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Preface

In the late 1970s, the notion that an individual with an
acquired brain injury could expect further recovery of func-
tion beyond 6 months postinjury was foreign. Treatment
was predominantly rendered for long periods in inpatient
rehabilitation facilities (IRFs) with long-term dispositions
consisting of skilled nursing facilities, psychiatric hospi-
tals, jail, the street, or home. Lengths of stay in IRFs could
be protracted, ranging up to 6 months or longer. Hospital
complications were common, and treatment often included
strong psychotropic mediation, premature surgeries for
oculomotor dysfunction and heterotopic ossification, grim
prognostication, and minimalistic allied health involve-
ment culminating in significant long-term disability.

As neuroscientists began to incorporate more inten-
sive therapeutic interventions, recognition burgeoned that
improvement was possible. Treatment techniques were
borrowed from cerebral palsy, development disability, and
stroke, and the treatment setting design became viewed
as an ecologically important contributor to treatment out-
comes. The brain was essentially a “black box” conundrum
with the best information about its function arising from
lesional observation and physiological studies that inferred
function.

Now, neuroscience has matured at a remarkable pace,
shedding far more exacting light on mechanisms of neuro-
physiology, pathophysiology of injury, neuroendocrinology,
neuroimmunology, neuroplasticity, neuropharmacology,
and neurodegenerative processes. Individuals with acquired
brain injury are treated earlier and achieve far better recov-
ery when financial support is available and uninterrupted.
Sadly, we recognize that a chief determinant of whether an
individual will receive rehabilitation services remains tied
to socioeconomic status rather than a proscribed clinical
pathway for treatment as is found in nearly all other aspects
of medicine.

The fourth edition of this text constitutes a continuation
of 20 years of coverage of traumatic brain injury and broad-
ens the discussion of acquired brain injury. Within TBI, the
paradigm shift from an injury occurring at a point in time

to a disease entity of a chronic nature is changing the dis-
cussion of diagnosis, management, treatment, and outcome
assessment. Disease specification that differentiates TBIs
by the mechanism of injury, the exact nature of the injury,
the extent of the injury, the presence of comorbidities and
their exact nature, gender, age, race, and genome is emerg-
ing as crucial. There was a time when cancer was an undif-
ferentiated disease. Disease differentiation has consequently
impacted diagnosis, treatment, and outcome.

The intended legacy of this text has always been to pro-
vide comprehensive diagnostic and treatment guidance
for professionals at all levels of practice and experience.
Earlier editions focused on the role of medical and allied
health professionals, case managers, legal professionals, and
caregivers. This edition adds the role of the neuroscientist
as an important provocateur of innovation in treatment
and chronic disease management. It is no longer sufficient
to simply treat a person to be able to eat, walk, and talk.
We must push our field and all stakeholders to maximize
recovery, minimize disability, and prevent or mitigate neu-
rodegenerative processes that contribute to the pathogen-
esis and/or acceleration of neurological diseases. This text
is intended to serve as a ready reference tool, contribute to
professional growth of its reader, stimulate innovation and
research, and promote continuing refinement of manage-
ment of the diseases of acquired brain injury.

There is no other disease that so completely and suddenly
renders competent people of all ages and walks of life vul-
nerable and unable to advocate for themselves. Of impor-
tance here is the recovery of the mind as well as the body.
The disease destroys families, careers, and life aspirations.
No other disease is referred to as “living death.” No other
disease requires the remarkable multitude of neuroscience,
medical, allied health, case management, insurance, legal,
religious, and social service professionals’ involvement and
coordination. The unprotected and neglected nature of life
for injured individuals and their families after acquired
brain injury commands our empathy, compassion, atten-
tion, and advocacy.

vii
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Bioscience indications for chronic disease
management and neuromedical interventions
following traumatic brain injury

MARK J. ASHLEY, GRACE S. GRIESBACH, DAVID L. RIPLEY, AND MATTHEW J. ASHLEY

Introduction 3
Loss of axonal integrity after TBI 4
Blood—brain barrier 5
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Cerebral inflammation is mediated by microglia 5
Microglial alterations following TBI 6
Inflammation and axonal damage 7
The dual action of microglia and cytokines 7
Mitochondria 8
Myelination 8
INTRODUCTION

Rehabilitation for acquired brain injury (ABI) has focused
largely on alleviation of physical, cognitive, communica-
tive, neurobehavioral, and psychological deficits arising
from the injury. Recently, ABI has come to be viewed as a
chronic disease and, more probably, a collection of various
diseases. Increasingly, there is concern that brain injury
may contribute to the pathogenesis of neurodegenerative
conditions as well as to acceleration of what may be geneti-
cally predisposed neurological diseases.!"!* Traumatic brain
injury (TBI) is implicated in epilepsy, stroke, brain cancer,
multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS),
Parkinson’s disease (PD), and Alzheimer’s disease (AD).
Further, hypothalamic and pituitary damage can resultin a
wide variety of neuroendocrine disorders.!¢-2!

The pathophysiology of TBI includes neurodegenera-
tive components, the temporal end points of which are
unclear.?? Injury to the brain includes not only physical
damage to structures, but also disruption of normal physi-
ological processes and disruption of the blood-brain barrier
(BBB).2*-2” We must consider the possibility that the injured
brain is no longer properly segregated from the periphery

Neuroendocrine function 9
Somatotrophic axis 10
Gonadotroph axis 12
Testosterone 12
Estrogen 12
Progesterone 13
Thyrotroph axis 14
Clinical implications and potential therapeutics 14
References 15

and inflammatory developments within the periphery.
Inflammatory processes that accompany brain injury also
impact the BBB and can reactivate long after an initial insult
to the brain.?8-30

Rehabilitation following ABI has, thus far, focused little
on neurophysiologic function as a basis for chronic interven-
tion. Currently, most pharmacological intervention during
rehabilitation addresses symptoms for epilepsy, depression,
agitation, sleep, cognition, or motor function.

Medical stability and functional outcome are dependent
on multiple pathophysiological processes beyond metabolic
alterations. This chapter addresses multiple factors that have
an influence on neuroinflammatory and neurodegenerative
processes after ABI. It is important to consider different
pathophysiological processes because they may contribute
to improving the extent and/or rate of recovery following
ABI. Further, these factors appear to be important in that
they may inhibit maximal recovery or contribute to patho-
genesis and/or progression of neurodegenerative diseases.
Development of more thoughtful subacute, postacute, and
chronic medical management approaches for ABI is nec-
essary with an eye toward furthering disability reduction,
optimizing neurophysiologic function post-ABI, preventing

3
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disease causation, and/or mitigating disease progression.
The limited regenerative capability of the brain suggests
that any additional loss of structures following ABI may
have widespread implication throughout the body.*!

LOSS OF AXONAL INTEGRITY AFTER TBI

Structural changes associated with acute and chronic TBI
logically serve as a basis for recovery and potential aging-
related conditions. It is important to appreciate the patho-
physiologic complexity and heterogeneity of TBI. As such,
consideration of the nature and type of injury to neural
structures may be important to consider. Depending on the
biomechanical insult to the brain, TBI can have predomi-
nantly focal or diffuse effects. The initial damage has meta-
bolic consequences that can be exacerbated by secondary
insults, such as hypoxic/ischemic events. All this is likely to
contribute traumatic axonal damage.

Focal damage can be expected to impact certain motor,
sensory, or cognitive functions, depending upon the neural
structures or systems involved. Diffuse axonal injury (DAI)
is recognized as a primary component of neurophysiologi-
cal dysfunction in 40% to 50% of all brain injury of trau-
matic etiology.*® DAI tends to affect specific regions of the
human brain, such as the parasagittal white matter of the
cerebral cortex, the corpus callosum, and the pontine-
mesencephalic junction adjacent to the superior cerebellar
peduncles.’* At the cellular level, direct forces of sufficient
magnitude breach the cellular membrane, initiating a cyto-
toxic, biochemical cascade of events, which impacts neu-
ronal health and function in the immediate vicinity of the
primary damage (Figure 1.1).* The damage inflicted by
this cytotoxic biochemical cascade, however, may not be
restricted to the locality of the primary site of damage and
may reach far distant cellular structures within the central
nervous system (CNS).3¢

More specifically, axolemmal permeability is induced by
trauma, resulting in a local influx of Ca?*. Cysteine prote-
ases, such as caspases and calpains, participate in cytoskel-
etal membrane degradation that occurs over time.?? One of
these cleaved proteins is spectrin. Spectrin is a major con-
stituent of the cytoskeletal membrane. Moreover, increases
in calpain lead to mitochondrial injury that result in the
release of cytochrome-C and caspase activation.

Neurofilaments are a major component in the neuro-
nal cytoskeleton. Neurofilamentary changes compromis-
ing structural support will occur in a subset of severe TBI
and are likely to contribute to the mechanical failure of
the axonal cytoskeleton.?” In turn, loss of axonal integrity
impacts protein transport and mitochondrial migration.
Mitochondria are transported from their site of biosynthesis
in the cell body to positions along the axon or terminal.38-4!

One of the mechanisms that can lead to axonal loss after
injury is Wallerian degeneration. This type of degeneration is
observed when the axon is transected and portions distal to
the injury site deteriorate. Neurofilamentary changes associ-
ated with Wallerian degeneration, however, are not immediate.
Wallerian-type axonal degeneration progresses from axo-
nal swelling, compromising axonal integrity and facilitating
its rupture. This degradation will lead the axon to draw back
toward the cell body and form an axonal bulb. Axonal degen-
eration is followed by infiltration of macrophages that can be
observed as small clusters of microglia.*? At a cellular level, this
includes residual endogenous brain peptides and small pro-
teins,*® immunoreactive astrocytes in injured areas,***> beta-
amyloid protein deposition,*® and neurofibrillary tangles.?”
These changes occur from days to months to years after injury.
Active myelin degeneration occurs as the final stage in the neu-
rodegenerative process in the first 2 years after DAL

DAL relates to axons that are lost to either apoptosis or
necrosis. Other axons, however, can be reparably injured
(traumatic axonal injury, TAI). Disruption of microtubule

Increased caspases, calpains,
cytokines, and cytochrome C.
decreased calcium homeostasis

Increased microglia activation, mitochondrial
stress, necrosis/apoptosis

1

Increased hyperphosphorylation of
tau, cytokines, and oxidative stress.
decreased neurosteroid biosynthesis
and calcium homeostasis

Figure 1.1 Summary of neurodegenerative events.

!

Increased oxidative stress, lipid
peroxidation, ROS production, APP,
intracellular amyloid-, cytokines,
and IGF-1 resistance
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structures via stretching or deformation appears recov-
erable in some cells. In these cells, axonal transport is
reversed, averting accumulation of transported proteins
and organelles, enabling the cell to recover rather than
succumb.?? Tau protein, a microtubule-associated protein
(MAP), serves to stabilize microtubule transport assem-
blies within the axon and, once destabilized, contrib-
utes to dysfunction of microtubules and destabilization
of the cytoskeletal network. Tau protein is implicated in
inflammation-dependent pathways subsequent to brain
injury vis-a-vis its hyperphosphorylation.

BLOOD-BRAIN BARRIER

The BBB is a multicellular structure that segregates the
CNS from the blood flow of the periphery. While separat-
ing the brain from peripheral circulation, the BBB enables
the delivery of oxygen and nutrients to cells in the CNS. It
participates in the elimination of toxins from the CNS and
protects the CNS from pathogens in the periphery. The BBB
along with a number of interdependent structures, such as
astrocytes, microglia, and pericytes, is often referred to as
the neurovascular unit (NVU). The failure of any one of its
interdependent structures can result in BBB disruption.*’ In
turn, the integrity of the BBB is crucial for proper neuronal
function.

