesota 55455 {gedas@umn.edu, agupta@csom.umn.edu}

Many auctions involve selling several distinct items simultaneously, where bidders can bid on the whole
or any part of the lot. Such auctions are referred to as combinatorial auctions. Examples of such auc-

tions include truck delivery routes, industrial procurement, and FCC spectrum. Determining winners in such
auctions is an NP-hard problem, and significant research is being conducted in this area. However, multiple-
round (iterative) combinatorial auctions present significant challenges in bid formulations as well. Because the
combinatorial dynamics in iterative auctions can make a given bid part of a winning and nonwinning set of
bids without any changes in the bid, bidders are usually not able to evaluate whether they should revise their
bid at a given point in time or not. Therefore, in this paper we address various computational problems that
are relevant from the bidder’s perspective. In particular, we introduce two bid evaluation metrics that can be
used by bidders to determine whether any given bid can be a part of the winning allocation and explore their
theoretical properties. Based on these metrics, we also develop efficient data structures and algorithms that
provide comprehensive information about the current state of the auction at any time, which can help bidders
in evaluating their bids and bidding strategies. Our approach uses exponential memory storage but provides
fast incremental update for new bids, thereby facilitating bidder support for real-time iterative combinatorial
auctions.

Key words : iterative combinatorial auctions; real-time bidder support; bid evaluation metrics; computational
techniques for combinatorial auctions

History : Salvatore T. March, Senior Editor; Paulo Goes, Associate Editor. This paper was with the authors
5 months for 2 revisions.

1. Introduction
Online auctions are among the most widely used
electronic market mechanisms on the Internet. In a
forward auction, a seller sells one or several objects
(goods) to several potential buyers. In typical single-
object auctions, determining the auction’s winner and
its revenue is a computationally tractable problem.
In simultaneous auctions of several distinct items, it
is often desirable to allow bids on combinations of
items because of complementarities or positive exter-
nalities (Hudson and Sandholm 2002). Such auctions
are called combinatorial auctions. It has been shown
that combinatorial auctions can lead to more efficient
allocations than traditional auction mechanisms when
buyers’ valuations of the items are dependent on the
specific combination of items they are able to win
(Hudson and Sandholm 2002, de Vries and Vohra
2003). However, the winner determination prob-
lem in such auctions is computationally intractable,

i.e., NP-hard (Rothkopf et al. 1998, Sandholm 1999).
Therefore, researchers have focused primarily on the
winner determination problem, and the previous
work can be broadly categorized into: (1) develop-
ment of heuristics for solving the general winner
determination problem (Sandholm 1999, 2002) and
(2) identification of tractable special cases of the win-
ner determination problem (Rothkopf et al. 1998,
Tennenholtz 2000).1

In multiround (or iterative) open auctions, bidders
need to evaluate the efficacy of their bids. In single-
unit iterative auctions (e.g., English auctions), if a bid-
der is not the highest bidder, she needs to bid an
amount higher than the current highest bid to have a
chance to win the auction. However, in combinatorial

1 The complete coverage of extensive research in these areas is
beyond the scope of this paper; de Vries and Vohra (2003) present
an extensive up-to-date bibliography of research in combinatorial
auctions.

169

Adomavicius and Gupta: Toward Comprehensive Real-Time Bidder Support in Iterative Combinatorial Auctions
170 Information Systems Research 16(2), pp. 169–185, © 2005 INFORMS

auctions this is not necessarily the case. A bid that
is not among the current winners2 can be among the
future winners based simply on the combinations of
later bids. For example, if there are three items A, B,
and C, and the current bids are: (i) $10 for AB and
(ii) $5 for A, the second bid is not currently winning.
However, if a new bid of $6 for BC arrives, then,
assuming the auctioneer is maximizing his revenue,
bid (ii) will be among the winning bids. As the exam-
ple demonstrates, it may not be in the best interest of
a bidder to always update their bids. Unfortunately,
due to the complexity of the winner determination
problem, bidders in iterative combinatorial auctions
usually do not know whether their bid is currently
winning or whether it has the potential to become
winning at some point in the future.
Prior research in iterative combinatorial auctions

has primarily focused on creating specific mecha-
nisms that either explore the intricacies of a specific
application or create rules and restrictions to allow
the creation of several well-defined rounds of bid-
ding. An example of mechanisms for specific applica-
tions is the BICAP mechanism created by Brewer and
Plott (1996) for the rights to use railroad tracks. Exam-
ples of creating specific rules to enable multiround
computation of winner determination include iBundle
by Parkes (1999), Ausubel and Milgrom (2002), and
Rothkopf et al. (1998). Other interesting ideas include
shifting the onus of bid evaluation to the bidders.
For example, Banks et al. (1989) create a mechanism
where it is the responsibility of the bidders to look
at the existing bids and submit a new bid that makes
the combined “package” optimal; Kelly and Steinberg
(2000) describe a similar auction environment for use
in assigning carrier of last resort (COLR) responsibil-
ity to U.S. telephone carriers that undertake various
obligations as a condition for receipt of universal ser-
vice support. Other researchers, such as Nisan (2000),
provide bidding languages so that bidders can rep-
resent their preferences (bundle/bid combinations) in
sealed bid (noniterative) auctions.
Pekec and Rothkopf (2003) note that the conti-

nuous-time combinatorial auctions are difficult to

2 A current winner is defined as a set of bids that would win the
allocation of desired items if the auction were to stop at that point
in time.

conduct for more than a handful of items. In their
opinion, it is preferable to design mechanisms that
identify discrete rounds with specific rules, making
winner determination efficient. However, they note
that if it is not possible to create discrete rounds, then
“bidtakers should take particular care in providing tools
that help bidders in bid preparation” (p. 1,501). Overall,
it is fair to say that the issue of providing compre-
hensive real-time information to bidders during the
auction has been largely untouched.
In this paper, we take a different approach and

address various computational problems that are rel-
evant from the bidder’s perspective. In other words,
we provide theoretical, algorithmic, and computa-
tional foundations of a bidder support system for iter-
ative combinatorial auctions. Following the design
science paradigm of Hevner et al. (2004), we cre-
ate novel design artifacts by designing data structures
and algorithms that provide comprehensive informa-
tion about the current auction state to bidders in
iterative combinatorial auctions. Auction state infor-
mation is essential for bidders in formulating and
evaluating their bids in any iterative auction; hence,
our approach clearly satisfies the problem relevance cri-
terion of design science research. We use rigorous
analytical and computational testing approaches to
perform design evaluation of our design artifacts, sat-
isfying the formal research rigor criterion of design
science research. Cumulatively, this research satis-
fies the research contribution dimension of design sci-
ence research in multiple ways by contributing to the
fundamental state of knowledge about properties of
bid space and enabling the bidder support system
for interactive combinatorial auctions. Specifically, we
introduce two bid evaluation metrics that can be used
by bidders to determine whether any given bid can
be a part of the winning allocation and develop com-
putationally fast algorithms that calculate these met-
rics. The introduction of these bid evaluation metrics
leads to the following significant results that satisfy
the design as search process criterion of design science
research (Hevner et al. 2004): (a) It facilitates access
to the crucial bid-related information to the bidders
anytime during the course of an auction as opposed
to traditional approaches that only provide final allo-
cation information; (b) because our algorithms and
data structures provide access to the complete state

Adomavicius and Gupta: Toward Comprehensive Real-Time Bidder Support in Iterative Combinatorial Auctions
Information Systems Research 16(2), pp. 169–185, © 2005 INFORMS 171

of a combinatorial auction in real time, winners can
be easily determined incrementally and are known
after each new bid; (c) development of new bid eval-
uation metrics can offer insights into the underlying
structure of combinatorial auctions and provide novel
directions for future research.
The prior research indicates that exhaustive state

space-based approach (or complete enumeration
approach) for winner determination in combinato-
rial auction is only feasible for cases for less than
a dozen items (Sandholm 2002, Pekec and Rothkopf
2003). Moreover, the computational performance of
such algorithms is reported to be unsatisfactory for
real-time use (de Vries and Vohra 2003). In this paper,
we extend these boundaries to a much larger num-
ber (25–30). We provide theoretical foundations of the
interrelationships and trade-offs among the exponen-
tial number of possible bids. Based on these relation-
ships, we define some important constructs, such as
subauctions as well as live, dead, and winning bids.
We then develop data structures that support real-
time bidder queries and an efficient algorithm for
keeping these data structures up to date throughout
the duration of an auction. We then use this algorithm
to perform extensive computational experiments to
demonstrate the performance of our implementation.
The experimental results indicate that our implemen-
tation is capable of providing real-time bidder sup-
port for auction sizes where even a single-time winner
determination problem is considered challenging.