The NV U is comprised of the cerebral vessel itself, formed
by endothelial cells, tight junctions, adherens junctions,
peg-socket junctions, the pericyte, basement membrane,
astrocytes, microglia, and neurons.* The NVU functions to
control the influx of molecules and ions to the brain from
the blood and efflux from the brain to the body in what is
referred to as transcytosis. Transcytosis is very slow in the
BBB in contrast to rates in other tissues. Molecular trans-
port across the BBB is dependent upon specific transporters,
and molecular size while protection of incursion of immune
cells into the CNS is brought about by low expression of leu-
kocyte adhesion molecules in endothelial cells.*® The BBB
enables these effector responses to brain infections and also
enables clearance of debris after brain tissue damage by
macrophages.>*!

Although the BBB functions at all levels of the arterial
and venous supply, some specialization exists. For example,
capillaries in close proximity to neurons provide for nutrient
transport while leukocyte management and immune modu-
lation occurs at the level of the postcapillary venule.>>

Astrocytes in the NVU regulate the BBB and provide
for transport of nutrients to neurons. Astrocytes regulate
extracellular potassium balance and manage neurotrans-
mitter clearance and recycling.** Cholesterol and the phos-
pholipid transporter molecule apolipoprotein E (APOE)
are produced by astrocytes mediating brain homeostasis-
regulating processes.>* Astrocytes also modulate the BBB’s
tight junctions by secreting sonic hedgehog (SHH) and
angiotensinogen.*>*® SHH plays a key role in brain develop-
ment and cell division. The endothelial cells express hedge-
hog receptors (Hh) and thus, SHH and Hh promote BBB

development and integrity. In addition, the Hh pathway
decreases expression of proinflammatory mediators and
adhesion and migration of leukocytes, thereby promoting
CNS immune quiescence.>®

BBB integrity is also mediated by APOE2 and APOE3
alleles with APOE3 being in highest concentration in
humans.5?*® In contrast to APOE2 and APOE3, APOE4
promotes disruption of the BBB by activating an inflamma-
tory and tight junction disruptive pathway in pericytes.”
APOE2 and APOE3 suppress this same pathway.>

The BBB is disrupted by injury to the CNS, including
TBI.23.25.27.60-62 Although influx in the BBB repairs relatively
well in juvenile animals after trauma, efflux may fail to
properly repair, resulting in accumulation of toxins, such as
reactive oxygen species (ROS), amyloid f, and other mito-
chondrial toxins behind the BBB.?* Oxidative stress result-
ing in an excess of ROS mediates BBB breakdown, which,
in turn, facilitates neuroinflammatory responses. These
responses are also implicated in ischemic stroke, epilepsy,
ALS, and MS.%-% These same conditions have been linked
to prior TBI, suggesting that perhaps chronic reinitiation of
BBB breakdown is a plausible pathogenic contributor.

Evidence exists for the presence of chronic perivascular
iron deposition (siderosis) associated with previous peri-
vascular hemorrhage in cortical, subcortical, brainstem,
and cerebellar structures.®® Primary areas of involvement
include the parasagittal white matter, the corpus callosum,
the internal capsule, and the deep gray matter. The presence
of hemoglobin-derived iron can induce formation of ROS,
causing microglia and astrocytes to become activated and
initiating a neuroinflammatory response.®? This is the basis
for motor neuron degeneration seen in ALS.

MICROGLIA

Disabilities frequently persist beyond the first weeks fol-
lowing a TBI. The pathological substrate behind these dis-
abilities is most likely due to both the effects of the initial
biomechanical insult, i.e., primary damage, and secondary
damage resulting from extracranial and intracranial events.
Pathological mechanisms initiated by TBI continue months
after the initial insult and are likely to contribute to long-
lasting neurodegeneration.?®”-70 Here, we discuss how per-
sistentinflammation canlead to chronic neurodegeneration.

Cerebral inflammation is mediated
by microglia

Inflammation in the brain is typified by microglial activa-
tion and the expression of key inflammatory mediators.
Microglia are part of the glial family of non-neuronal cells
that mediate immune responses in the CNS. They are the
resident macrophages in the CNS given their capability to
engulf particles. Microglia mediate responses to pathogens
and/or injury and provide support, synaptic pruning, and
immunological activities within the CNS.”* Microglia rou-
tinely remove live glioma cells when activated.”? Microglia
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are constantly surveying the environment by interacting
with both neurons and glia.”? Thus, their responses are
dependent on their surrounding environment. One of these
microglial responses is the capability to transform from a
resting state to an alert and reactive state. This microglial
switch occurs when the concentration of particular mol-
ecules increases, the exact nature of which requires further
study. This implies that microglial activation is respon-
sive to the level of tissue damage. Accordingly, microglial
responses are linked to alterations in BBB permeability. As
indicated above, the BBB is comprised of a vascular endo-
thelium and a blood cerebrospinal fluid barrier that control
the passage of soluble factors from circulating blood to the
brain.” Given that the BBB helps maintain the necessary
environment for proper neuronal circuit function, any per-
turbations in its permeability are likely to lead to microglial
activation.

Activated microglia will facilitate increases in markers
of inflammation as well as inflammatory mediators, such
as histocompatibility complex, CD68, and NADPH oxidase.
When microglia become “activated,” they produce inflam-
matory cytokines. These are small proteins that allow for
immune response signaling. Microglia also undergo struc-
tural changes through cytoskeletal rearrangement, altering
the pattern of receptor expression and facilitating cyto-
kine communication between cells and enabling migration
toward sites of injury or infection.”

Major proinflammatory cytokines are interleukins
(IL), interferon-y (IFN-y), and tumor necrosis factor
(TNF). These cytokines interact with microglia via sur-
face receptors and adhesion molecules and will modu-
late destructive processes, such as microglial phagocytic
performance. These destructive processes will, in turn,
lead to the recruitment of more microglia.” Cytokines
also control microglial motility, enabling microglia to
migrate to a site of injury following signals of already
activated microglia.

The phagocytic line of defense not only diminishes the
menace presented by particular particles, but it can remove
dead and damaged neurons that can compromise regional
signaling.”” Damaged or stressed cells emit signals that are
indicative of their deteriorating state.”® These signals, also
known as “eat me” signals, are detected by the surrounding
microglia.”” It should be noted that “eat me” signaling can
be reversed in stressed but viable neurons.”®

When addressing differential states of microglial
activation, it is not uncommon to note that terminology
used to describe macrophage activation (M1/M2) has
been adopted. Under this terminology, microglia under
an M1 state is associated with a defensive proinflam-
matory reaction. Thus, inflammatory cytokine produc-
tion by microglia occurs in M1 activation. In contrast,
microglia under an M2 “resting state” is associated with
an anti-inflammatory response leading to homeosta-
sis.808! Nevertheless, although microglia is functionally
quiescent during the resting state, it is still monitoring
the environment through its receptors.”*2

Microglial alterations following TBI

Following either focal or diffuse TBI, microglial upregu-
lation occurs and can be long lasting.?87°# Disruptions in
BBB integrity play a critical role in the initial neuroinflam-
matory response. BBB integrity may be compromised by
TBI.* Permeability of the BBB will allow for increased cyto-
kine infiltration to the brain. In turn, increases in cytokine
levels will lead to the induction of other cytokines,® thus
ultimately heightening microglial activation. In addition,
when the BBB is leaky, proteins and water will contribute
to vasogenic edema that, in turn, exacerbates the cytotoxic
edema, i.e., cellular swelling, that may already be taking
place. Accordingly, microglial activation is prominent at the
more focal injury sites during the acute period.®

Increased immune activity can be observed years after
the initial injury. Postmortem studies show chronic microg-
lial upregulation in the corpus callosum and frontal lobes of
humans months to years postinjury.?*#” This is in accor-
dance with animal studies showing prolonged microglial
activity after TBI.®*® Similarly, lasting increases in microg-
lial activation after TBI have been reported in a human
study utilizing positron emission tomography. This study
found that activation was most notable in subcortical and
cortical regions with apparently undamaged tissue. In con-
trast, persistent microglial activation was not significantly
observed in regions with pronounced tissue damage.*® It is
likely that the formation of glial scarring isolating the dam-
aged area could have impeded microglial activation.®

Microglia can also switch into an intermediate alert
or primed state after TBI. Microglial inflammation after
TBI has been observed to resolve within 72 hours in mice,
although a priming effect of an initial traumatic injury is
also evidenced at 1 month postinjury with exaggerated
expression of proinflammatory cytokines.®* In an alert or
primed state, the threshold to switch to an activated state
is lowered, therefore potentially leading to an exaggerated
inflammatory response when presented with an immune
challenge.”® In this instance, microglia become activated in
response to infection in the periphery where they would not
normally. This phenomenon has been described in aging
and, notably, also after TBL**? Experimental TBI studies
have indicated that microglia present a primed state dur-
ing the postacute period accompanied by an exaggerated
expression of proinflammatory cytokines associated with
neurodegeneration when presented with an immune chal-
lenge. This was observed by increased IL-1p and TNF-«
following a lipopolysaccharide challenge.®3 Microglial acti-
vation response is exaggerated to secondary or subthresh-
old stimuli. The consequence can be substantial changes in
plasticity, development or worsening of cognitive deficits,
and acceleration of neurodegeneration.” Indeed, amplified
microglial responses can negatively affect behavioral pro-
cesses” and may contribute to the prevalence of affective
and cognitive impairments after TBL7*> Accordingly, a sec-
ondary immune challenge is known to exacerbate cognitive
impairments in those that are already presenting cognitive
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decline.®®”” A potential mechanism contributing to the
exacerbation of cognitive and affective impairments follow-
ing an immune challenge after TBI can be the interaction
of cytokine infiltration from the periphery with primed
microglial responses found after injury.

Increases in cytokines are associated with sickness
behavior that is manifested as fatigue, decreased appetite,
hyperalgesia (i.e., increased sensitivity to pain), impaired
concentration, depression, and sleep disturbance.”®®’
Interestingly, the above symptoms, which are preva-
lent during infection, are also commonly observed with
depression and TBI. Moreover, cytokines appear to con-
tribute to the occurrence of depression by stimulating the
hypothalamic-pituitary axis'® and affecting the metabo-
lism of monoamines, such as serotonin and norepineph-
rine.!?-19 Accordingly, increases in cytokine production
have been associated with depression.!04105

Neuronal activation of brain regions responsive to stress
is associated with microglial activation. These brain regions
include the amygdala, prefrontal cortex, and regions within
the hippocampus.!?-11 The association between microg-
lial activation and the abovementioned regions is apparent
during periods of chronic stress because microglia mediate
neuronal adaptation after stress.!!! This is particularly con-
cerning after TBI when a heightening of the stress response
has been observed !> and may interfere with experience-
dependent plasticity.!* This is in accordance with the high
prevalence of immune dysfunction in those suffering from
mood disorders!*!!> and includes those that suffered a TBI.

Inflammation and axonal damage

As indicated above, prolonged neuroinflammation and
microglial activation result from chronic biochemical pro-
cesses initiated by TBI and contribute to late neurological
dysfunction.”® Persistent microglial activation can lead to
oxidative stress that will, in turn, contribute to the devel-
opment of progressive structural changes and long-term
functional deficits.®*!!®!"7 Chronic structural changes after
stroke and TBI are observed as axonal damage.!'®!!* This late
axonal damage is associated with the presence of microg-
lial clusters.'® Microglial activation can also contribute to
neurodegeneration through the production of free radicals,
such as nitric oxide, which impair mitochondrial func-
tion and lead to cell death.!?!-123 A self-propagating cycle
may occur as oxidative stress increases the production of
free radicals from damaged cells. Inflammatory responses
associated with increases of free radicals are also likely to
be exacerbated with aging. Microglia have a low turnover
after early development. This low turnover is compensated
by their notable longevity.'?* Given that microglia are more
likely to be in an alert or primed state during aging, their
longevity makes them sensitive to oxidative stress and
inflammatory exposure over time.”!

In vitro studies have shown that, during inflammation,
microglial stimulation by toll-like receptors (TLRs) may
impair microglial ability to distinguish between viable

and dead cells leading to excessive phagocytosis.!?>12¢ In
addition, TLR-activated microglia release oxidants that
increase neuronal phosphatidylserine exposure.7812%128
Phosphatidylserine, a neuronal “eat me” signal, can be nota-
bly upregulated and has been observed to result in axonal
loss.!?” Increases in phosphatidylserine will also contribute
to BBB disruption through multiple mechanisms, such as
activation of matrix metalloproteinases (MMPs). MMPs
disrupt proteins in the intercellular tight junctions that
seal gaps within the BBB. In addition, it is well known that
increases in cytokines such asIL-1p,IL-2, TNF-a, and IFN-y
contribute to the death of myelin-producing oligodendro-
cytes, resulting in white matter damage.!3*-132 Axonal demy-
elination not only lessens the ability to transmit signals,
but also increases axonal susceptibility to degeneration.!®
Hence, increases in cytokines have been associated with
neurodegenerative diseases, such as PD and AD.!1341%
Microglial activation is also triggered by § amyloid pro-
tein that results from the cleavage of amyloid precursor pro-
tein (APP). APP levels are increased in response to tissue
damage due to its role in synaptic formation and repair.!3
Multiple neurological diseases, such as AD, feature amy-
loids. AD-like neuropathology is frequently observed after
TBIL.'¥” In AD, microglial morphology changes are most evi-
dent in areas of high § amyloid concentration.!*® Microglial
activation in the hippocampus of AD patients correlates with
decrements in cognitive function and memory.'*® Impaired
clearance of  amyloid in AD results in impaired neuronal
signaling and microglial activation.!”” However, microg-
lial clearance of f amyloid plaques is impaired in AD0
although a direct causal linkage has yet to be substantiated.
That the onset of AD in individuals who had sustained TBI
was accelerated by about 10 years when compared to an AD
population without prior TBI has been shown.*!

The dual action of microglia and cytokines

As mentioned above, microglia are associated with both
inflammatory and anti-inflammatory responses. These are
respectively coupled with M1 and M2 stages. Microglia pro-
duce anti-inflammatory cytokines, such as IL-4 and IL-10,
during M2 activation. However, the potentially protective
effects of the M2 stage may be limited in TBI. Yml, an M2
activation marker that prevents the degradation of extracel-
lular matrix components, is upregulated for about a week
and then is undetected at 3 and 12 months. This suggests that
inflammatory markers are enduringly upregulated while
their reparative counterparts appear to become chronically
downregulated.”

Besides the production of anti-inflammatory cytokines,
microglia can also have a restorative role by facilitating
increases in neurotrophins, glutamate transporters, and
antioxidants.!2-144 Although further research is necessary
to determine how these microglial functions are affected
with TBI, there is evidence indicating that microglia may
offer protection after injury.*> Different microglial roles
may be dependent on the level of cellular damage, where
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a protective and rescue function can switch to a cleanup
and contain function. Microglia’s motility and process out-
growth is regulated by neuronal activity.!4¢!4” Thus, it is not
surprising that areas with significant tissue damage show
less microglial activity as indicated in the TBI-PET study
by Ramlackhansingh, described above. Microglial activa-
tion in areas remote to the site of injury may enhance or
promote neuronal repair.'*$1% Accordingly, nonhuman pri-
mate studies indicate that microglia in remote areas con-
tinue to release brain-derived neurotrophic factor (BDNF)
months after injury.'** BDNF has well-established effects on
neuronal survival and synaptic plasticity.!4-15!

Microglia’s monitoring capabilities allow it to have an
influence on experience-dependent plasticity through mech-
anisms such as synaptic stripping.!*> This mechanism may
occur during experience-dependent learning given that syn-
apse formation and elimination is an integral component of
learning processes.'** Although microglia-dependent synap-
tic pruning is most notable during brain development,!>41>
it is also observed in the adult brain. For example, live imag-
ing of visual cortex has shown microglial stripping of inac-
tive synapses.*® Synaptic stripping may diminish energetic
demands from weakened neurons that are metabolically
compromised.

In addition, there is evidence that microglia may enhance
neurogenesis. Although neurogenesis is most prevalent
during development, it has also been observed in the adult
brain!*”15% and after brain injury.!®-1°! Microglia promotes
insulin-like growth factor-1, which suppresses apoptosis and
augments the proliferation and differentiation of stem cells'®
or may increase neurogenesis by facilitating oligodendrocyte-
promoting cells to adopt a neuronal phenotype.!

This dual action observed in microglia also applies to
some cytokines. This should be taken into consideration
particularly when addressing cognitive function after TBL.
For example, IL-1p levels and its receptor antagonist are
significantly expressed within the hippocampus, a region
that is critical to memory.'*4-1 This, and other cytokines,
have been found to modulate synaptic function'¢”!¢® and
long-term potentiation, a cellular correlate of learning and
memory.'®-17! Accordingly, IL-1p plays a role in the con-
solidation of context-dependent memory when its levels are
relatively low. In contrast, when IL-1p levels are abnormally
increased, hippocampal function is impaired.'>!”> Under
normal conditions, neurons and microglia are constantly
communicating; however, under certain conditions, such as
prolonged stress and injury, changes in IL and TNF-a levels
can lead to neurophysiological alterations, such as increases
of intracellular calcium that will increase cell vulnerability
and neurodegeneration.7417°

It is evident that inflammatory responses contribute to
the prolonged neurodegeneration that is frequently found
after TBL Itis likely that the double-edged aspect of immune
responses is dependent on tissue integrity and numerous
ongoing pathophysiological processes. A better comprehen-
sion of mechanisms associated in microglial responses may
provide therapeutic opportunities.

MITOCHONDRIA

Mitochondrial function is crucial to the energy demands of
the CNS. Adenosine triphosphate (ATP) production from
conversion of oxygen, glucose, and pyruvate to ATP occurs
in mitochondria located throughout the cell body, axons,
and dendrites.’’® Mitochondrial toxins, such as oxide,
hydroxide, and peroxynitrate, are produced as a result of
this metabolism. These substances are active in both neuro-
nal signaling and in degeneration.!””!” Mitochondria con-
tain several protective antioxidants, such as coenzyme Q10
(ubiquinone), creatine, and nicotinamide.!7*180

Fast, anterograde axonal transport along cytoskeletal
tracks convey organelles and their proteins from their
major sites of biosynthesis in the cell body to their sites of
use and residence in the axons and terminal. Mitochondria
participate in axonal transport via a bidirectional flow.
This process works to position proteins along specific axon
locations. Mitochondrial migration and positioning are
responsive to focal energy demands within the cell, axon,
or dendrite (Figure 1.2).18!

Mitochondrial stress is increased during oxygen or glu-
cose deprivation and with decreased calcium homeostasis.
This energetic deprivation occurs after TBI, particularly
during the acute period. Mitochondrial toxin production
also increases with mitochondrial stress. Mitochondrial
stress increases with alteration of fuel availability; ROS pro-
duction; or increases in oxidative stress, lipid peroxidation,
amyloid precursor protein, intracellular b-amyloid, cyto-
kines, caspases, calpains, or cytochrome C.

Mitochondria are responsible for programmed cell death
or apoptosis.'®2 Mitochondrial alterations occur following
excessive sequestration within the mitochondria of CA2?*
or calpain-mediated alteration. This results in the opening
of the mitochondrial membrane permeability pore that, in
turn, induces the release of apoptosis protease activating
factor 1, caspase-9, and cytochrome C.!%3-18¢ This results
in the activation of the caspase death cascade and consti-
tutes an agonal event for the cell.'¥” H,O uptake and swell-
ing occur followed by local energy failure and uncontrolled
ionic homeostasis.

Mitochondrial function has been implicated in ischemic
stroke, AD, PD, Huntington’s disease, ALS, depression,
bipolar disorder, and schizophrenia.!77:188-190

MYELINATION

Myelin impacts the efficiency of axonal function and axo-
nal health.”! Remyelination occurs as a regenerative process
in which new myelin sheaths are formed on demyelinated
axons. Myelin repair consumes a great deal of the brain’s
daily energy consumption.

Remyelination has four stages: 1) oligodendrocyte pro-
genitor cell (OPC) proliferation, 2) migration of OPCs
toward demyelinated axons, 3) OPC differentiation, and
4) interaction of premature oligodendrocytes with denuded
axons.!”? Remyelination has a different structural appearance



Neuroendocrine function 9

Input 1 Input 2

Transmitter
vesicles

ca2+

Actin
v

Spines

-

Dendrite

Ll

Microtubule

, Axon

Mitochondria
- -
-
-
O

—~

Y

Figure 1.2 Involvement of mitochondrial motility in synaptic plasticity. Mitochondria migrate along microtubules in
dendrites and axons. Mitochondria migrate to areas of greater energy demand as needed, such as dendritic spines and
transmitter vesicles. (From Mattson, M.P., Gleichmann, M., and Cheng, A. Mitochondria in neuroplasticity and neurological
disorders, Neuron, 60, 748-766, 2008. With permission from Cell Press.)

compared to developmental myelin.!”® Remyelination is thin-
ner and results in wider nodes of Ranvier. However, conduc-
tion velocity is restored in remyelination along with axonal
protection.!®?

Astrogliosis refers to glial scarring. Glial scarring creates
a physical barrier that prevents OPCs and axons from enter-
ing demyelinated plaques, thus inhibiting remyelination.!*t
This inhibition is mediated by astrocyte-derived chondroi-
tin sulfate proteoglycans.'> Ephrins are also released by
astrocytes and bind to regenerating axons causing a col-
lapse of the axon growth cones.”® TNF-a, expressed by
astrocytes, is implicated as a potentially causative factor in
demyelination and oligodendrocyte pathology.!941971%

Microglia and astrocytes play crucial roles in remy-
elination. Microglia remove myelin debris from demy-
elinated axons as an early trigger to remyelination.
Phagocytosis of debris is closely accompanied by release
of neurotrophins and cytokines, such as IGF-1, fibroblast
growth factor-2 (FGF-2), TNF-a, IL-1, ciliary neuro-
trophic factor (CNTF), leukemia inhibitory factor (LIF),
platelet-derived growth factor-a (PDGF-a), BDNF, and
neurotrophin-3 (NT-3).! A microglial phenotype has
been identified associated with removal of myelin debris
and apoptotic cells and with recruitment of OPCs to a
lesion site via signaling by expression of cytokines and
chemokines.’”” A complex signaling cascade, involv-
ing proinflammatory and anti-inflammatory cytokine

production and neurotrophins, occurs between microg-
lia and astrocytes to carry out the stages of remyelination
described above.198:200

IGF-1 is produced by astrocytes and microglia and has
been shown to promote remyelination.?’! Reduced expres-
sion of IGF-1 has been linked to profound delays in OPC
differentiation into mature oligodendrocytes and proper
remyelination.?’? IGF-1 has also been shown to prevent
mature oligodendrocyte apoptosis in cuprizone exposure
models of toxic demyelination.?*?

Demyelination is associated with the appearance of
astrocytes and microglia and can play both beneficial and
detrimental roles in MS.1°#!%7 Spontaneous remyelination
occurs, but its efliciency is limited in MS.2032%¢ Failure of
OPCs to differentiate into myelinating oligodendrocytes
contributes to pathogenesis of MS.20°

NEUROENDOCRINE FUNCTION

Neuroendocrine dysfunction following TBI has now been
well documented.!*1%206-209 The presence of posterior pitu-
itary dysfunction and its resultant disorders of salt and fluid
balance have long been recognized by clinicians due to the
ready availability of laboratory evidence routinely collected
during the acute stages of recovery following TBI as well as
the potentially life-threatening consequences of posterior
pituitary dysfunction. Greater awareness has developed for
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the evolution of anterior pituitary dysfunction following
TBI as well. Prevalence of deficiency along the four primary
hormone axes is reported as follows: somatotroph—6% to
25%, gonadotrope—=8% to 12%, thyrotrope—4% to 6%,
adrenotrope—4% to 6%.1%2021-27 However, it should be
noted that the prevalence of deficiency along the four pri-
mary axes appears to vary with temporal proximity or dis-
tance from the actual injury. More detailed discussion of
neuroendocrine function can be found in other chapters of
this text.