2. Combinatorial Auction Dynamics:
Theoretical Analysis

2.1. Preliminaries and Definitions
Let � be the set of items to be auctioned, and let
N = �� �. We use the terms auction set and auction size
to refer to � and N , respectively. In a combinato-
rial auction, participants (person, software agent, etc.)
can place bids on any itemset, i.e., any nonempty sub-
set of � .
An arbitrary bid b can be represented by the tuple

b = �S�v� t�, where S ⊆� �S �= ��, v ∈�+, and t ∈�+.
Here S denotes the itemset the bid was placed on, also
called the span of the bid; v denotes the value of the
bid (e.g., the monetary amount specified in this bid);
and t denotes the time the bid is placed. Given bid b,

we use the notation S�b�, v�b�, and t�b� to refer to the
span, value, and time of the bid, respectively. In this
paper we assume that, once submitted, bids cannot
be withdrawn from the auction.
We assume that there exists a strict chronologi-

cal order to bids, i.e., that no two bids arrive at
exactly the same moment in time, or more formally,
for any two different bids b′ and b′′ we always have
t�b′� �= t�b′′�. Therefore, all bids in an auction can be
ordered according to this order (i.e., b1� b2� b3�).
This is a natural assumption (commonly accepted in
auction literature) and is used for tie-breaking pur-
poses. For example, if we have two bids with identical
spans and identical values, the earlier bid is typically
preferred over the later one.
Because of the existence of the strict chronolog-

ical order of bids, we can introduce the notion of
the auction states, which are represented by nonnega-
tive integers. In particular, auction state k (where k=
0�1�2� 	 	 	� refers to the auction after the first k bids
are submitted. This bid set is denoted as Bk, i.e., Bk =
�b1� 	 	 	 � bk. Auction state 0 refers to the auction before
any bids are made, i.e., B0 =�. Obviously, Bk ⊆ Bl, for
any k and l such that k≤ l.
Given an arbitrary set of bids B in a combinato-

rial auction, a bid set C (where C ⊆ B) is called a bid
combination in B if all bids in C have nonoverlapping
spans, i.e., for every b′� b′′ ∈ C where b′ �= b′′, we have
S�b′�∩ S�b′′�=�. The set of all bid combinations pos-
sible at auction state k is denoted as �k, i.e., �k = �C ⊆
Bk � b′� b′′ ∈C� b′ �= b′′ ⇒ S�b′�∩ S�b′′�=�.
We assume that the winners of the auction are

determined by maximizing the seller’s revenue, i.e.,
maxC∈�k

∑
b∈C ��b�. The bid combination that maxi-

mizes this expression is called a winning bid combi-
nation and is denoted as WINk (for auction state k).
Moreover, given auction state k, bid b ∈ Bk is called
a winning bid in Bk if b ∈ WINk. Furthermore, if bid
b ∈ Bk is not a winning bid in Bk and cannot possi-
bly be a winning bid in any subsequent auction state,
then b is called a dead bid in Bk. Formally, bid b ∈ Bk
is dead if �∀Bl ⊇ Bk� �b �WINl�. The set of all dead
bids in Bk is denoted as DEADk. On the other hand,
if b �DEADk, then bid b ∈ Bk is called a live bid in Bk.
The set of all live bids in Bk is denoted as LIVEk.
Based on the definitions of WINk, DEADk, and LIVEk,
note that: DEADk ∩ LIVEk = �, DEADk ∪ LIVEk = Bk,
WINk ⊆ LIVEk, and DEADk ⊆DEADh for any h≥ k.

Adomavicius and Gupta: Toward Comprehensive Real-Time Bidder Support in Iterative Combinatorial Auctions
172 Information Systems Research 16(2), pp. 169–185, © 2005 INFORMS

To determine the winning bid combination, we
need to establish a preference order on various bid
combinations. Note that because a bid combination
is a set of bids with nonoverlapping spans, we
can straightforwardly extend span, value, and time
notions from bids to bid combinations as follows.
Let C be a bid combination. Then S�C�, v�C�, and t�C�
are defined as follows:

S�C�=⋃
b∈C
S�b�� v�C�=∑

b∈C
v�b�� and t�C�=max

b∈C
t�b�	

Also, for the purpose of notational completeness, we
define the span, value, and time of an empty bid
combination � as follows: S��� = �, v��� = 0, and
t���= 0.
To incorporate a strict tie-breaking mechanism into

the winner determination process, we will define a
strict total order for sets of bid combinations by defin-
ing a ≺ relation on bid combinations. In other words,
given an arbitrary set of bid combinations �, for
any C ′�C ′′ ∈ � such that C ′ �= C ′′, we will always
have that either C ′ ≺ C ′′ (in this case, we will say
that C ′′ is better than C ′) or C ′′ ≺ C ′ (i.e., C ′ is bet-
ter than C ′′�. According to the revenue maximization
requirement that combinatorial auctions typically fol-
low, relation ≺ must have the following “value mono-
tonicity” property: (∀C ′, C ′′ ∈ Ck) �C ′ ≺ C ′′ ⇒ ��C ′� ≤
��C ′′�). In other words, C ′′ cannot be better than C ′

if C ′′ provides less value than C ′. Therefore, the above
property guarantees that the best bid combination
will always be the one with the maximal revenue.
However, this property alone is not sufficient for rela-
tion ≺ to be a strict total order, because a combina-
torial auction can have several bid combinations with
the (same) maximal revenue. Therefore, in addition
to the above value monotonicity property, relation ≺
must have a tie-breaking mechanism to be able to
order bid combinations with equal values. The fol-
lowing example illustrates the importance of the tie-
breaking mechanism.
Example 1. Consider a five-item auction, i.e., � =

�a� b� c�d� e. Furthermore, assume that the follow-
ing five bids were made in the exact chronological
sequence shown here:

b1 = �ab�15�� b2 = �bc�10�� b3 = �ad�10��
b4 = �cd�5�� b5 = �e�5�	

The maximal possible value of a bid combination in
the above example is 25, and we have two bid combi-
nations, i.e., �b1� b4� b5 and �b2� b3� b5, that have such
value. Which one should be picked as a winning com-
bination? If each combination consisted of a single
bid, then we could straightforwardly break the tie by
choosing the earlier bid. However, bid combinations
�b1� b4� b5 and �b2� b3� b5 are not straightforwardly
comparable in terms of time. For example, exclud-
ing the “overlap” bid b5, which is present in both bid
combinations, combination �b1� b4 started earlier than
�b2� b3 (because of b1), but �b2� b3 ended earlier than
�b1� b4 (because of b4�. �
While several different tie-breaking mechanisms for

relation ≺ are possible, because of the space limita-
tions we consider one specific tie-breaking approach
in this paper.3 In this approach, if there are several bid
combinations with equal value, the earliest completed
bid combination is chosen over those completed later
(excluding overlap, as will be shown below). Justifi-
cation for this is straightforward: We do not want to
change the winning bid combination as long as the
auction revenue does not increase. Formally, we will
state that C ′′ is better than C ′ (i.e., C ′ ≺ C ′′�, if either
of the following two conditions is true:
(i) v�C ′� < v�C ′′�� or
(ii) v�C ′�= v�C ′′�� and t�C ′\C ′′� > t�C ′′\C ′�.

Note that here we use t�C ′\C ′′� > t�C ′′\C ′� instead of
the simpler t�C ′� > t�C ′′� condition in order to elimi-
nate the “overlap” between the bid combinations, i.e.,
we eliminate bids that are present in both C ′ and C ′′.
Based on the fact that �C ′\C ′′�∩ �C ′′\C ′�=� and that
there exists a strict chronological order of individ-
ual bids, we always have that t�C ′\C ′′� �= t�C ′′\C ′�.
This makes condition (ii) a true tie-breaker, because
it is not possible to have t�C ′\C ′′� = t�C ′′\C ′� when
C ′ �=C ′′. Furthermore, it is straightforward to show
formally that ≺ is truly a strict total order, i.e., that it
is irreflexive (i.e., C ≺C is not true for any C), transi-
tive (C ′ ≺ C ′′ and C ′′ ≺ C ′′′ implies C ′ ≺ C ′′′�, and total
(as was demonstrated earlier in this paragraph).
Example 2. Using the above definition of strict

total order on bid combinations, the winning bid com-
bination in Example 1 would be �b2� b3� b5. In other

3 Most of the theoretical results presented in this paper also hold for
other strict total order relations ≺ that have the value monotonicity
property.

Adomavicius and Gupta: Toward Comprehensive Real-Time Bidder Support in Iterative Combinatorial Auctions
Information Systems Research 16(2), pp. 169–185, © 2005 INFORMS 173

words, we have that �b1� b4� b5 ≺ �b2� b3� b5, because
v��b1� b4� b5�= v��b2� b3� b5�= 25, but

t��b1� b4� b5\�b2� b3� b5�= t��b1� b4�= t�b4� > t�b3�
= t��b2� b3�= t��b2� b3� b5\�b1� b4� b5�	 �

Once the strict total order is defined on bid com-
binations, we can rewrite the winner determination
problem simply as: WINk =max≺�k. With the strict
total order on bid combinations in place, we can now
derive a multitude of results about various aspects of
combinatorial auctions.

2.2. Subauctions and Their Winning Bid
Combinations

Because we want to be able to provide a bidder with
the information regarding the auction at every instant,
we need to know the currently winning bids at each
stage of the auction. For representational simplicity
we do this by defining the concept of subauction:
Given auction state k and itemset X, define Bk�X� as
Bk�X�= �b ∈ Bk � S�b�⊆ X. We can then say that each
itemset X �X ⊆ �� defines a subauction of the overall
auction � .
Furthermore, given auction state k and itemset X,

�k�X� denotes the set of all bid combinations in Bk�X�,
i.e., �k�X� = �C ⊆ Bk�X� � b′� b′′ ∈ C, b′ �= b′′ ⇒ S�b′� ∩
S�b′′� = �. Note that, by definition, Bk ≡ Bk��� and
�k ≡�k���. The following table states three intuitive
properties of Bk�X� and �k�X� that follow immedi-
ately from their definitions. In other words, for any
nonempty itemsets X, Y , and any auction state k, all
the statements in Table 1 are true.
Given the strict total order on bid combinations,

the winner determination problem for each subauc-
tion is formulated as: WINk�X� =max≺�k�X�, where
WINk�X� represents the winning bid combination for

Table 1 Various Properties of Bk�X � and �k �X �

Description Properties of Bk�X � Properties of �k �X �

Monotonicity w.r.t. Bk�X �⊆ Bk+1�X � �k �X �⊆�k+1�X �

auction state

Monotonicity w.r.t. �X ⊆ Y � �X ⊆ Y �

subauction ⇒ �Bk �X �⊆ Bk�Y �� ⇒ ��k �X �⊆�k �Y ��

“Superadditivity” Bk�X ∪ Y � �k �X ∪ Y �⊇�k �X �∪�k �Y �

w.r.t. subauction ⊇ Bk�X �∪Bk�Y �

subauction X at auction state k. Note that, by defini-
tion, WINk ≡WINk��� at each stage k �k = 1�2� 	 	 	�.
Again, for the purpose of notational completeness we
define WINk���=�.
To be able to keep track of winning bids at each

state of the auction, one of the important issues is
to understand the iterative dynamics of winning bid
combinations, i.e., how the current winning bid com-
bination changes when the new bid is submitted to
the auction. Suppose that we are at auction state k
(i.e., k bids have been submitted so far) and a new
bid bk+1 is placed. The following two theorems explain
the dynamics of the winning bid combination for each
subauction X, i.e., the relationship between WINk�X�

and WINk+1�X� for each subauction X.