Guidelines exist for screening for hypopituitarism fol-
lowing TBL2!8-220 The premise behind the timing of cur-
rent guidelines is that most individuals will recover from
endocrine dysfunction following TBI. In addition, there is
uncertainty about the implications for endocrine supple-
mentation in the acute recovery after TBL It is probable
that, as more information is collected regarding the impact
of endocrine dysfunction and potential benefits of hormone
replacement following TBI, that the clinical guidelines for
screening and provocative testing will change accordingly.

Hypopituitarism may not manifest immediately after
injury and may take months or years to do so.??! There is
some suggestion that the endocrine dysfunction identified
at 6 months postinjury persists beyond 1 year in a major-
ity of patients.?!> There are some anecdotal cases of partial
spontaneous recovery of posttraumatic hypopituitarism
although recovery appears to be somewhat rare.?22223

The brain and nervous system produce steroids, referred
to as neurosteroids, de novo and join the gonads, adrenals,
and placenta as steroidogenic.??*-??” Neurons and glia are
involved in neurosteroid production, and production varies
with location within the brain and distance from cell bod-
ies.?28 Mediation of neurosteroids is accomplished by direct
or indirect modulation of neurotransmitter receptors or
through ion-gated neurotransmitter receptors. Neurosteroid
stimulation of neurotransmitter receptors is manifested by
behavioral change, e.g., stimulation of GABA, receptors,
resulting in decreases in anxiety, sedation, and seizure
activity.??2 Neurosteroids are considered to be broad-
spectrum anticonvulsants and impact depression, learning,
and memory; premenstrual syndrome; and alcohol with-
drawal and, consequently, may merit consideration as an
endocrine contribution to clinical manifestation of ABI.24
Hormone steroids act as chemical messengers and are syn-
thesized from cholesterol. The major classes of steroid hor-
mones include progestogens, androgens, estrogens, and
corticosteroids.

Hormone replacement therapy (HRT) is not yet rou-
tinely performed following TBI. There are several questions
regarding HRT: 1) Does the patient benefit by returning
hormone levels to within a normal range and, if so, how?
2) Is reacquisition of cortical function by residual neuro-
logical structures dependent upon or enhanced by HRT?
3) Does HRT impact the return of normal neuroendocrine
function following TBI? 4) What are the potential compli-
cations of HRT, and does it worsen risk of the development
of complications following TBI? 5) To what extent, if any,

does neuroendocrine function impact the bioenergetics of
brain function? 6) To what extent, if any, does HRT affect
the pathogenesis or progression of other neurodegenerative
diseases? These questions, coupled with unclear evidence
regarding the safety of gonadal HRT, have limited both
research and clinical practice. For instance, HRT has been
implicated in increase in thrombogenesis and cerebrovas-
cular and cardiovascular risk although it is unclear as to
whether these risks can be mitigated by appropriate moni-
toring of blood chemistry during replacement. Further
research has subsequently refuted some of this risk, yet the
concerns about safety remain widespread.?*242

Crucial to determination of efficacy of such interven-
tions is whether assessment of the effects of treatment is
properly defined. Independent variables, such as rate and
extent of recovery versus recovery of function alone, may be
pertinent. Expectations pertaining to recovery of function
may be tempered by the knowledge that the intent of HRT
is for both immediate and long-term effects. HRT may play
roles in neuroprotection, neuroactivation, growth promo-
tion, and cellular therapy because endogenous hormones
have such effects. HRT may also have an effect on disease
prevention or mitigation.

Some hormones are synthesized on a local basis by neu-
rons and glia within the CNS. It is not clear to what degree
mechanisms responsible for endogenous localized produc-
tion of hormones are affected following injury to the brain.

We shall review the impact that a few major hormones
have on cellular function, regeneration, and repair.

Somatotrophic axis

Growth hormone (GH) dysfunction is the most prevalent
endocrine dysfunction after TBI.!%206:207.210.212.214.215.243,244
GH production is pulsatile in nature and tied to both slow
stage sleep cycle production and to exercise. Serum levels
of GH are unreliable as a measure of GH secretory produc-
tion.?*>24¢ IGF-1 derives from GH metabolism as a major
GH-dependent peptide and is used as a surrogate biomarker
of GH production. However, clinical studies into the impact
of IGF-1 both as a surrogate biomarker and a correlate of
GH function have been mixed. IGF-1 levels following TBI
should be monitored and provocative testing strongly con-
sidered for any IGF-1 levels below 200 pg/dl. Stimulation
testing is necessary to most accurately determine whether
GHD is present or not.??* IGF-1 testing alone may be mis-
leading because approximately 50% of adults with GHD
have normal IGF-1 levels.?¥’

In a study comparing IGF-1 serum levels to GH pro-
vocative testing via glucagon stimulation, a large number
of patients with TBI whose IGF-1 levels appeared within
normal ranges were actually GH deficient upon provoca-
tion testing.?*®

Exercise increases peripheral and intracerebral GH and
IGF-1 in adult animals and results in similar increases in
hippocampal neurogenesis.?* Exercise has been shown to
preferentially impact learning and memory, functional
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recovery after brain injury and mental decline associ-
ated with senescence.?®*2%3 Underlying this improvement
appears to be increases in BDNF within the hippocam-
pus.?** IGF-1 appears to mediate the impact of exercise on
cognitive function.?>

GH levels in the blood derive primarily from pituitary
function, and IGF-1 derives primarily from the liver. It is
well established that IGF-1 from the body reaches the brain
parenchyma and CSFE.%*¢ There is evidence to suggest that
levels of both GH and IGF-1 are derived from amounts that
cross the BBB as well as to amounts that may be produced in
various parts of the brain.

GH and IGF-1 are implicated in neuroprotection, neu-
roactivation, growth promotion, cell therapy, regeneration,
and functional plasticity.>**2*” The structural effects of GH
and IGF-1 exerted include myelination, somatic growth,
oligodendrocyte biogenesis, and dendritic arborization.
Metabolic effects of GH and IGF-1 are found in production
levels of neurotransmitters and neurotransmitter receptors,
glucose metabolism, and mitochondrial function. Impacted
neurotransmitters include serotonin, norepinephrine,
dopamine, glutamate, and acetylcholine.?*® As a cell ther-
apy, GH stimulates cellular protein synthesis, facilitates
glucose metabolism, and promotes mitochondrial func-
tion.?*®2% Cellular enzymatic homeostasis supporting nor-
mal cellular function, including maintenance, repair, and
normal metabolic function, is altered, in turn, by impaired
protein synthesis.20

The trophic effects of GH within the CNS have been dem-
onstrated for neurons and astrocytes.?! GH affects both
neuron and astrocyte proliferation in development, and
conversely, decreased dendritic branching and smaller neu-
ronal somas have been associated with lower GH levels.?6?
GH appears to affect neuronal dendritic branching in the
cerebral cortex?? while IGF-1 affects arborization within
the developing cerebellum?¢*2¢* and the developing adult
cerebral cortex.?0°-2¢7 Peripheral IGF-1 has been shown to
increase both cellular proliferation within the dentate sub-
granular zone and the subsequent migration and differen-
tiation of progenitor cells within the dentate gyrus.26%:269

GH and IGF-1 appear to impact both angiogenesis and
cerebral blood flow. Arteriolar density in the cerebral cortex
in aged animals increases with GH treatment, and increased
density was correlated with increased serum IGF-1 levels.?”
Additionally, brain vessel density in the hippocampus and
cerebellum increases with IGF-1.2%° Elderly humans demon-
strate an association of greater cerebral blood flow in the
left premotor and left dorsolateral prefrontal cortices with
higher IGF-1 levels.>”!

IGF-1 is effective in reducing damage following ischemic
lesions in experimental animals; however, human studies
have yet to be performed.?””> Administration of IGF-1 in ani-
mals reduces infarct volume and improves neurologic func-
tion after ischemia.?’*?7* IGF-1 appears to enhance glucose
uptake in neurons exposed to glucose deprivation,?”> and
this may be one of the mechanisms exercised by estradiol
as a neuroprotectant.?”® Glucose utilization was observed to

increase from 11% to 14% in the anterior cingulate of the
cortex, the CA1 region of the hippocampus, and the arcuate
nucleus of the hypothalamus following IGF-1 administra-
tion in aged animals.?””

Improvement in quality of life, body fat mass, lean body
mass, bone metabolism, and low-density lipoprotein cho-
lesterol were reported after 3 years of GH replacement in
patients with adult onset GHD.?”® Quality of life improve-
ments, increased satisfaction with physical activity, and
decreases in health care consumption were noted in men
and women with adult-onset GHD who received GH
replacement.?”

IGF-1 was found to positively correlate with cognitive
functioning and overall degree of improvement follow-
ing rehabilitation for individuals with ischemic stroke.??
Outcomes were significantly better for those with IGF-1 lev-
els above 161.8 pg/dl.

GH and IGF-1 have been the subjects of a number of
research articles into various aspects of functioning fol-
lowing TBI. The most studied area has involved the asso-
ciation of GHD or low IGF-1 with fatigue. Most of these
studies have had mixed results.?!>28-28> GH administration
immediately following lesions to the motor cortex com-
bined with rehabilitation resulted in significant improve-
ment in motor function recovery despite the severity of the
motor lesion.?% Information processing efficiency, short-
term memory, working memory, attention, set shifting,
and visual processing improved after GH administration
in TBI.28728 Neuropsychological performance was found
to be preferentially improved in a group of patients with
chronic TBI receiving GH replacement in combination
with cognitive therapy up to 10 years postinjury in the
cognitive parameters on the Wechsler Adult Intelligence
Scale of understanding, digits, numbers, incomplete fig-
ures, similarities, vocabulary, verbal IQ, and total IQ in
comparison to a control group receiving cognitive therapy
only.?®

In summary, GH and/or IGF-1 interact with oligoden-
drocytes, neurons, astrocytes, blood vessels, and erythro-
cytes within the CNS impacting along with neurogenesis,
gliogenesis, glucose metabolism and cellular survival, pro-
tein synthesis, cerebral blood flow, neurotransmitter syn-
thesis and reception, gap junction formation, myelin sheath
formation, and arborization.2%6:258:290.291 JGF-1 has been
shown to reduce postischemic loss of oligodendrocytes
and associated demyelination.?*! Given early indications of
positive anatomic, physiologic, and functional impacts of
GH replacement, attention paid to these substances in the
postinjury phases following TBI or other brain injury may
well provide for enhanced neuroprotection, metabolic and
physiological functioning of residual structures, enhanced
synaptic remodeling during learning and skill acquisition,
better neuromodulatory availability and function, and per-
haps more complete and rapid recovery of CNS capacity.
Further, GH and IGF-1 may play important roles in preven-
tion or mitigation of other neurodegenerative diseases asso-
ciated with prior TBL.
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Gonadotroph axis

Three concerns emerge in relation to gonadotropic hor-
mones. The first has to do with potential disruption in
the hypothalamic-pituitary-gonadal (HPG) axis aris-
ing from structural involvement of the hypothalamus or
pituitary. The second has to do with secondary impact to
the HPG associated with changes in other endocrine or
immune system functions. An example of this might be
found in increased production of aromatase, an enzyme
that is critical in estrogen synthesis, and associated with
increased adiposity. Hypogonadism is associated with
male obesity. In contrast to primary hypogonadism,
which stems from testicular failure, secondary hypogo-
nadism involves the failure of hypothalamic-pituitary
function. Adipose tissue will affect testosterone levels
by aromatizing testosterone into estrogen at greater than
normal amounts. The third concern arises with age-
related declines in gonadotrope production. Although
frank deficiencies may not be apparent following ABI,
reductions in an individual’s gonadal hormone produc-
tion may go unheralded and take on greater significance
with aging, in effect entering andropause or menopause
earlier than the individual might have without ABIL. In
the instance of age-related dysregulation of the HPG
axis, there is some suggestion that neurodegenerative
senescence may be accelerated.?*?