Theorem 1. �∀X�S�bk+1�� �WINk+1�X�=WINk�X��.4

Theorem 2. �∀X⊇S�bk+1���WINk+1�X�=max≺��bk+1
∪WINk�X\S�bk+1���WINk�X���.

Simply put, Theorem 1 says that for all subauc-
tions X that bk+1 does not belong to (i.e., S�bk+1�� X
or, in other words, bk+1 � Bk+1�X��, the winning bid
combination does not change. Theorem 2 indicates
that for all subauctions X that bk+1 does belong to,
the winning bid combination of subauction X can
change only if the combination of new bid bk+1 and
the winning bids in the X\S�bk+1� subauction is bet-
ter than the previous winning bid combination of
subauction X. Note that, for the special case where
X = S�bk+1�, Theorem 2 is simplified to WINk+1�X� =
max≺�WINk�X�� �bk+1�, because WINk���=�.
Let VLk�X� be the value level of subauction X at auc-

tion state k or, more formally, VLk�X� = v�WINk�X��.
In other words, VLk�X� represents the maximal pos-
sible revenue from subauction X at auction state k.
Note that the revenue of the entire auction is then
denoted as VLk���. Based on the definition of VLk�X�,
we can derive various properties of VLk�X�, as stated
in the following lemma.

Lemma 1. For any auction state k and itemsets X, Y ,
the following statements are true:
1. VLk�X�≤ VLk+1�X�;
2. �X ⊆ Y �⇒ �VLk�X�≤ VLk�Y ��;
3. �X ∩Y =��⇒ �VLk�X�+VLk�Y �≤ VLk�X ∪Y ��.

4 Proofs of all theoretical results are provided in the appendix.

Adomavicius and Gupta: Toward Comprehensive Real-Time Bidder Support in Iterative Combinatorial Auctions
174 Information Systems Research 16(2), pp. 169–185, © 2005 INFORMS

In other words, VLk�X� (or the revenue of sub-
auction X at auction state k) is monotonically non-
decreasing with respect to both auction state k and
subauction X. It is also superadditive with respect
to the subauction—the cumulative revenue from two
nonoverlapping subauctions cannot be greater than
the revenue of the combined subauction.

2.3. “Deadness” and “Winning” Levels of
Bids and Their Theoretical Properties

In this section we derive several theoretical results
about dead, live, and winning bids, including the
necessary and sufficient conditions for determining
whether a given bid is dead, live, or winning at each
state of a combinatorial auction. We begin with the
following theorem, which identifies an important cor-
respondence between the live bids of the auction and
the winning combinations of individual subauctions.

Theorem 3. Given auction state k and bid b ∈ Bk, such
that S�b�=X, we have: b ∈ LIVEk⇔ b ∈WINk�X�.

The above theorem states that bid b is live at
auction state k if and only if b is a winning bid
in a subauction defined by its span S�b� at auction
state k. Furthermore, because b ∈ WINk�X� and X =
S�b�, the winning combination of subauction X con-
sists of bid b alone, i.e., b ∈ LIVEk⇔WINk�S�b��= �b.
Therefore, as the next corollary indicates, the set of
live bids in a combinatorial auction is comprised of
the winning bids from all subauctions.

Corollary 3a. LIVEk =
⋃
X⊆� WINk�X�.

In other words, at any auction state, the set of all
live bids in an auction is the same as the set of win-
ning bids from all subauctions. Furthermore, from the
bidder’s perspective it would be useful to know how
much she should bid on an itemset to guarantee that
her bid is live. The next theoretical result addresses
this issue, i.e., given auction state k and a newly sub-
mitted bid bk+1, the following corollary (based on The-
orem 3) states the necessary and sufficient condition
for the deadness of bk+1.

Corollary 3b. Given auction state k and new bid
bk+1, such that S�bk+1� = X, the following is true: bk+1 ∈
DEADk+1⇔ v�bk+1�≤ VLk�X�.
Simply put, any new bid on itemset X will be dead

if and only if the current winning combination of

subauction X has the same or greater value than the
value of the new bid. Therefore, while VLk�X� was
introduced to denote the value of subauction X at
auction state k, it also represents the “deadness level”
for any new bids on itemset X at auction state k. Thus,
we will also call VLk�X� the deadness level of itemset X
at auction state k and will denote it as DLk�X�. More
precisely, for any auction state k and itemset X we
have: DLk�X�= VLk�X�. Note that the above corollary
can be straightforwardly formulated as the necessary
and sufficient condition for “liveness” of the new bid
bk+1, i.e., bk+1 ∈ LIVEk+1⇔ v�bk+1� > VLk�X�. Note that
while in this paper we provide the precise (necessary
and sufficient) condition for bid deadness, weakened
sufficient conditions have been noted in prior litera-
ture. For example, Rothkopf et al. (1998) remove any
bid that is not the highest bid on its span.
Next, Theorem 4 defines the necessary and suffi-

cient condition for a bid to be a winning bid.

Theorem 4. Given auction state k and new bid bk+1,
such that S�bk+1� = X: bk+1 ∈ WINk+1 ⇔ v�bk+1� >
VLk���−VLk��\X�.
Let us denote WLk�X� to be a winning level for

bids on itemset X at auction state k and define
it as: WLk�X� = VLk��� − VLk��\X�. Such a defini-
tion is appropriate because (based on Theorem 4)
bk+1 ∈ WINk+1 if and only if v�bk+1� > WLk�X�. Also
note that because of our definition of WINk��� = �,
Theorem 4 provides the correct result for the spe-
cial case where the new bid bk+1 is placed on the
whole auction set � , i.e., when S�bk+1� = � . Obvi-
ously, the winning level for itemset � should be
equal to the current auction revenue VLk���, and
from Theorem 4 we obtain exactly that: WLk��� =
VLk��� − VLk��\�� = VLk��� − VLk��� = VLk���
because VLk���= v�WINk����= v���= 0.
Numerous properties of DLk�X� and WLk�X� can be

derived from their definitions and earlier theoretical
results. Some interesting properties are stated in the
following theorem.

Theorem 5. For any auction state k and itemsets X,
Y , the following statements are true:

1. DLk�X�≤WLk�X��
2. DLk���=WLk���;
3. WLk�X�=DLk���−DLk��\X��

Adomavicius and Gupta: Toward Comprehensive Real-Time Bidder Support in Iterative Combinatorial Auctions
Information Systems Research 16(2), pp. 169–185, © 2005 INFORMS 175

4. DLk�X�=WLk���−WLk��\X�;
5. DLk�X�≤DLk+1�X�;
6. X ⊆ Y ⇒DLk�X�≤DLk�Y �;
7. X ⊆ Y ⇒WLk�X�≤WLk�Y �;
8. X ∩Y =�⇒DLk�X ∪Y �≥DLk�X�+DLk�Y �;
9. b ∈ LIVEk, s.t. S�b�=X⇒DLk�X�= v�b�;
10. b ∈WINk, s.t. S�b�=X⇒WLk�X�= v�b�.
The above results can provide some interesting

insights about combinatorial auctions and bid dynam-
ics. Statement (1) is very intuitive: When bidding on
itemset X at auction state k, the winning level for X
can never be lower than the deadness level of X.
However, in some special cases the deadness and win-
ning levels can be equal, e.g., it is always the case
for subauction � , as statement (2) indicates. In addi-
tion, based on Statements (9) and (10), we have that
DLk�X�=WLk�X� for all subauctions X that represent
a span of a currently winning bid, i.e., all subauc-
tions X, such that ∃b ∈WINk where S�b�= X. This is
the case, because b ∈WINk⇒ b ∈ LIVEk and, by com-
bining (9) and (10), we have that WLk�X� = v�b� =
DLk�X�.
Furthermore, Statements (3) and (4) suggest a cer-

tain symmetry (or duality) between deadness and
winning levels. Moreover, Statements (6) and (7) show
that both deadness and winning levels are mono-
tonically nondecreasing with respect to the itemset.
In addition, the deadness levels are monotonically
nondecreasing with respect to the auction state, as
presented in Statement (5); it is easy to show that
winning levels do not have the same property. For
example, assume that we have a two-item combina-
torial auction, i.e., �� � = �a� b, where the first bid
was (ab, 10) and the second bid was �b�5�. According
to the derived theoretical results, WLk�a�= VLk���−
VLk��\a� = VLk�ab� − VLk�b�. Therefore, WL1�a� =
10−0= 10 and WL2�a�= 10−5= 5, and consequently,
WL1�a� >WL2�a�.
Finally, while Statement (8) in Theorem 5 does indi-

cate that the deadness levels are superadditive with
respect to the itemset, in general the same is not
true for winning levels. This can be illustrated using
the same auction example as in the previous para-
graph, where we have that WL2�a� = 5, WL2�b� = 10,
and WL2�ab�= 10. Consequently, WL2�ab� <WL2�a�+
WL2�b�.

The following lemma provides some intuition
about the inherent complexity of combinatorial auc-
tions by demonstrating that the number of live bids
at a given state of an auction can possibly be expo-
nential with respect to auction size N .

Lemma 2. In a combinatorial auction of size N :
1. The number of live bids at any auction state can-

not be greater than 2N − 1;
2. 2N − 1 is a tight upper bound, i.e., it is possible

to have an auction state where there are exactly 2N −1
live bids.

However, it is easy to see that, while the number
of live bids can be exponential, the number of win-
ning bids can never be greater than N . This is the
case, because any bid combination (including the win-
ning bid combination WINk� contains only bids with
nonoverlapping spans, i.e., S�WINk� ⊆ � ⇒ �WINk� ≤
�� � =N .

3. Implementing Bidder Support:
Data Structures and Algorithms

3.1. Infrastructure for Bidder Support
Based on the theoretical results presented earlier in
this paper, we have developed data structures that are
able to store important auction state information (e.g.,
current deadness and winning levels for any item-
set X, current winning bid combination) and provide
bidders with efficient (real-time) access to it. Specifi-
cally, throughout the duration of the auction, we pro-
pose to use the following two arrays, each containing
some information about every itemset X:
• ValueLevel, where ValueLevel[X] always (i.e., at

any auction state k) contains the up-to-date VLk�X�
for itemset X.
• LastWinBid, where LastWinBid[X] always (i.e., at

any auction state k) contains the itemset of the last bid
(in a chronological sense) that belongs to the current
WINk�X� for the subauction X.
The space complexity of these data structures is

O�2N �, because there are 2N − 1 possible nonempty
itemsets in an auction of size N . As discussed in §2.3,
it is possible to have up to 2N −1 live bids in such an
auction (Lemma 2), where the value of each bid rep-
resents a deadness level for a specific itemset (Theo-
rem 5, Statement 9). Therefore, intuitively, such expo-

Adomavicius and Gupta: Toward Comprehensive Real-Time Bidder Support in Iterative Combinatorial Auctions
176 Information Systems Research 16(2), pp. 169–185, © 2005 INFORMS

nential data structures are necessary if we want to
guarantee a very fast (i.e., constant-time) access to
crucial bid information, such as itemset deadness lev-
els, that will be discussed in more detail in §3.2.
Therefore, for practical purposes we have that N is
bounded by 25–30 or so, because the array access is
most efficient when the whole array fits into the main
memory and no OS swapping/paging needs to be
performed. However, as discussed in §1, it is still a
large improvement over the previously known com-
plete enumeration approaches.
There are several challenges related to efficient

implementation of bidder support and, more specifi-
cally, to the above data structures:
• How can data be represented (or more specifi-

cally, itemsets) efficiently in the above data structures?
This issue is discussed in the remainder of this sec-
tion.
• What auction and bid-related information can be

extracted (queried) by bidders from these data struc-
tures in real time? This issue is addressed in §3.2.
• How can these (exponential) data structures be

kept up to date after every single bid in real time? We
will address this issue in §3.3.
We use bitmaps to represent itemsets in both of

the above arrays. Bitmaps are commonly used to
represent setlike data in many different applications,
mainly because they allow for a concise representa-
tion of sets and provide for an efficient (constant-time)
implementation of many standard set operations (set
union, intersection, difference, etc.). For these reasons,
our implementation uses a bitmap-based data struc-
ture to represent the sets of items specified in the bids
placed by the auction participants.
More specifically, assume � is the set of items that

is being auctioned, where �� � = N , and each item is
encoded as a number between 0 and N − 1, i.e., � =
�0�1� 	 	 	 �N − 1. Then, any possible itemset X (i.e.,
X ⊆�� can be represented by a sequence of bits (i.e., a
bitmap) of length N , where ith bit �i= 0�1� 	 	 	 �N −1�
in a bitmap is set to 1 if i ∈ X; otherwise, it is set
to 0. There exists a straightforward one-to-one corre-
spondence between the set of all subsets of � , the
set of all bitmaps of length N , and the set of inte-
gers �0�1� 	 	 	 �2N − 1 because there are 2N different
bitmaps of length N , and each of them constitutes
a binary representation of some integer between 0

Table 2 Illustration of One-to-One Correspondence
Between Itemsets, Bitmaps, and Integers

Itemset Bitmap∗ Integer

� 0000 0
{0} 0001 1
{1, 2} 0110 6
{0, 2, 3} 1101 13
{0, 1, 2, 3} 1111 15

∗Here we use the traditional bitmap representation—the
order of bits is right to left, i.e., 0th bit is the rightmost one.

and 2N − 1. In other words, an arbitrary itemset X
corresponds to integer

∑
i∈X 2i. Therefore, a standard

4-byte (32-bit) integer can represent any subset of � ,
where �� � ≤ 32. Table 2 provides some examples of
itemsets and their corresponding bitmaps (and inte-
gers) for the case � = �0�1�2�3.
As mentioned above, using bitmap representations

of sets provides for an efficient implementation of
many set operations. In fact, many set operations can
be performed in constant time on bitmaps/integers
using bitwise NOT, AND, OR, and XOR operations
that are supported by most microprocessors and, con-
sequently, by many programming languages (e.g., C,
C++). Let �X denote a bitmap/integer representation
of itemset X. Then, Table 3 illustrates how basic set
operations can be implemented using bitmaps and
logical bitwise operations.

3.2. Effective Infrastructure Querying: Obtaining
Auction Information in Real Time

Assuming our data structures contain up-to-date
information (we will discuss how to update them
effectively in §3.3), below are examples of some sce-
narios that may be of interest to bidders (as well as

Table 3 Implementing Basic Set Operations Using Bitmaps

Set operation Set notation Bitwise operation

Intersection X ∩ Y �X and �Y
Union X ∪ Y �X or �Y
Difference X\Y (assuming X ⊇ Y) �X xor �Y
Symmetric difference X ÷ Y (i.e., �X\Y �∪ �Y \X�� �X xor �Y
Complement �X (i.e., �\X) �X xor ��
Membership test a ∈ X? (�a and �X� �= 0?
Subset test X ⊆ Y ? ��X and �Y �= �X?
Empty set test X =�? �X = 0?

Adomavicius and Gupta: Toward Comprehensive Real-Time Bidder Support in Iterative Combinatorial Auctions
Information Systems Research 16(2), pp. 169–185, © 2005 INFORMS 177

auctioneers) and their corresponding queries/calcu-
lations that are derived directly from the theoretical
results presented earlier in this paper. Note that in the
examples below we use the notation of itemsets and
set operations (instead of bitmaps and bitwise logical
operations) for better clarity.
Example 3 (Obtaining the Current Winning

Level for Some Itemset). For example, “How much
should I bid on itemset X for my bid to be a winning
bid?”

Query# ValueLevel���− ValueLevel��\X�	
This query is derived directly from the definition of
the winning level and Theorem 4. �
Example 4 (Obtaining the Current Deadness

Level for Some Itemset). For example, “How much
should I bid on itemset X for my bid not to be a dead
bid?”

Query# ValueLevel�X�	

This query is derived directly from the definition of
the deadness level and Corollary 3b. �
Example 5 (Obtaining the Current Revenue of

the Auction). That is, “What would the total revenue
be if the auction ended right now?”

Query# ValueLevel���	

This query is derived directly from the definition of
the auction revenue. �
Assuming the auction data in the ValueLevel array

is up to date, the computational complexity of the
above three queries is O�1� (in practice, no more than
several microseconds), because they use only simple
array lookups.
Example 6 (Obtaining the Winning Bid Com-

bination). That is, “Which itemsets comprise the
current winning bid combination?” The following
query/procedure prints the spans (itemsets) and val-
ues of the bids from the currently winning bid
combination:
(1) Curr=�
(2) While LastWinBid[Curr] �= � Do
(3) Print LastWinBid[Curr],

ValueLevel[LastWinBid[Curr]]
(4) Curr= Curr\LastWinBid[Curr]
(5) End While
The above algorithm is derived from Theorem 2,

i.e., based on the fact that a winning combination of

any subauction X can be “decomposed” into the latest
winning bid b and the winning bids of the “comple-
ment” auction X\S�b�. The computational complex-
ity of this algorithm is O��WINk��, which is minimal,
because the same computational complexity is needed
just to print the winning bid combination. In the
worst case, this complexity is O�N�, i.e., linear in the
number of items in the auction, because �WINk� ≤N ,
as discussed earlier. Note that because N is usually
less than 30 or so because of the real-life space com-
plexity restrictions mentioned earlier, the winning bid
allocation determination is also extremely efficient.
Also note that the above algorithm can be straight-

forwardly adapted to find the winning bid combi-
nation for any subauction X (not only for the entire
auction set ��, in case such information is requested.
For this purpose, simply replace � with X on Line 1.

3.3. Incremental Infrastructure Update
The incremental update of data structures is arguably
the most crucial part of the proposed infrastructure—
if we can update the auction state information effec-
tively, then bidder-based queries can be performed
in constant or near-constant time. Assume that we
have the state k of the auction, and all data struc-
tures contain up-to-date values, i.e., ValueLevel[X]=
VLk�X� and LastWinBid[X] contains the itemset of
the last winning bid for subauction X. Let bk+1 be
a new bid that is submitted to the auction. Further-
more, let S and v be the span and value of bid
bk+1, i.e., S = S�bk+1� and v = v�bk+1�. We will assume
that bk+1 ∈ LIVEk+1, because, as demonstrated in §3.2
(Example 4), it takes one array lookup to retrieve the
deadness level for any itemset, i.e., it only takes a con-
stant time to determine whether an incoming bid is
dead, in which case no update is needed and the bid
can simply be discarded. Then, the data structures are
updated for auction state �k+ 1� as follows:
Input: new live bid bk+1 represented by its span S

and value v.
(1) For all X⊇ S
(2) CandidateValue= v+ ValueLevel�X\S�
(3) If CandidateValue> ValueLevel[X] Then
(4) ValueLevel[X]= CandidateValue
(5) LastWinBid[X]= S
(6) End If
(7) End For

Adomavicius and Gupta: Toward Comprehensive Real-Time Bidder Support in Iterative Combinatorial Auctions
178 Information Systems Research 16(2), pp. 169–185, © 2005 INFORMS