TESTOSTERONE

Testosterone is a gonadotrope produced by the Leydig
cells of the testes in men and the ovaries in women with
lesser amounts produced by the adrenal gland cortex.?%32%
Testosterone is a neurosteroid and can be synthesized
de novo in the CNS.228

Interestingly, neuronal steroids that are synthesized within
the nervous system by neurons and glial cells appear to exert
neurotrophic action with some showing an anticonvulsant
effect.?>27 Cholesterol is a fundamental steroidal precur-
sor to testosterone, which, in turn, is a precursor to neuro-
steroidogenesis, specifically androstenediol and estradiol.

Testosterone crosses the BBB in the free form and influ-
ences neuronal cells.?”® Increases in neurite outgrowth in
cultured neural cells have been observed.?*°-3!

Androgens alter the morphology, survival, and axonal
regeneration of motor neurons. Androgen receptors are
found throughout the brain, and their distribution shows a
sexual dimorphism.302-304

Testosterone is acted upon by the estrogen-synthesizing
enzyme aromatase and converted to estradiol. Aromatase,
itself, plays an important role in neuroprotection®” and the
neuroprotective benefits of androgens appear to be medi-
ated by their conversion to estrogens.30¢307

As neuroprotection, testosterone may exert protection
against neurodegeneration by the prevention of tau protein
hyperphosphorylation.3’ Tau proteins are predominantly
axonal microtubule or binding proteins that stabilize the
neuronal skeleton.?” Increased plasma amyloid-f levels have

been reported with androgen deprivation,®® and reduced
amyloid-f mediated apoptosis has been reported.’!!
Reduced serum testosterone has been demonstrated in men
with Alzheimer’s disease.’’> Amyloid-p formation may be
prevented by decreases in amyloid-f peptides after treat-
ment with testosterone.’!® Testosterone effects a synergistic
stimulation of protein synthesis with the cytokine IGF-1
and others.’! Interestingly, testosterone levels are signifi-
cantly lower in both men and women with ALS, a progres-
sive disease that targets motor neurons.’!

As a growth promoter, testosterone increases expression
of nerve growth factor and mediates neurite growth and
interneural communication via branching and arboriza-
tion.%1317 Testosterone increases the rate of axonal regen-
eration via selective alterations of the neuronal cytoskeleton
in peripheral nerves.>!8

Testosterone has been shown to enhance spatial cogni-
tion in healthy men aged 60 to 75 years when testosterone
levels were increased to a level commonly found in young
men for 3 months.?® Testosterone enanthate supplemen-
tation for 6 weeks improved spatial and verbal memory in
healthy older men aged 50 to 80 years.’?® Another study
showed improved working memory following testosterone
enanthate.’” Alleviation of depression has been observed
with testosterone supplementation in individuals with low
testosterone levels, including those suffering from treatment-
resistant depression. An improvement in verbal and spatial
memory in aging men has also been observed with testoster-
one supplementation.32!-323

Androgen precursors have been shown to affect functional
outcome in rats following experimental brain injury. In one
rodent study, DHEA administered 1 week postinjury resulted
in a significant improvement in physical and cognitive func-
tion.** Studies in humans after TBI have also suggested a cor-
relation between functional status and testosterone levels.?8332>
In these studies, length of stay and functional status at admis-
sion and discharge were positively correlated with serum tes-
tosterone levels. There are a number of mechanisms by which
this may occur, both physically and cognitively. Testosterone
administration has been shown to improve cognitive function
in males with AD, but not in women.**° Testosterone replace-
ment for hypogonadal males following TBI is currently under
investigation in a small study in the United States (Figure 1.1).

ESTROGEN

Cholesterol is a fundamental steroidal precursor to the for-
mation of estrogens. Estradiol, a naturally occurring estro-
gen, is synthesized most immediately from testosterone
via the enzyme aromatase and, as a neurosteroid, can be
produced de novo within the brain.?”® Aromatase enzyme
production in glial cells is rapidly upregulated at the site
of injury suggesting that aromatase, itself, may be active in
neuroprotection or may exert neuroprotection via estrogen
synthesis.??’

Gender differences in outcomes following TBI have led
to a number of studies investigating the impact of female
steroid hormones on neuroprotection and neurogenesis
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following TBI.3?® Initial efforts focused on estrogen as the
potential source for these differences. Estrogen has a num-
ber of properties that make it a unique candidate for inves-
tigation into its potential for clinical intervention following
TBI. The role of estrogen in neuroprotection from oxida-
tive stress is considerable and includes serum deprivation,
amyloid-f peptide-induced toxicity, glutamate-induced
excitotoxity, hydrogen peroxide, oxygen-glucose deprivation,
iron, hemoglobin, and mitochondria toxins.??*-32 Estrogen’s
neuroprotective effects have also been demonstrated in a
number of models of acute cerebral ischemia and subarach-
noid hemorrhage.’*-3¢° Although controversial, it appears
that the neuroprotective mechanisms exhibited by estrogen
do not directly affect neuronal structures but rather other cell
types, such as astrocytes.>®!

Ischemia-induced learning disability and neuronal loss
are prevented in both sexes by estradiol.3°6:362:363 At the same
time, when levels of estradiol are reduced, both the func-
tion and survivability of neurons are compromised.36436>
Early onset and increased deposition of -amyloid peptide
in AD are associated with estrogen depletion in the brain.3¢¢
Estrogen replacement can be effective as an early therapy for
cognitive impairment in women with AD.32¢

There are some reports that raise concern estrogen may
not be neuroprotective in all circumstances. Administration
of estrogen prior to TBI was protective for males but worsened
mortality in female rats in one study.*’ Transient forebrain
ischemia has been shown to worsen hippocampal neuronal
loss with estrogen.’*® Overall, there is some evidence that
estrogen increases neuronal excitability while progester-
one has anticonvulsant properties.>® Estrogen promotes
growth of glioma and neuroblastoma.**® Interestingly, brain
tumor after brain injury occurs in a higher than normal
prevalence.!! Additionally, the role of microglia in glioma
removal seems important to consider as microglia function
is abnormally altered after TBI.

As a cellular therapy, estrogens have a multitude of
effects on mitochondrial function that are most notable
when the cell is placed under stress. They are active in
preservation of ATP production, prevention of production
of ROS, moderating excessive cellular and mitochondrial
CA?* loading and preservation of mitochondrial mem-
brane stability during stress.’” Nonfeminizing estrogens
have been found to be as effective as the potent feminizing
hormone 17 p-estradiol (E2) in prevention of mitochondrial
CA? influx,’”! and more selective neuroprotective synthetic
estrogen-like compounds have been developed in response
to the potential benefits of their use in treatment of neuro-
degenerative conditions.?72-37¢

Estrogen receptors have been found to be selectively
upregulated in certain areas of the brain following injury.
Estrogen has important roles in modulating brain homeo-
stasis, synaptic plasticity, cognition, and neuroprotection®”’
through traditional and nontraditional cell-signaling mech-
anisms.’’8-380 Some of the receptors code for specific genetic
intracellular signals responsible for neurogenesis. In par-
ticular, some of these messengers, such as c-Fos and PELP1,

appear to demonstrate properties responsible for activa-
tion of genetic mechanisms responsible for cellular repair.
A potential area for clinical impact of estrogen may be in
its apparent neuroregenerative properties. Some receptor-
mediated responses may be responsible for causing stem
cells to differentiate into neuroprogenitor cells and protect
nerve cells from programmed cell death.38!-3%

PROGESTERONE

Progesterone, the body’s main progestogen, has been impli-
cated in a number of mechanisms that are important for
neuroprotection following CNS insult. The effect of pro-
gesterone varies, like GH, depending upon the CNS com-
partment in which it is found. Its effects are mediated by
estrogen priming within the hypothalamus and in some
limbic structures. It is not mediated in the cerebral cortex,
septum, caudate putamen, midbrain, or cerebellum.38¢-387 In
structures in which estrogen priming is involved, progester-
one receptors are downregulated by progesterone treatment
while they are unaffected in brain regions where estrogen
priming is ineffective.388:3%

The role of progesterone, as other hormones described
above, is considered here primarily for its effects on neu-
rophysiological function. The discussion of progesterone to
follow refers to the natural hormone and its natural metabo-
lites. Natural progestogens are metabolized in very different
ways from synthetic progestogens, sometimes termed pro-
gestins. Technical issues pertaining to rationale for avoid-
ance of specific progestins can be reviewed in Schumacher
etal.3%

Progesterone and its metabolites are effective in mainte-
nance of neuronal viability and in regeneration of neurons.
They also act on oligodendrocytes promoting myelina-
tion in the CNS and the peripheral nervous system.3?0-3%
Progesterone impacts remyelination®*® despite age-related
declines in capacity for myelin regeneration.’** The role of
progesterone in remyelination is supported by an animal
study showing better remyelination in middle-aged females
compared to middle-aged males. No differences were found
in younger-aged animals.>®

Progesterone has been found to restore retrograde axonal
transport.*® Disruptions in axonal transport may contrib-
ute to the development of AD via stimulation of proteolytic
processing of f-amyloid precursor protein.*” Reduction of
lipid peroxidation, also active in the development of AD,
is achieved after TBI with progesterone treatment®%3%
along with increased activity of antioxidant superoxide dis-
mutases.*” Mitochondrial protection by increased expres-
sion of antiapoptotic proteins in the outer mitochondrial
membrane has been demonstrated to be associated with
both progesterone and estrogen.*:4%2 In addition, female
animals showed a complete reversal of mitochondrial res-
piration alterations with progesterone treatment at a low
physiological range.%

Animal studies have also shown that progester-
one reduces edema and secondary neuronal loss and
improves recovery of function after TBL4*44%> Neurons are
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particularly susceptible to injury during cerebral ischemia
benefit from progesterone.***4” Likewise, infarct size has
been shown to be smaller in middle cerebral artery occlu-
sion after pretreatment with progesterone.*#4% When hor-
mone administration is prolonged, behavioral recovery
is more complete.*® The timing of intervention has been
shown to be effective ranging from preinjury treatment to
up to 24 hours postinjury.*!!

Progesterone benefits have also been demonstrated in a
human trial. Patients treated with intravenous infusion of
natural progesterone for the first 3 postinjury days showed a
reduction in mortality of 50% compared to patients treated
with conventional state-of the-art treatment in the same
facility.#'> Moderately injured patients treated with pro-
gesterone had better functional outcomes than nontreated
patients. Another larger study, however, failed to find sig-
nificant differences in outcomes for individuals who were
administered progesterone after TBI.#13414

Thyrotroph axis

Thyroid hormones are the primary endocrine influence for
regulation of metabolic rate. Thyroid is readily transported
from the blood to the brain. It crosses into the brain via the
choroid plexus and cerebrospinal fluid.*'° The active thyroid
hormone, 3,5,3’, 5'-triiodothyronine (T3) is locally synthe-
sized from thyroid (T4) by glial cells, tanycytes, and astro-
cytes via the action of type II deiodinase.*!® T3 is regulated
by type III deiodinase to degrade both T4 and T3. Type III
deiodinase is expressed by neurons.*!

The role of thyroid in brain development may be instruc-
tive as to its potential role in the recovering brain. Thyroid
deficiency during development impairs cytoarchitecture in
the neocortex and cerebellum.?” Changes in cortical pat-
terns of lamination occur together with changes in dendritic
morphology and axonal projections.*®4° Cell migration,
outgrowth of neuronal polarity, synaptogenesis, and myelin
formation are slowed.*?° Glial cell proliferation and neuro-
nal cell death are both increased.*?’ Lastly, thyroid is also
involved in microtubule assembly and polarization differ-
ences in axons and dendrites.*?°

Thyrotrophic dysfunction following TBI is less com-
mon than the somatotropic or gonadotrophic axes in
terms of frank deficiency. Subclinical hypothyroidism,
however, is common in adults without brain injury, and
decreased resting energy expenditure has been found in
those who have abnormally high TSH levels.**! The risk for
metabolic syndrome is raised in the presence of subclinical
hypothyroidism.*?2

Thyroid has substantial impact upon mitochondrial
function as it is involved in facilitating mitochondrial bio-
genesis and ATP generation.*?>42* The effect of thyroid on
mitochondrial function is both nongenomic and genomic.#**

Thyroid regulates gene-encoding proteins for a host of
structures and substances. These include myelin, mito-
chondria, neurotrophins, cellular matrix proteins, cellular

adhesion molecules, and proteins involved in intracellular
signaling.#16:420

CLINICAL IMPLICATIONS AND POTENTIAL
THERAPEUTICS

It may well be time for development of active and comple-
mentary strategies for neuroprotection, neuroactivation,
growth promotion, and cell therapies as routine approaches
to patient management in chronic ABI. The hope for this
chapter is to promote critical thinking about management
of chronic disease arising from ABI. It is not possible to
fully appreciate the interplay between primary injury and
subsequent consequences that affect cellular metabolic
dynamics, CNS connectivity, BBB integrity, inflamma-
tory responses, and endocrine function. These, in turn,
are influenced by aging, individual genetic variations, and
medical comorbidities that may be present or emerge in
later life.

Today, medical management of chronic brain injury is
largely reactive. For example, pharmacological manage-
ment of seizures and depression can have a notable influ-
ence on patient treatment. It seems worthwhile to consider
whether chronic metabolic and endocrine challenges con-
tribute to ongoing inflammation and BBB disruption as
potential pathogenic contributors to other neurodegenera-
tive diseases. Chronic disease management of ABI in the
future should entail neuroprotective strategies, neurophysi-
ologic optimization, cell therapies, growth promotion, and
neuroactivation.

Clinical targets for rehabilitation medicine might include
the following:

. Alteration of mitochondrial respiration

. Oxidative stress

. Mitochondrial transport and aggregation

. Microtubule/neurofilamentary integrity and repair
Membrane permeability maintenance

. Cytokine production

. ROS production and antioxidant protection
. Protein and organelle biosynthesis

. Oxygen or glucose deprivation

. Cellular senescence

. B-amyloid production

. Microglial activation and function

. Tauopathies

. Lipid metabolism disorders

. Superoxidase dismutase production

. Oligodendrocyte function and biogenesis

. Myelination

Myelin repair and preservation

. Oligodendrogenesis and oligodendrocyte function
. Neurosteroidogenesis

. Hormone replacement therapies

. Inflammation reduction strategies

. BBB function, repair, and protection
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Reconsideration of clinical management might include
a greater role for endocrinology and immunology as well
as the development of clinical biomarkers for such man-
agement. Today, rehabilitation medicine focuses on func-
tional recovery in large measure. As our understanding of
chronic disease mechanisms after ABI improves, it seems
incumbent upon us to increasingly view the role of rehabili-
tation medicine as interventional and preventive medicine
with far different treatment targets than simply function.
An analogous approach in cardiology is the use of statins
to retard or prevent more serious cardiovascular complica-
tions. Similarly, insulin replacement is undertaken to pre-
vent downstream complications of prolonged high glucose
levels.

Inflammation is known to be initiated by external stim-
uli, such as undesired pathogens or injury. Inflammation
is also known to be self-perpetuating. So questions arise
as to how much inflammation occurs after ABI, how long,
when it is reinitiated and why. Might neurological function
be improved if inflammation were to be reduced by inter-
ventions designed to interrupt an inflammatory cycle that
is self-perpetuating or one that is triggered by inflamma-
tion elsewhere in the body as in microglial priming? Should
medical management of a patient with prior ABI be different
vis-a-vis a possible propensity toward CNS inflammation
with unassociated illness? Might inflammatory processes,
microglial function, BBB function and metabolic efficiency
be improved by properly targeted HRTs? Can appropriate
biomarkers for monitoring treatment be developed that are
more indicative of biologic or physiologic processes? Finally,
might conditions such as epilepsy, depression, and sleep dis-
orders actually be symptoms of underlying and correctable
endocrine or immune pathologies?

We must develop clinical diagnostic paradigms and
strategies to enable clinicians to efficiently consider endo-
crine and immune contributions to disease management,
mitigation, prevention, and cure. It is apparent that the
clinical contribution of endocrinology and immunology
must increasingly intersect with neurology, physiatry, inter-
nal medicine, and psychiatry. Once accomplished, we may
come to find that we positively impact the incidence of neu-
rodegenerative conditions associated with prior ABL
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INTRODUCTION

Although the neurobiology of traumatic brain injury (TBI)
has been studied more in depth recently as technology has
advanced in the field of neuroscience, some of the early
seminal papers on the topic that proposed the pathophysi-
ology and the biomechanics of TBI appeared in the early
twentieth century.!~® The reader is encouraged to read these
papers, as they provide a perspective of what was known in
past decades and allow one to place the current review into
perspective.

Probably one of the most important aspects of human
TBI is its heterogeneity. Some of this is due to the complex-
ity of the biomechanics associated with trauma to a very
diverse and complicated structure. In addition, we now have
a better understanding of the influence of age,®-® gender,’
and chemicals/or recreational drugs that are on board dur-
ing the insult.!® However, these factors alone cannot explain
all of the variance in TBI. The biomechanical nature of the
insult and the response of different regions of the brain play
an important role. Additionally, TBI is considered a contin-
uum from mild to severe injury; however, the injury severity
to different brain regions may vary in type and location of
impact forces.

At the moment of injury, the brain is exposed to a number
of different vectors of stresses and strains. Classically, these
have been described in terms of acceleration-deceleration
along with rotation. We now have a much better under-
standing through finite element modeling, which helps
to describe what portions of the brain are at greater or
lesser risk for sudden displacement at greater degrees.!!!?
As these stresses and strains are placed on the tissue, the
white matter becomes stretched, and this contributes to
one of the more important pathological findings in human
TBI: that of axonal injury (sometimes referred to as diffuse
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axonal injury). Many investigators have studied the pro-
cess of injury-induced disconnection and have concluded
that nonmyelinated fibers are the most vulnerable®® and
that injury-induced disconnection is more prevalent than
once thought.!2* This is not to suggest that neuronal cell
death is unimportant, but it underscores the importance of
addressing connectomics along with measuring the volume
of regions/structures when assessing human TBI.?*-%

WHAT HAPPENS TO THE CELLS
IN THE BRAIN FOLLOWING TBI?

Following TBI, some cells are biomechanically and irre-
versibly damaged. Therefore, they can go through several
different stages of cell death related to apoptosis, excitotoxicity-
induced necrosis, and autophagy. Given the biomechani-
cal distribution of TBI, this process of cell death can occur
in many different regions affecting many different func-
tions.30-** However, many cells survive the primary injury
and go into a state of cellular vulnerability*** and dysfunc-
tion. This vulnerability and dysfunction can be caused by
many aspects of secondary complications associated with
TBI (ischemia and intracranial hypertension just to name
a few). However, if one steps back and reevaluates the basic
neurochemical and metabolic disruptions of the brain fol-
lowing trauma, it is very clear that, although they are not
the only factors compromising the injured brain, they cer-
tainly represent a good starting point.

At the moment of injury (which is severity dependent),
cells in the brain are exposed to extensive discharges, caus-
ing the overstimulation of receptors and, in conjunction
with the biomechanical stress and strain via mechanopora-
tion,*® breaks down the normal barrier between intra- and
extracellular spaces. This would cause a number of changes

31
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in the equilibrium, including a significant K+ efflux from
cells due to mechanical membrane disruption, axonal
stretch, and opening of voltage-dependent K+ channels.

In the normal brain, excess extracellular K+ is subject to
reuptake by surrounding glial cells.’-* This compensatory
mechanism can maintain physiologic extracellular K+ levels
even after mild concussion or ongoing seizure activity*®4! but
is overcome by more severe brain trauma?? or ischemia.**-%°
Initially, there is a slow rise in extracellular K+, followed by
an abrupt increase as the physiologic ceiling for K+ balance
is overcome. This triggers neuronal depolarization, release
of excitatory amino acids (EAAs), and further massive K+
flux through EA A/ligand-gated ion channels. In the wake of
this wave of excitation is a subsequent wave of hyperpolar-
ization and relative suppression of neuronal activity,*->0 a
phenomenon termed “spreading depression.”' One impor-
tant difference between classic spreading depression and
postconcussive K+ release is that TBI affects wide regions of
the brain. Thus, loss of consciousness, amnesia, and cogni-
tive impairment may be clinical correlations to post-TBI K+
release and a spreading depression-like state.

The TBI-induced depolarization of neurons leads to
the release of the EAA neurotransmitter glutamate, which
compounds the K+ flux by activating N-methyl D-aspartate
(NMDA) and d-amino-3-hydroxy-5-methyl-4-isoxazole-
propionic acid (AMPA) receptors.”>>” In an attempt to
restore the membrane potential, the Na+/K+ ATPase (which
is energy dependent) works overtime, consuming glucose
at a very high rate and producing lactate (see Figure 2.1).
Concomitantly, the pathway for glucose metabolism is
shifted following TBI with a larger percentage of the glucose
that is consumed being shunted to the pentose phosphate
pathway.>$-%2 The problem here is not only the increased
metabolic demand and a change in the metabolic fate of
glucose, but that glucose itself is not stored within the brain,
and the delivery of this fuel depends on the corresponding
increase in cerebral blood flow (CBF).%* These ionic shifts
and acute alterations in cellular energy metabolism occur in
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a posttraumatic setting where CBF is diminished, although
not to ischemic levels.®* Rather, it is the mismatch between
glucose delivery and glucose consumption that may pre-
dispose the brain to secondary injury. CBF may remain
depressed for several days after TBI, possibly limiting the
ability of the brain to respond adequately to subsequent per-
turbations in energy demand.

In addition to K+ efflux, NMDA receptor activation per-
mits a rapid and sustained influx of Ca2+ (see Figure 2.1).
Elevated intracellular Ca2+ can be sequestered in mito-
chondria, eventually leading to dysfunction of oxidative
metabolism and further increasing the cell’s dependence on
glycolysis-generated ATP.*-® Calcium accumulation may
also activate proteases that eventually lead to cell damage
or death, and in axons, excess Ca2+ can lead to dysfunction
and breakdown of neurofilament and microtubules.