This algorithm draws directly from the theoreti-
cal results presented earlier in this section (mainly
from Theorems 1 and 2). More specifically, based on
Theorem 1, new bid bk+1 does not affect the win-
ning combination of any subauction X, such that
X � S�bk+1�. Therefore, as Line 1 indicates, only sub-
auctions X ⊇ S�bk+1� have to be considered. More-
over, based on Theorem 2, new bid bk+1 can affect
the winning combination of subauction X ⊇ S�bk+1�
only if WINk�X� ≺ �bk+1 ∪ WINk�X\S�bk+1��. Con-
sequently, based on the definition of ≺ and also
on the fact that bid combination WINk�X� precedes
�bk+1 ∪WINk�X\S�bk+1�� chronologically, the current
winning combination of subauction X will change
(i.e., WINk+1�X� �=WINk�X�� only if VLk�X� < v�bk+1�+
VLk�X\S�bk+1��	 Lines 2–3 in the above algorithm per-
form this check, and, if required, both of the data
structures are updated on Lines 4–5. Specifically,
Line 4 updates ValueLevel[X] with the new revenue
of subauction X, i.e., the value of the new winning
combination �bk+1 ∪ WINk�X\S�bk+1��. Also, Line 5
updates LastWinBid[X] with the span of the last win-
ning bid, i.e., S�bk+1�.
The computational complexity of the above algo-

rithm is O�2N−�S��, because 2N−�S� is the number of all
possible supersets of S and only a constant amount
of work is needed for each superset. To loop through
all supersets X efficiently (in the For loop above), we
use loopless Grey binary code generation approach
(Bitner et al. 1976), which takes only a constant
amount of time to calculate the next superset during
each iteration. We present the experimental perfor-
mance results of this algorithm in the next section.

4. Experimental Results
As mentioned earlier, problem spaces with more than
a dozen items are considered too complex for the win-
ner determination problem using complete enumera-
tion approaches, and the computational performance
of such algorithms is reported to be unsatisfactory for
real-time use (de Vries and Vohra 2003). However, our
implementation of the complete enumeration-based
approach, presented in §§3 and 4, is able to handle
much larger auction sizes (25–30) on a relatively obso-
lete machine.5

5 All experiments were performed on a 450 MHz Pentium III com-
puter with 256 MB RAM running Linux OS.

In this section we present some performance results
of our algorithm for the incremental update of
the comprehensive auction information (stored in
ValueLevel and LastWinBid arrays) after each bid in
real time. As discussed in §3.2, this information can be
used to instantly determine current winners as well
as various other bid-related characteristics (deadness,
winning levels) at any time during the auction.
Our primary interest is in exploring the real-

time capabilities of our approach, and, therefore, we
performed a “throughput” test for our incremental
update algorithm. In other words, given an auction
set and a large number of incoming bids, we measure
the time it takes for our incremental update algorithm
to have the ValueLevel and LastWinBid data struc-
tures completely up to date after each bid. Because we
were not aware of any publicly available large-scale
(i.e., with tens of thousands or more bids) real-life
bidding data sets, we have generated such data sets
ourselves using (a) our own ad hoc random bid gen-
erator and (b) the Combinatorial Auction Test Suite
(CATS) by Leyton-Brown et al. (2000), which has been
used previously in combinatorial auctions literature
for testing and benchmarking winner determination
algorithms.
Table 4 presents the “throughput” test for our

incremental update algorithm for the set of 500,000
randomly generated bids using our own ad hoc bid
generator. The bids were generated using several sim-
ple schemes:
• [Random span, random value] For each bid in a

data set, both the bid span and bid value were gen-
erated independently, i.e., both entities were picked
uniformly at random from a fixed range of values

Table 4 Total Incremental Update Time to Handle 500,000 Bids
(in Seconds)

Bid generation scheme

Dynamic span Dynamic span
Random span Random span (with p= 1/2) (with p= 1/3)

Auction and random and proportional and proportional and proportional
size value value value value

24 379�6535 893�1401 210�2533 196�7459
20 23�4679 74�1205 11�6509 11�3079
16 1�0362 1�6946 1�0762 1�0368
12 0�5669 0�5763 0�5668 0�5660
8 0�5448 0�5472 0�5508 0�5205
4 0�5443 0�5461 0�5501 0�5682

Adomavicius and Gupta: Toward Comprehensive Real-Time Bidder Support in Iterative Combinatorial Auctions
Information Systems Research 16(2), pp. 169–185, © 2005 INFORMS 179

independently of each other and of the previous bids
in a data set;
• [Random span, proportional value] For each bid in

a data set, the bid span was generated at random;
however, the bid value was proportional to the size
of the span, i.e., larger bid values were generated for
larger itemsets;
• [Dynamic span �p = 1/2 and p = 1/3�, proportional

value] For each bid in a data set, the bid span was
generated dynamically by choosing an item at ran-
dom and adding further items to it with “stopping”
probability p (we considered cases where p= 1/2 and
p= 1/3). In other words, in the p= 1/2 case, on aver-
age, 50% of the bids have single-item spans (i.e., we
stopped after one item), 25% of the bids have two-
item spans, 12.5% of the bids three-item spans, etc.
Moreover, the bid value was generated to be propor-
tional to the bid span. Clearly, the bid spans created
in the p = 1/3 case tended to be larger than in case
p= 1/2.
As Table 4 shows, even in the worst case our auc-

tion algorithm needed less than 15 minutes to han-
dle 500,000 bids (or less than 1.79 milliseconds per
bid, on average), while at the same time having to
fully update all data structures after every one of the
500,000 bids that happened to be live at the time.
Note that because in the above experiment we gen-

erated bids in an ad hoc manner (as described ear-
lier), only a small portion of the 500,000 bids are live
upon being placed. It is one of the reasons for such
effective performance, because, as discussed earlier,
it only takes a constant time (i.e., one array lookup)
to make sure whether an incoming bid is dead, in
which case no update is needed and the bid is simply
discarded. In our experiments, this deadness check
was always performed in <0	01 milliseconds (i.e.,
0.003–0.006 ms for 24-item auctions, faster for smaller
auctions). Therefore, having the comprehensive and
up-to-date auction information (such as deadness lev-
els) readily available at every state of the auction can
actually facilitate better real-time performance.
One possible criticism of the above experiment

could be that the bidding test sets are generated
in an ad hoc manner and they are not representa-
tive of real-life auction dynamics. Therefore, we have
also performed a similar “throughput” experiment
using the bid sets generated by CATS 2.0 software.

CATS software uses a suite of distribution families
to generate realistic, economically motivated combi-
natorial bids that are consistent with some real-world
domains (Leyton-Brown et al. 2000). For example,
the paths distribution can be used to model bidding
behavior for auctions involving truck routes, natu-
ral gas pipeline networks, network bandwidth alloca-
tion, or the use of railway tracks. Similarly, the regions
distribution can be used to model bidding behavior
for auctions involving real estate, drilling rights, or
radio spectrum. Given a combinatorial auction of size
N = 24, we used CATS software to generate 30 bid-
ding scenarios of approximately 2,000 bids each for
every available distribution (using default distribution
parameters). Thus, we had about ≈60�000 bids for
each distribution. As expected, CATS software gen-
erated a much smaller portion of dead bids as com-
pared to our ad hoc bid-generating scheme. However,
the average incremental update time per bid was still
only between 19–47 milliseconds. Even in the “per-
fect information” scenario, i.e., when we looked only
at live bids, the average incremental update time per
bid was between 107–644 milliseconds. Table 5 sum-
marizes the results from this experiment.
Table 6 describes the relationship between the auc-

tion size, the span size of an incoming bid, and
the time it takes to incrementally update the data
structures after the new bid is placed. Each number
presented in the table is an average of incremental
update time for 100 live bids with a given span. Here
we used only live bids, because, as discussed earlier,
dead bids do not incur any updates. As reflected in
Table 6, even for the largest auction the incremental

Table 5 Incremental Update for 60,000 “Realistic” Bids Generated
Using CATS Software for Combinatorial Auctions of Size
N = 24

Time (milliseconds)
Total number

Distribution of bids Per bid Per live bid

arbitrary 60,051 33.295 107.494
arbitrary-npv 60,078 29.079 113.509
arbitrary-upv 60,055 35.195 107.648
matching 60,087 47.195 378.059
paths 60,026 30.349 644.410
regions 60,059 20.015 187.477
regions-npv 60,077 19.296 199.354
regions-upv 60,080 20.904 169.926
scheduling 60,268 43.029 231.296

Adomavicius and Gupta: Toward Comprehensive Real-Time Bidder Support in Iterative Combinatorial Auctions
180 Information Systems Research 16(2), pp. 169–185, © 2005 INFORMS

Table 6 Average Incremental Update Time for “Realistic” Live Bids Generated Using CATS Software
(in Milliseconds)

Auction size �N�
Bid span
size �s� 24 23 22 21 20 18 16 14 12

1 832�812 421�530 220�249 104�486 52�083 13�456 2.748 0.573 0.143
2 449�981 216�426 112�435 58�350 28�511 7�281 1.443 0.304 0.076
3 257�651 126�297 58�559 31�412 15�549 4�131 0.800 0.167 0.043
4 128�038 66�430 32�859 17�147 8�973 2�143 0.413 0.088 0.022
5 71�041 35�719 18�521 9�017 4�845 1�151 0.213 0.045 0.012
6 36�905 19�754 9�319 5�117 2�570 0�591 0.111 0.025 ∗∗∗

7 20�149 10�497 5�224 2�541 1�305 0�313 0.061 0.015 ∗∗∗

8 11�137 5�430 2�825 1�472 0�709 0�161 0.031 ∗∗∗ ∗∗∗

∗∗∗ Less than 10 microseconds.

update times in worst cases (i.e., for single-item bids6)
were under 1 second.
Furthermore, let T �N� s� be the time needed to

update the state of the auction (of size N) after a new
live bid (with span of size s) arrives. Then, based on
the empirical results in Table 6, note that T �N� s� ≈
2 ·T �N� s+1� and T �N� s�≈ 2 · T �N − 1� s�. This is con-
sistent with the theoretical computational complexity
estimation discussed in §3.3, i.e., T �N� s� = O�2N−s�.
This implies that increasing a bid span by one item
would reduce the average incremental update time
approximately by a factor of 2. Therefore, restricting
the bid-span size (from below) is one of the possi-
ble heuristics that the auctioneer could use toward
the end of the auction (when the bidding activity is
typically the most intense) to increase the through-
put of the proposed infrastructure, if needed. Obvi-
ously, reducing the auction size by one item would
also reduce the average incremental update time
approximately by a factor of 2. Also note that the
proposed incremental update algorithm is straightfor-
wardly parallelizable using the n-processor shared-
memory model (i.e., by allocating the �1/n�th share
of the affected subauctions to each of the n pro-
cessors), which would allow further speeding up
of the update of subauction information after each
bid. While such parallelization would increase real-
time capabilities of the auction, the ability to handle

6 As explained in §3.3, live bids with smaller spans incur greater
computational costs during the incremental update, because such
bids belong to (and can potentially affect) a larger number of sub-
auctions. As a result, live single-item bids represent the worst-case
scenario for the incremental update algorithm.

more items would not be affected because the storage
requirements would stay the same (i.e., each proces-
sor must have access to entire arrays).
To illustrate the fundamental differences and com-

parative strengths/weaknesses of our proposed ap-
proach, we compare it with the optimal winner deter-
mination approach by Sandholm (2002). However, as
mentioned earlier, it should be kept in mind that
most prior research, including Sandholm (2002), has
focused mainly on one-time winner determination
algorithms (i.e., determining the winning bids after
the auction is closed) that were not designed to pro-
vide any additional capabilities, such as providing
winning and deadness levels for any possible bid in
real time at any state of the auction.
The heuristic algorithm proposed by Sandholm

(2002) uses a tree data structure for storing all
submitted bids and employs the branch-and-bound
technique combined with an iterative deepening A∗

(IDA∗) search strategy (Korf 1985) and several tree
preprocessing heuristics. The algorithm achieves good
computational performance by exploiting the fact that
the bid space is likely to be sparse in many situa-
tions, i.e., that the bidders will only make bids on
relatively few itemsets (out of 2N − 1 possible item-
sets). As reported in Sandholm (2002), the worst-case
computational complexity for each IDA∗ iteration is
O�k̃ · Ñ 2 · �k̃/Ñ �Ñ �, where Ñ �Ñ ≤ N� is the number
of items and k̃ �k̃ ≤ k� is the number of bids, respec-
tively, that needed to be updated during this iteration.
While it is difficult to obtain the precise estimations
of Ñ and k̃ (these values depend on the specifics of
the underlying data and can be very different for dif-
ferent bid sets), in the worst case the algorithm is

Adomavicius and Gupta: Toward Comprehensive Real-Time Bidder Support in Iterative Combinatorial Auctions
Information Systems Research 16(2), pp. 169–185, © 2005 INFORMS 181

exponential in the number of items �N � and polyno-
mial in the number of bids �k�, as acknowledged in
Sandholm (2002).
As mentioned earlier, the complexity of our algo-

rithm is O�2N−s� for each live bid on s number of
items, or, more generally, it has a worst-case complex-
ity of O�k ·2N � in an auction with k bids. If we want to
compare the two algorithms simply as winner deter-
mination algorithms (although our algorithm pro-
vides much more information along the way), by
looking at the respective complexity results we can
see that they differ significantly when the number of
bids increases. The worst-case computational time of
our approach grows linearly in the number of bids,
while the algorithm by Sandholm (2002) is polyno-
mial in the number of bids with a possibly significant
degree �Ñ �. Obviously, the latter algorithm should be
fairly efficient in some real-life scenarios where the
number of bids is relatively small7 (measured, say, in
hundreds), especially because Ñ ≤N and k̃≤ k. How-
ever, in auctions where the number of bids is large,
our proposed approach may be more effective.
More importantly, the goal of this research was to

provide the comprehensive real-time support to auc-
tion participants. Therefore, it would be useful to
compare the Sandholm (2002) algorithm and our pro-
posed approach in terms of their capabilities of pro-
viding important auction information in real time.
While none of the existing algorithms are designed to
provide deadness and winning levels for each poten-
tial bid, we can at least compare our approach with
the algorithm by Sandholm (2002) in terms of their
ability to provide information about winning bids at
any state of the auction, i.e., after each submitted bid.
As mentioned before, the complexity of our incremen-
tal algorithm is O�2N−s� for any live bid on s num-
ber of items, regardless of whether it is the very first
bid in an auction or the thousandth, as illustrated in
Table 7. We can also obtain the winning bid combi-
nation at each auction state by running the Sandholm
algorithm not just at the very end of the auction,
but after each submitted bid. Again, the computa-
tional complexity of such an algorithm at each auc-
tion state would be O�k̃ · Ñ 2 · �k̃/Ñ �Ñ �. Because the

7 Which, as mentioned in Sandholm (2002), was an explicit assump-
tion made when designing this algorithm.

Table 7 Total Incremental Update Time (in Seconds) for Live
Random 3-Item Bids with Uniformly Distributed Values
Generated Using CATS Software (for a 25-Item Combinatorial
Auction)

Total Per bid Total Per bid
Number update time update time Number update time update time
of bids (seconds) (seconds) of bids (seconds) (seconds)

100 44�864 0.449 600 240.609 0.401
200 80�944 0.405 700 275.592 0.394
300 123�291 0.411 800 312.708 0.391
400 164�129 0.410 900 351.113 0.390
500 201�628 0.403 1�000 387.437 0.387

complexity of this algorithm crucially depends on the
number of bids submitted so far, after a certain num-
ber of bids8 it will not be possible to keep recom-
puting the winning bids in real time. The multitude
of experimental results in Sandholm (2002) confirms
this, i.e., the winner determination time increases dra-
matically as the number of bids increases. Therefore,
while we would expect the Sandholm winner deter-
mination algorithm to outperform our incremental
update algorithm initially, eventually it will no longer
be able to outperform our constant-per-bid-update
time, as illustrated in Table 7. In this table, for the
purposes of illustration we used one of the bid dis-
tributions that was also used in Sandholm (2002).
More specifically, using the abovementioned CATS
software, we generated bid sets of various sizes for
a 25-item combinatorial auction, where all bids were
three-item bids with values randomly drawn from a
specified interval. Note that the incremental update
for our approach was around 0.4 seconds for any bid.
The Sandholm (2002) winner determination algorithm
for this bid distribution takes less than 0.1 seconds
to compute the winning combination (without dead-
ness or winning levels) for 25 bids; however, the run-
ning time grows rapidly in the number of bids, rising
to about 0.6 seconds for 100 bids.9 Other researchers,
such as Xia et al. (2005), have developed tighter
bounds than Sandholm’s (2002) heuristics using inno-
vative linear programming formulations, and have
shown that for some problems their bounds provide

8 Naturally, the exact number depends on the specifics of the sub-
mitted bids.
9 These results are presented in Sandholm (2002) and have been
obtained on a nearly identical machine, i.e., 450 MHz Sun Ultra 80
with 1 GB of RAM.

Adomavicius and Gupta: Toward Comprehensive Real-Time Bidder Support in Iterative Combinatorial Auctions
182 Information Systems Research 16(2), pp. 169–185, © 2005 INFORMS

a much faster solution as compared to Sandholm’s
approach. However, because the worst case for these
algorithms is still bounded by the branch-and-bound
technique, the comparative strengths and weaknesses
of our approach remain the same. In other words, our
approach is ideally suited for real-time comprehen-
sive bidder support at each auction state, especially
when the number of bids is expected to be substantial,
while one-time winner determination problems for a
small number of bids often can be solved efficiently
by branch-and-bound techniques.
We would also like to briefly comment on the com-

parison between our approach and other iterative com-
binatorial auction approaches, such as iBundle (Parkes
1999) and the proxy auction approach (Ausubel et al.
2005). The essential difference between the latter
approaches and our approach is that these approaches
focus on developing discrete rounds of bidding (that
are imposed upon bidders); at the end of each round
the winner determination problem is solved and new
winners are announced. Parkes (1999) provides spe-
cific prices for bundles in each round, while Ausubel
et al. (2005) force bidders to bid a single bid to a
proxy agent, and then an iterative auction is run using
a small bid increment in each round. Our approach
allows for a natural and continuous auction without
any bidder restrictions and provides a much richer
set of information to bidders. However, it can also be
used as a winner determination mechanism with the
restrictions of iBundle or proxy auctions with original
convergence properties. While we do not place any
assumptions on bidder behavior, such as myopic best
response (Parkes 1999), the impact of improved infor-
mation on bidder behavior is an interesting research
question; we intend to pursue this using experimental
economics methodologies in the future.
To summarize, the strength of our approach is that,

as long as memory is available to accommodate the
auction information data arrays, it can handle arbi-
trarily many bids while providing the bidders with
comprehensive real-time feedback at every auction
state. In addition, our approach has very predictable
behavior because the incremental update time can be
computed in advance with certainty, which is a use-
ful feature to have in real-time environments. There-
fore, our approach can be directly used to design new
mercantile processes for selling combinations of items

on commercial B2C and C2C sites where the number
of items is typically small.