Due to factors described above, ATP demand increases
at the acute time period after TBI when ATP production is
compromised, thereby triggering an energy crisis that may
explain why the injured brain is so vulnerable to secondary
insults.® As one would expect, given the high demand for
glucose uptake and the low output of oxidative metabolism
during this period of hyperglycolysis, there is also a com-
mensurate increase in lactate production.>® Interestingly,
blocking the NMDA receptor or disrupting the glutamate
pathway not only reduces the increase in extracellular K+
and the increase in uptake of glucose, but it also attenu-
ates the production of lactate. After TBI, there is a period
of time when all of these ionic and metabolic perturbations
occur in regionally different areas. Also, depending on the
area of the brain affected by the injury, the time course for
these ionic and metabolic changes can be very different. In
terms of the uptake for glucose, after a short period of time
(in the rat, approximately 1 hour; in humans, it can be up
to 4 hours, although the examples in Figure 2.2 are from
a subset of subjects), the local cerebral metabolic rate for
glucose (CMRgluc) decreases significantly below baseline,
and the uptake of cellular Ca2+ continues to increase for
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Figure 2.1 Measurements taken across time after the exposure to a mild traumatic brain injury in rodents using

the lateral fluid percussion device. Cerebral microdialysis samples were measured for glutamate and potassium.
Autoradiography was used for measurements of the cerebral metabolic rate for glucose (CMRgluc), cerebral blood flow,
and calcium. Values are expressed as a percent of controls. Note the different time course for different aspects of the
neurochemical and neurometabolic response to mild traumatic brain injury.
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TBI as a metabolic disorder: clinical studies

Acute hyperglycolysis

Cortical CMRgluc

Chronic metabolic depression

& 1st PET
A 2nd PET

I ' I I I ' |

0 24 6 810121416182022242628 1
Days post-injury

2 3 4 5 6 7 8 9 101112 13 14 15
Months post-injury

Figure 2.2 Human glucose time course. (From Bergsneider, M. et al., Journal of Neurosurgery, 86: 241-51, 1997,
Bergsneider, M. et al., Journal of Head Trauma Rehabilitation, April;16(2): 135-48, 2001.)

several days after experimental TBL.”® This increased Ca2+
is a likely mechanism for the reduction in oxidative metabo-
lism after TBI, although changes in metabolic enzymes also
contribute to impaired oxidative glucose metabolism.”!
After the initial period of profound postinjury ionic dis-
turbance and resultant increase in glucose metabolism, the
local CMRgluc decreases (see Figure 2.2); this appears not
to be injury severity dependent’>74. In the rat, this period of
diminished glucose metabolism is seen in the cerebral cor-
tex ipsilateral to injury as early as 6 hours after fluid percus-
sion and does not normalize until between 5 and 10 days
later (see Figure 2.1). In humans, it can begin during the
first week and last for months (see Figure 2.2). Ipsilateral
hypometabolism may also be seen in regions of the hippo-
campus at 6 hours postinjury in rats, generally normalizing
by 24 hours. The precise mechanism of this phenomenon
is, as yet, unknown, but it likely involves intracellular cal-
cium accumulation and impaired mitochondrial oxidative

Mild GCS 15

Severe GCS 5 Normal

An imaging biomarker of MTBI?

Figure 2.3 PET scans. (From Bergsneider, M. et al.,
Journal of Neurosurgery, 86: 241-51, 1997.)

metabolism. There is now some evidence that this period
of diminished cerebral metabolism is protective,”>’® and
its length of time is shorter in younger animals.”” Human
patients with severe TBI show diminished CMRgluc in the
postacute period.” It is interesting to propose that glucose
metabolism may be an initial marker of the degree and
extent of TBI (see Figure 2.3).

OUTCOME MEASUREMENTS IN
EXPERIMENTAL ANIMAL MODELS

A review of all the sensorimotor outcome measurements in
animal models is beyond the scope of this chapter, but most
of the literature cited herein includes results on learning and
memory as well as motor functions after TBL. All of these
measurements have different recovery time courses due to
the severity of injury. Although there are deviations between
studies regarding the actual tasks or techniques used, the
majority report duration of deficits that correspond to the
amount of tissue loss due to TBI. As reviewed recently, few
studies have followed animals for a long period of time,
allowing for chronic measurements of histopathology and
recovery.””8 However, some of these deficits may be due to
long-term dysfunctional issues rather than cell death per
se. For example, it now appears that mild TBI in rats makes
them more susceptible to fear conditioning,® creates long-
term hormonal dysfunction,®>3 and perhaps increases their
vulnerability to toxins that can cause Parkinson’s disease.®*

LONG-TERM ISSUES WITH TBI

Addressing the neuropathology of human TBI has a long
and distinguished history.®>-® In addition, many studies
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have addressed the long-term chronic neurologic prob-
lems (e.g., seizure disorders, Alzheimer’s disease, dementia,
Parkinson’s disease, multiple sclerosis, amyotrophic lateral
sclerosis) associated with human TBL®** More recently,
there has been increased focus of brain pathology in cases
in which mild TBI (otherwise known as concussion) has
been endured.!®232491-99 Since 700 B.C., man has engaged
in what would be considered organized sports and par-
ticipation runs the risk of acquiring cerebral concussion.
Furthermore, the clinical symptoms associated with con-
cussions have been reported since the time of Hippocrates
(for a historical review see McCrory and Berkovic®).

There has been considerable research on understanding
the cumulative effects of concussion in terms of the long-
term development of neurodegenerative processes that can
contribute to a loss in quality of life as an athlete (and/or
patient) continues to age. Prior to the development of sen-
sitive brain imaging (before 1970), investigators were con-
fined to postmortem studies that would allow the dissection
and histological assessment of the central nervous system
(CNS). To understand the neuropathological consequences
of repeated concussion in human athletes, many investiga-
tors have focused on boxing.1°0-103

Studies in both amateur and professional boxers go back
a number of years and primarily were driven by devastat-
ing consequences that resulted in a fighter’s death. There
were several case reports looking at the electrophysiological
consequences of boxers who have received multiple concus-
sions. However, the first series of conventional multisub-
ject clinical investigations occurred in 1968 and 1969 with
studies by Payne and Roberts.!**1%° One of the main points
emphasized by Roberts (1969) was that examining the brains
alone was not sufficient. Investigators needed information
regarding the lives of these fighters both in terms of medical
issues as well as psychological challenges. Then, in 1973, a
comprehensive description of 15 retired boxers appeared in
which a characteristic pattern of cerebral change was identi-
fied that was thought to be the result of boxing, but also per-
haps was responsible for some of the features of dementia
pugilistica'® (punch drunk syndrome).!%

It was well accepted that devastating blows to the head
would result in brain pathology that would reflect itself
in abnormalities of the septum pellucidum, brain scar-
ring, degeneration of the substantia nigra, and formation
of Alzheimer’s neurofibrillary tangles. Beginning in the
middle to late twentieth century, a change occurred in this
area of neuropathology, and the concern that repetitive
concussive blows, not previously recognized as a potential
for concern, became an interest for neuroscientists who
studied the physiology of concussion. Here, seminal papers
appeared"!%%19 that indicated even a mild biomechanical
blow to the brain produced a substantial change in neu-
rophysiology with some characteristics likened to spread-
ing depression. Subsequent work with animals confirmed
these changes in neurophysiology and began to describe the
mechanisms by which brain cells that survived the biome-
chanical blow of concussion become extremely vulnerable

to a second insult for a period of time.3*>>110111 This led
investigators to explore novel ways to manage TBI in gen-
eral and also fostered the effort to determine if there was
a cost to the brains of athletes who experienced repeated
concussions close in time. It has been recently proposed
that one of these “costs” appears to be the development of
chronic traumatic encephalopathy (CTE).

However, in a recent review,''? the existence of CTE as
a real disease has come into question. There currently are
no controlled epidemiological data indicating an increased
risk for any type of unique neuropathology in athletes. Nor
is there an established clinical or pathological criterion for
diagnosing CTE. This review lists a number of conditions
associated with high levels of cerebral tau aggregation.
Therefore, phosphorylated tau may not be the definitive and
specific marker for CTE.

In early neuropathological studies of patients with mild
TBI, investigators described the unusual finding of numer-
ous neurofibrillary tangles in the cortex (particularly in the
temporal lobe), but there was very little evidence of plaque
formation, which is not typical of Alzheimer’s disease.!?”
This “extensive neurofibrillary change in the absence of
plaque formation is a puzzling phenomenon.”''3 Over the
years, this has been described as an accumulation of hyper-
phosphorylated tau and has been termed CTE.!"4-126 In the
next section of this chapter, we address the question of
whether there is experimental evidence for CTE in animal
models of mild TBI as defined by the neuropathological
finding of phosphorylated tau.

EXPERIMENTAL ANIMAL MODELS OF CTE
AS DEFINED BY PHOSPHORYLATED TAU

Early experimental studies began to address the relation-
ship between TBI and Alzheimer’s disease by focusing on
changes in the protein tau. Using a modified lateral fluid
percussion model in the rat, animals were exposed to a
single mild impact with others experiencing seven mild
or moderate impacts every 24 hours.’”” Upon histological
examination 1 week after injury, the neuronal perikarya
within the ipsilateral cortex after repeated mild impact
were clearly immunostained with tau-1 antibody. Enhanced
tau-1 immunostaining in the deep cortical layers within
the ipsilateral side was extended from the perikarya to the
proximal area of the axons. Although not directly confir-
matory, this may indicate that repeated mild brain impact
could induce the accumulation of phosphorylated tau.

In another rodent study, brains were examined at 2,
4, and 6 months after lateral fluid percussion injury.'?
Phosphorylated tau measured using AT8 immunostaining
was “weakly” noted in the superficial cortical neurons in the
cytoplasmic perimeter and apical dendrites between 2 and
4 months post TBI. This immunostaining was more evi-
dent bilaterally in spinal tracts of the trigeminal nerve and
was again weakly noted within the brain stem at 6 months.
However, these investigators reported a 42% decrease of
cortical neurons (as well as significant cell loss within the
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dorsal hippocampus) at 6 months and a 64.5% mortality
rate. Therefore, although tauopathy was demonstrated in
animals after a single TBI, the level of severity was signifi-
cantly higher than that typically seen in concussion.

Tran and colleagues investigated the relationship between
amyloid-p (Af) and tau pathologies in the setting of TBI in a
mouse model of Alzheimer’s disease (3xTg-AD).!?8 These ani-
mals normally develop intracellular A accumulation start-
ing at 2 months of life, intracellular tau immunoreactivity at
6 months, extracellular AP deposition at 15-26 months, and
tau-containing neurofibrillary tangles at 26 months. Using the
cortical controlled impact model, TBI independently resulted
in intra-axonal AP and tau accumulation and increased tau
phosphorylation in these mice.!?’

Goldstein and colleagues used a blast neurotrauma mouse
model'* to investigate blast forces on the skull of the mouse
in acceleration—-deceleration oscillation of sufficient inten-
sity to induce persistent brain injury. Two weeks after being
exposed to a single blast delivered through a compressed gas-
driven shock tube, injured mice exhibited enhanced somato-
dendritic phosphorylated tau CP-13 immunoreactivity in
neurons within the superficial layers of the cerebral cortex.
In addition, hippocampal CA1 neurons were intensely tau
46-immunoreactive. In order to confirm the presence of
phosphorylated tau proteinopathy, immunoblot analysis of
tissue homogenates was performed. These samples demon-
strated a significant blast-related elevation of phosphorylated
tau protein epitopes pT'®! and pS?? as detected by the mono-
clonal antibody AT270. These findings of CTE were com-
pared and contrasted with other histopathological findings
as well as to impairments in hippocampal neurophysiology.
Along with studies of long-term behavioral deficits that were
specifically related to head movement, these investigators
appeared to be the first to demonstrate a CTE-like neuropa-
thology in a mouse model of blast TBI, albeit only at a sub-
acute phase with no longitudinal component to determine
progressive neurodegeneration.

In a more conventional model of experimental rodent TBI,
Hawkins and colleagues explored the accumulation of endog-
enous tau oligomers following parasagittal fluid percussion
injury.*® Rats were studied at 4 and 24 hours after injury using
an anti-tau oligomer antibody. They were able to localize tau
oligomers (T22) and pan tau antibody Tau-1 within the hip-
pocampus and cerebral cortex at 24 hours after injury. When
they extended their studies to 2 weeks after injury, oligomeric
tau (T22) and phosphorylated tau (AT8) were again present in
both the hippocampus and cerebral cortex.