5. Conclusions and Future Work
In this paper, we develop new theoretical insights and
structural properties of the bidding dynamics in com-
binatorial auctions. We define new metrics of interest
for the bidders, such as deadness and winning levels
of bids. We develop theoretical properties of these
metrics and their relationships with winning bids
and winner determination. Our theoretical results are
based on breaking the problem down by using the
concept of subauction to quickly identify the bids and
allocation that are affected by each new bid. We also
develop efficient data structures and algorithms to
test the effectiveness of our theoretical results and
to explore the feasibility of real-time bidder support.
Our implementation essentially reduces the bidder
queries to constant-time operations that can be per-
formed with at most a couple of array lookups, mak-
ing the information-gathering task very efficient and
fast. The more complex task of updating the data
structures (i.e., on the arrival of a new live bid) can
also be conducted in milliseconds for the auction sizes
that were tested. Due to the relative lack of access
to real-world combinatorial auction data, we test the
computational performance of our algorithm by using
the CATS package provided by Leyton-Brown et al.
(2000), which simulates real-world difficult data sce-
narios. We also test the algorithm using randomly
generated data. All the experiments indicate that our
implementation can provide real-time bidder support
for moderate-sized auctions.
We would like to emphasize that the results of the

paper follow from the fundamental theoretical anal-
ysis of bidding dynamics in combinatorial auctions,
which has been largely ignored in the research liter-
ature. As this paper demonstrates, such a systematic
approach can lead to significant practical improve-
ments, such as the ability to provide real-time bidder
support.
Our approach also has significant implications for

business implementations in the domain of business-
to-customer (B2C) and customer-to-customer (C2C)
online auctions. One of the primary characteristics
of most online auction mechanisms is that they
are iterative multiround ascending (or descending)
mechanisms. A basic requirement for generating

Adomavicius and Gupta: Toward Comprehensive Real-Time Bidder Support in Iterative Combinatorial Auctions
Information Systems Research 16(2), pp. 169–185, © 2005 INFORMS 183

bidder participation in such auctions is the availabil-
ity of information regarding the current state of the
auction. For example, one of the key pieces of infor-
mation is the minimum bid required to be winning the
auction at a given point in time. While the online auc-
tioneers have implemented many different variations
of classical single-item (although some have multiple
units) auctions, there are no implementations of iter-
ative combinatorial auctions to sell multiple items to
multiple bidders. We conjecture that one of the main
reasons for nonavailability of iterative combinatorial
auctions as a mechanism has to do with a lack of abil-
ity to provide the basic auction state information to
bidders in real time. Thus, we believe our research
can facilitate the introduction of a new class of auction
mechanisms for B2C and C2C auctions.
Some areas of future research include exploration

of special problem structures and support for XOR
bids, i.e., where a bidder may be interested in one
of several possible itemsets. Note, however, that XOR
bids are more of a concern in sealed-bid combinato-
rial auctions where bidders cannot evaluate the fate
of their bids themselves. In an environment with real-
time information (as proposed in this paper), bidders
can themselves evaluate all the itemsets that are of
interest to them and place the bids on the itemset that
ranks the highest based on their respective objective
functions.
Finally, an NP-hard problem clearly cannot be

solved efficiently without any limitations. We ap-
proach the problem from the perspective of the num-
ber of bids, i.e., because the bids can be handled very
efficiently, we can support any number of bids dur-
ing an auction. However, the number of items is lim-
ited to 25–30—although it is still a large improvement
over the previously known complete enumeration
approaches. In addition, as the technology improves
in terms of memory and processing speed, we should
see an improvement in the number of items as well. A
key aspect of our approach is the use of subauctions to
update the auctionwide information. This artifact can
be exploited to create parallel algorithms, increasing
the current limitation to a potentially larger number,
while keeping the overall response time reasonable.

Acknowledgments
Alok Gupta’s research is supported by NSF CAREER Grant
IIS-0301239, but does not necessarily reflect the views of

the NSF. The authors thank the workshop participants at
WITS-03, Seattle, and Revolutionary Strategies and Tactics
in Research Design and Data Collection for E-Business Man-
agement Research at ICEC-03, Pittsburgh, for their valuable
comments and suggestions.

Appendix A. Proofs of Theoretical Results

Theorem 1. �∀X � S�bk+1�� �WINk+1�X�=WINk�X��.

Proof. Assume X � S�bk+1�. Then we have �bk+1 �
Bk+1�X�� ⇒ �Bk�X� = Bk+1�X�� ⇒ ��k�X� = �k+1�X��. Based
on this and the definition of WINk+1�X�, we immedi-
ately have that WINk+1�X�=max≺�k+1�X�=max≺�k�X�=
WINk�X�. �

Theorem 2. �∀X⊇S�bk+1�� �WINk+1�X�=max≺�WINk�X��
�bk+1∪WINk�X\S�bk+1����.
Proof. Assume X ⊇ S�bk+1�. Let C1 and C2 be two subsets

of �k+1�X� that are defined as follows: C1 = �C ∈ �k+1�X� �
bk+1 ∈ C, C2 = �C ∈ �k+1�X� � bk+1 � C. Clearly, C1 ∩ C2 =�
and C1 ∪C2 =�k+1�X�. Therefore,

WINk+1�X� = max≺�k+1�X�=max≺�C1 ∪C2�
= max≺

[
max≺C1�max≺C2

]
	

Because C2 = �C ∈�k+1�X� � bk+1 � C= �C ∈�k�X�=�k�X�,
we derive max≺C2 as follows:

max≺C2 =max≺�k�X�=WINk�X�	

Furthermore, we have defined C1 so that �∀C ∈ C1�
�bk+1 ∈C�. Based on this, max≺C1 is
max≺C1 = max≺�C∈�k+1�X� �bk+1∈C

= �bk+1∪max≺�C\�bk+1 �C∈�k+1�X��bk+1∈C
= �bk+1∪max≺�C �C∈�k�X��S�C�∩S�bk+1�=�
= �bk+1∪max≺�C∈�k�X� �S�C�⊆X\S�bk+1�
= �bk+1∪max≺�k�X\S�bk+1��
= �bk+1∪WINk�X\S�bk+1��	

Hence, we have that WINk+1�X� =max≺�WINk�X�� �bk+1 ∪
WINk�X\S�bk+1���. �

Lemma 1. For any auction state k and itemsets X, Y , the
following statements are true:
1. VLk�X�≤ VLk+1�X�;
2. �X ⊆ Y �⇒ �VLk�X�≤ VLk�Y ��;
3. �X ∩Y =��⇒ �VLk�X�+VLk�Y �≤ VLk�X ∪Y ��.
Proof.
1. By definition, VLk�X� = v�WINk�X�� = v�max≺�k�X��

= maxC∈�k�X� v�C�. Similarly, VLk+1�X� = maxC∈�k+1�X� v�C�.
Because �k�X�⊆�k+1�X�, we have VLk�X�≤ VLk+1�X�.

Adomavicius and Gupta: Toward Comprehensive Real-Time Bidder Support in Iterative Combinatorial Auctions
184 Information Systems Research 16(2), pp. 169–185, © 2005 INFORMS

2. Similarly to (1), VLk�X�=maxC∈�k�X� v�C� and VLk�Y �=maxC∈�k�Y � v�C�. Because X ⊆ Y , we have that VLk�X� ≤
VLk�Y �.
3. X ∩ Y = � ⇒ S�WINk�X�� ∩ S�WINk�Y �� = � ⇒

�WINk�X� ∪ WINk�Y �� ∈ �k�X ∪ Y � ⇒ v�WINk�X� ∪
WINk�Y �� ≤ v�max≺�k�X ∪ Y �� ⇒ VLk�X� + VLk�Y � ≤
VLk�X ∪Y �. �

Theorem 3. Given auction state k and bid b ∈ Bk such that
S�b�=X, we have: b ∈ LIVEk⇔ b ∈WINk�X�	

Proof. ⇒ Assuming b ∈ LIVEk, by definition we have
that ∃Bl ⊇ Bk such that b ∈ WINl. Suppose otherwise, b �
WINk�X�, and therefore, �b ≺ WINk�X�. Let W be the
following bid combination: W = �WINl\�b� ∪ WINk�X�.
Since �WINl\�b� ∩ WINk�X� = �, W is a valid bid com-
bination, i.e., W ∈ �l. Furthermore, the �b ≺ WINk�X�
order on bid combinations implies that �b ∪ �WINl\�b� ≺
WINk�X� ∪ �WINl\�b�. Hence, we have WINl ≺ W , where
W ∈ �l. Therefore, WINl cannot be a winning combina-
tion at stage l—a contradiction. ⇐ Assuming b ∈WINk�X�,
we have that �b =WINk�X� and, therefore, v�b� = VLk�X�.
Consider auction state �k + 1� and choose a new bid bk+1
such that S�bk+1� = �\X and v�bk+1� > VLk��� − VLk�X�.
We can rewrite the previous inequality as: v�WINk���� <
v�bk+1� + v�WINk��\S�bk+1���. By directly applying The-
orem 2, we then have that WINk+1 = �bk+1 ∪ WINk�X�.
Because b ∈WINk�X�, we have that b ∈ WINk+1. Then, by
definition, b ∈ LIVEk. �

Corollary 3a. LIVEk =
⋃
X⊆� WINk�X�.

Proof. Suppose b ∈ LIVEk. From Theorem 3 we have
that b ∈ WINk�S�b��, and, since S�b� ⊆ � , we have b ∈⋃
X⊆� WINk�X�. Conversely, if b ∈

⋃
X⊆� WINk�X�, then there

must exist subauction X, X ⊇ S�b�, such that b ∈WINk�X�.
From Lemma 3, we have that b ∈WINk�S�b��. Furthermore,
by applying Theorem 3 we get b ∈ LIVEk. �

Corollary 3b. Given auction state k and new bid bk+1, such
that S�bk+1� = X, the following is true: bk+1 ∈ DEADk+1 ⇔
v�bk+1�≤ VLk�X�.
Proof. ⇒ If bk+1 ∈ DEADk+1, then from Theorem 3

we have that bk+1 � WINk+1�X� and, therefore (based on
Theorem 2), WINk+1�X� = WINk�X�. Consequently, bk+1 ≺
WINk+1�X�, which implies v�bk+1� ≤ VLk+1�X� = VLk�X�.
⇐ Conversely, if v�bk+1� ≤ VLk�X�, we have that bk+1 ≺
WINk�X� because WINk�X� precedes bk+1 chronologically.
Therefore, based on Theorem 2, bk+1 �WINk+1�X� and, from
Theorem 3, bk+1 ∈DEADk+1. �

Theorem 4. Given auction state k and new bid bk+1, such
that S�bk+1� = X: bk+1 ∈ WINk+1 ⇔ v�bk+1� > VLk��� −
VLk��\X�.
Proof. From Theorem 2 we have: bk+1 ∈WINk+1 if and

only if WINk ≺ �bk+1∪WINk��\X�. Based on the definition
of strict total order ≺ and taking into account that combina-
tion WINk chronologically precedes bid combination �bk+1∪
WINk��\X�, we have that VLk��� < v�bk+1�+VLk��\X�. �

Theorem 5. For any auction state k and itemsets X, Y , the
following statements are true:

1. DLk�X�≤WLk�X�;
2. DLk���=WLk���;
3. WLk�X�=DLk���−DLk��\X�;
4. DLk�X�=WLk���−WLk��\X�;
5. DLk�X�≤DLk+1�X�;
6. X ⊆ Y ⇒DLk�X�≤DLk�Y �;
7. X ⊆ Y ⇒WLk�X�≤WLk�Y �;
8. X ∩Y =�⇒DLk�X ∪Y �≥DLk�X�+DLk�Y �;
9. b ∈ LIVEk, s.t. S�b�=X⇒DLk�X�= v�b�;
10. b ∈WINk, s.t. S�b�=X⇒WLk�X�= v�b�.
Proof.
1. Based on Lemma 1, VLk��� ≥ VLk��\X� + VLk�X�.

Hence, VLk�X�≤ VLk���− VLk��\X� and, from definitions
of DLk�X� and WLk�X�, we have DLk�X�≤WLk�X�.
2. By definition, DLk��� = VLk��� and WLk��� =

VLk���−VLk���= VLk���.
3. Immediately from definitions, i.e., WLk�X�= VLk���−

VLk��\X�=DLk���−DLk��\X�.
4. Immediately from (3), only replace X by �\X and

DLk��� by WLk��� (based on 2).
5. From Lemma 1, VLk�X�≤ VLk+1�X�. Hence, DLk�X�≤

DLk+1�X�.
6. From Lemma 1, X ⊆ Y ⇒ VLk�X� ≤ VLk�Y �. Hence,

DLk�X�≤DLk�Y �.
7. Similarly to (6), X ⊆ Y ⇒ �\Y ⊆ �\X⇒ VLk��\Y � ≤

VLk��\X�⇒ VLk��� − VLk��\X� ≤ VLk��� − VLk��\Y �⇒
WLk�X�≤WLk�Y �.
8. From Lemma 1, X ∩ Y = �⇒ VLk�X ∪ Y � ≥ VLk�X�+

VLk�Y �⇒DLk�X ∪Y �≥DLk�X�+DLk�Y �.
9. From Theorem 3 we have that b ∈WINk�X� or, in other

words, WINk�X�= �b. Hence, v�b�= VLk�X� and, therefore,
v�b�=DLk�X�.
10. b ∈ WINk ⇒ WINk = �b ∪ WINk��\X� ⇒ VLk��� =

v�b� + VLk��\X�. Hence, v�b� = VLk��� − VLk��\X� and,
therefore, v�b�=WLk�X�. �

Lemma 2. In a combinatorial auction of size N :
1. The number of live bids at any auction state cannot be

greater than 2N − 1;
2. 2N − 1 is a tight upper bound, i.e., it is possible to have an

auction state where there are exactly 2N − 1 live bids.

Proof.
(1) A set of size N can have 2N − 1 different nonempty

subsets. Therefore, in a combinatorial auction of size N
there can be 2N − 1 different bid spans (corresponding to
each nonempty subset). Obviously, there can be only one
live bid with given span X. (If there are multiple bids sub-
mitted with the same span, only the one with the largest
value can possibly be a live bid. If there are several bids
with the same span and the same largest value, only the ear-

Adomavicius and Gupta: Toward Comprehensive Real-Time Bidder Support in Iterative Combinatorial Auctions
Information Systems Research 16(2), pp. 169–185, © 2005 INFORMS 185

liest of them can possibly be a live bid.) Therefore, �LIVEk� ≤
2N − 1 for any auction state k.
(2) Suppose that exactly one bid has been submitted on

each possible itemset (hence, there are 2N − 1 bids), where
the value of the bid on itemset X was set as 2 · �X� − 1.
Then the value of any bid combination C can be expressed
as: v�C�=∑

b∈C v�b�=
∑
b∈C 2 · �S�b�� − 1= 2 · �S�C�� − �C�. By

maximizing 2 · �S�C�� − �C�, we derive that the current win-
ning combination consists of a single bid on the whole auc-
tion set and has value 2 · N − 1. It is easy to see that all
these 2N − 1 bids are live. Suppose, otherwise, that there
exists bid b (where S�b� = X and v�b� = 2 · �X� − 1� that is
dead. Choose a brand new bid b′, such that S�b′� = �\X
and v�b′� > 2 ·N − 2 · �X�. Then, bid combination C ′ = �b� b′
is a new winning combination, because its value v�C� =
v�b�+ v�b′� > 2 · �X� − 1+ 2 ·N − 2 · �X� = 2 ·N − 1. Because
b ∈C ′, by definition b is live—a contradiction. �

Lemma 3. For any bid b ∈ Bk and any subauction X ⊇ S�b�:
b ∈WINk�X�⇒ b ∈WINk�S�b��.10

Proof. Assume that X �= S�b� (the case X = S�b� is
straightforward). Suppose, otherwise, that b � WINk�S�b��
and, therefore, �b ≺ WINk�S�b��. Consider W = �WINk�X�\
�b� ∪ WINk�S�b��. Because S�WINk�S�b��� ⊆ S�b�, W is a
valid bid combination for subauction X, i.e., W ∈ �k�X�.
Furthermore, �b ≺ WINk�S�b�� ⇒ �b ∪ �WINk�X�\�b� ≺
WINk�S�b�� ∪ �WINk�X�\�b� ⇒ WINk�X� ≺ W , where W ∈
�k�X�. Hence,WINk�X� is not a winning bid combination—a
contradiction. �

References
Ausubel, L., P. Milgrom. 2002. Ascending auctions with pack-

age bidding. Frontiers Theoret. Econom. 1(1). Available from
The Berkeley Electronic Press. http://www.bepress.com/bejte/
frontiers/vol1/iss1/art1/.

Ausubel, L., P. Cramton, P. Milgrom. 2006. The clock-proxy auc-
tion: A practical combinatorial auction design. P. Cramton,
Y. Shoham, R. Steinberg, eds. Combinatorial Auctions, ch. 5.
Forthcoming, MIT Press, Boston, MA. www.cramton.umd.
edu/papers2000-2004/ausubel-cramton-milgrom-the-clock-
proxy-auction.pdf.

10 This lemma is only used in the proof of Corollary 3a.

Banks, J. S., J. O. Ledyard, D. Porter. 1989. Allocating uncertain and
unresponsive resources: An experimental approach. RAND J.
Econom. 20(1) 1–25.

Bitner, J., G. Ehrlich, E. Reingold. 1976. Efficient generation of the
binary reflected gray code and its applications. Comm. ACM
19(9) 517–521.

Brewer, P. J., C. R. Plott. 1996. A binary conflict ascending price
(BICAP) mechanism for the decentralized allocation of the
right to use railroad tracks. Internat. J. Indust. Organ. 14(6)
857–886.

de Vries, S., R. Vohra. 2003. Combinatorial auctions: A survey.
INFORMS J. Comput. 15(3) 284–309.

Hevner, A., S. March, J. Park, S. Ram. 2004. Design science in infor-
mation systems research. MIS Quart. 21(1) 75–105.

Hudson, B., T. Sandholm. 2002. Effectiveness of preference elic-
itation in combinatorial auctions. AAMAS-02 Workshop on
Agent-Mediated Electronic Commerce. http://www-2.cs.cmu.
edu/∼sandholm/elicitation.CMU-CS-02-124.pdf.

Kelly, F., R. Steinberg. 2000. A combinatorial auction with multiple
winners for universal service. Management Sci. 46(4) 586–596.

Korf, R. E. 1985. Depth-first iterative-deepening: An optimal admis-
sible tree search. Artificial Intelligence 27(1) 97–109.

Leyton-Brown, K., M. Pearson, Y. Shoham. 2000. Towards a univer-
sal test suite for combinatorial auction algorithms. Proc. ACM
Conf. Electronic Commerce, ACM Press, New York.

Nisan, N. 2000. Bidding and allocation in combinatorial auctions.
Proc. ACM Conf. Electronic Commerce, ACM Press, New York.
http://www. cs.huji.ac.il/∼noam/auctions.pdf.

Parkes, D. C. 1999. iBundle: An efficient ascending price bun-
dle auction. Proc. ACM Conf. Electronic Commerce, ACM Press,
New York, 148–157.

Pekec, A., M. H. Rothkopf. 2003. Combinatorial auction design.
Management Sci. 49(11) 1485–1503.

Rothkopf, M. H., A. Pekec, R. M. Harstad. 1998. Computation-
ally manageable combinatorial auctions. Management Sci. 44(8)
1131–1147.

Sandholm, T. 1999. An algorithm for optimal winner determination
in combinatorial auctions. Proc. IJCAI-99. Morgan Kaufman,
Stockholm, Sweden, 542–547.

Sandholm, T. 2002. Algorithm for optimal winner determination in
combinatorial auctions. Artificial Intelligence 135 1–54.

Tennenholtz, M. 2000. Some tractable combinatorial auctions. Proc.
17th National Conf. Artificial Intelligence. AAAI Press, Austin,
TX, 98–103.

Xia, M., J. Stallaert, A. Whinston. 2005. Solving the combinatorial
double auction problem. Eur. J. Oper. Res. 164 239–251.