These results suggested that tau oligomers, not neu-
rofibrillary tangles, are responsible for the initiation and
spread of tau pathology in the neuron, reminiscent of spo-
radic tau pathologies.!®"132 Therefore, it is possible that the
elevated levels of extracellular tau following TBI'** accel-
erate the formation of oligomeric seeds, leading to the
spread of tau pathology in TBI. Such a unifying hypoth-
esis has also been proposed with the thought that cellular
stress may be the instigator for prions in neurodegenera-
tive diseases.!3*

In most clinical neuropathological studies, there is an
inference that the resulting CTE is related to the exposure
of individuals to repeated concussions. In a recent experi-
mental study using mice, this hypothesis was addressed.”!
Using a weight drop method without a craniotomy, mice
were exposed to various combinations of repeated insults
that varied from 5 days to 5 months with combinations of
concussive insults (daily, weekly, biweekly, or monthly).
Mice subjected to repeat mild TBI daily or weekly, but not
biweekly or monthly, had persistent cognitive deficits as
long as 1 year after their last injury. Although these deficits
were associated with astrocytosis, they were not related to
tau phosphorylation or amyloid f as measured by ELISA.
Interestingly, these deficits were also unrelated to the for-
mation of plaques or tangles (by immunohistochemis-
try), changes in brain volume, or changes in white matter
integrity as measured using magnetic resonance imaging.
From these experiments, it would appear that when repeat
mild TBI occurs over a short period of time, subjects may
be more susceptible to prolonged cognitive decline, and
this may not be related to tau accumulation. Such a mild
TBI-induced vulnerability has been reported in a rat model
of closed head injury;”® however, from an experimental
perspective, the mechanism(s) related to the phosphoryla-
tion of tau (CTE) may not be restricted to the exposure of
repeated mild blows to the head.

The hypotheses that repeat mild TBI may result in an
increase in phospho-tau were also addressed in a mouse
model by Kane and colleagues.** In this study, investigators
developed a new model of experimental closed head mild TBI
and reported a series of neurological, behavioral, and histo-
logical findings in mice that were exposed to single or mul-
tiple insults. When mice were injured once per day for 5 days
and studied 30 days after the last insult, there was nearly a
160% increase of phospho-tau (compared to controls) within
tissue samples containing the hippocampus and cerebral
cortex. However, mice exposed to this injury regimen were
not statistically different from controls in terms of locomotor
activity at 30 days postinjury. Unfortunately, the investiga-
tors did not report findings related to learning and memory
that may have revealed a related effect to the phospho-tau
increases within the samples containing the hippocampus.

Using a repeat mild TBI model in mice, another study
found that six concussive daily impacts for 7 days can result
in many neurological, cognitive, emotional, and sleep dis-
turbances with alterations in risk-taking behavior lasting
for as long as 6 months. However, in this comprehensive
neurobehavioral study, phospho-tau was not measured
postmortem, so a direct comparison between these deficits
resulting from repeat mild TBI could not be related to the
classic marker of CTE.!3¢

SUMMARY AND CONCLUSIONS

The pathophysiology of TBI is a complex process that begins
immediately after biomechanical insult and continues
throughout an extended time frame. This chapter described
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several biochemical, metabolic, and neurochemical processes
that may occur after injury. Many of these processes are
injury dependent whereas severity of injury may deter-
mine the extent and duration of these alterations. This
array of processes opens up the opportunity for treat-
ments in the acute and chronic stages. For example,
the use of a metabolically driven therapy is gathering
momentum. Supplemental fuels including glucose,!313¢
lactate,!®-1! pyruvate,'#2-1* and ketone bodies'**-1*7 could
benefit post-TBI CMRgluc, reverse metabolic dysfunction,
improve neuronal survival, and, in some cases, neurobe-
havioral. Although the administration of supplemental fuels
has been shown to be efficacious in acute and subacute time
points, it remains to be seen if they are effective in more
chronic settings. The advent of new and more injury-specific
biomarkers, including biofluid and neuroimaging modali-
ties, will aid in the diagnosis and treatment of TBI across
all levels of the continuum of injury.
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INTRODUCTION

Traumatic brain injury (TBI) remains one of the most fre-
quently occurring public health issues and is the number
one cause of death and disability among children 19 years
old and under. According to the 2003 report to Congress,
mild TBI (mTBI) makes up approximately 75% of the annual
1.7 million TBI cases. Contributing significantly to the mTBI
population are sports-related head injuries among teenag-
ers and young adult athletes. Approximately 1.6-3.8 mil-
lion sports-related concussive events occur predominantly
among teenagers and young adults, a population among
which the concussion rates are increasing. Emergency
department visits for concussions among 8- to 13-year-olds
has remained around 5,800 per year, and the rates among
14- to 19-year-olds has increased from 7,276 concussions
in 1997 to 23,239 concussions in 2007.!-3 Although the rate
of concussions within the adolescent population continues
to rise, several small-scale studies report the incidence of
repeat concussions (RTBI) to constitute between 5.6% and
4.9% of the annual sports concussion cases.*-8 Although epi-
demiological data is ongoing regarding the exact incidence
of RTBI, there has been a rapid emergence of experimen-
tal RTBI models to address concerns observed clinically,
including axonal injury, inflammatory responses, cogni-
tive impairments, and long-term risk for neurodegenerative
diseases.
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The models

The goal of these injury device modifications is to model
concussive or mTBI. Clinically, these types of injuries are
closed head, mild level of severity, with low mortality rates
that exhibit behavioral symptoms in the absence of gross
neuropathology. Experimental models of concussion and
mTBI should reflect these characteristics. It is important
that new models of RTBI demonstrate the magnitude and
time course of outcome changes with a single injury before
repeating the injury. This ensures that a truly “mild” injury
is additive when repeated. Establishing the number of
impacts and intervals is also a critical aspect of RTBI mod-
els, and the rationale for the parameters used are often lack-
ing and vary widely between studies.

These modeling parameters have been applied to previ-
ously well-established injury models (controlled cortical
impact, CCI; weight drop, WD; fluid percussion, FP) to
produce mild RTBI experimental models. The CCI injury
was originally designed to produce a penetrating injury of
known depth and velocity to generate an evolving contu-
sion.” More recently, the CCI has been modified to achieve
milder injuries. Modifications to the CCI injury include
variations in the impactor tip size and material, stereo-
taxically restrained or free-moving head, exposed skull or
closed head, and the distance and velocity of head displace-
ment. The majority of CCIs remain lateral injuries, although
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the injury can be delivered to any region. The WD injury
was characterized to produce a central midline diffuse
injury on the helmeted or exposed skull of rats on a foam
pad.!” More recent modifications to produce milder injuries
include variations in the material supporting the animal
(foam, foil, Kimwipe™), weight mass and distance of drop,
and the presence or absence of a helmeted disc on the skull.
The FP injury is another well-established model of diffuse
brain injury that can be delivered laterally or centrally.!
This injury requires a craniotomy and installation of a fluid-
filled injury cap, which is attached to the pendulum device.
Release of the pendulum generates a fluid pulse that travels
down a tube into the injury cap and into the epidural space.
Reducing the angle from which the pendulum is released
can produce a mild injury, but production of repeat injuries
at the same site can be problematic. Thickening of the dura
and increased connective tissue to the edges of the exposed
craniotomy after an injury can decrease the ability of subse-
quent fluid pulses to be delivered to the epidural space. This
is a problem that is not often addressed in those utilizing FP
injuries in RTBI models.

Experimental design

Experimental design is a critical part of any research, but
there are specific design challenges in regards to RTBI
models in the adult and developing brain. The selection

Interspecies comparisons for age selection

of appropriately aged animals is important and directly
dependent on the outcome measures of interest. Although
making interspecies age comparisons is difficult, there are
several reviews that address species age windows that rep-
resent infants, children, teenagers, and adults (Figure 3.1).

Knowledge of developmental profiles of the specific out-
come measures in a given species is important for interpre-
tation of TBI-induced effects. Outcome measures of interest
can be particularly limiting when working with developing
age groups. Although assessment of behavioral function
after injury can be achieved in adult animals by compar-
ing pre- and postinjury performances, this may not be pos-
sible with the younger animals if pretraining occurs before
they are developmentally capable of performing the task.
Determination of the appropriate interspecies age groups
can also be challenging. There are several recent reviews
on this topic that have assisted researchers in making more
accurate age selections (Figure 3.1a). It is estimated that after
adulthood is achieved, every 1 month for a rat is equivalent
to 2.5 human years.!?

RTBI studies require establishing a certain number
of impacts and a time interval between them. A rationale
should be provided for the selected number of injuries and
the interval between injuries. Although this seems obvious,
this is often lacking information and could be quite useful
for other researchers. Upon establishing the injury groups,
there can be a difference in the ages at which the injuries are

Hl;rgnean Rat ag: ;g:)stnatal References
Newborn PND 12-13 Romjin 199
Toddler 2-3 years PND 20-21 Semple 2013; Sengupta 2013
Childhood 4-11 years PND 25-35 Sowell 1999
Adolescent 12-18 years PND 35-45 Andreolle 2012; Spear 2000, 2004; Giedd 1999
Young adult 20 years+ 60 days Andreolle 2012; Semple 2013
Adult 30 years+ 12 months Andreolle 2012

(a)

Experimental design: controlling for “age at injury” or “age of recovery”

PND60xu>x 7d s 68daysold at
outcome time point
PND60 ) 10d > X

7d 77 days old at

S . .
2 outcome time point

PND69 Y195 ¢

7d s 77 daysold at
7

PND60 10d > X

outcome time point

7d « /7 daysoldat

" outcome time point

(b)

Figure 3.1 Experimental design considerations. (a) Interspecies age comparisons in selection of appropriate age of animal
models. (b) Controlling for either age at injury or age at recovery of outcomes.
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delivered and the ages at which outcomes are tested, if there
are variations in the interval between injuries (Figure 3.1b).
This may not significantly affect results when the interval
is 1-2 days. But intervals of 1 week or greater can produce
large differences in “age at the time of assessment,” and this
emphasizes the need for age-matched controls. Alternative
designs include matching the age of outcome assessment
and altering the age of injury (Figure 3.1b). The inability to
control for both age and time after injury is a design limi-
tation that often complicates developmental TBI and RTBI
studies. These modeling issues should be kept in mind
throughout the review below of RTBI models in the devel-
oping animal models and adult animal models.

REPEAT MILD TBI IN DEVELOPING
ANIMAL MODELS

The incidence of TBI across all age groups has shown peaks
in early development and adolescence.!®* Despite this evi-
dence, the field of TBI as a whole has focused on adult mod-
els, and a similar pattern has emerged again in modeling for
RTBI. There are far fewer animal models addressing repeat
head injuries in the child and adolescent stages of brain
development. RTBI in the younger child is addressed in a
later section of this chapter.

Addressing RTBI in the adolescent brain is important
for several reasons. First, as mentioned, adolescents are the
peak TBI population with the peak incidence of all TBIs,
including concussions. Among 14- to 19-year-olds, concus-
sion rates have increased from 7,276 concussions in 1997
to 23,239 concussions in 2007.:2 More importantly, many
adult athletes who are often studied for concussion effects
often have a history of TBI starting during adolescence!
Second, the adolescent population is at the greatest risk, as
they are the least likely to comply with return-to-play guide-
lines. Their normal adolescent behaviors put them at greater
risk for multiple concussions with shorter time intervals.!*
Third, the adolescent brain is in a critical stage of develop-
ment. RTBI can alter the normal physiological, cognitive,
and social development of the individual, leading to a life-
time of living with chronic difficulties that can impact their
academics, ability to hold jobs, live independently, and be
productive individuals. The economic burden and social
stress that families experience largely goes unappreciated.

Adolescent RTBI

HISTOLOGY AND BEHAVIOR

In 2010, Prins et al.'> were the first to use the 5 mm CCI
impactor on a free-moving closed head to produce a con-
cussive injury in an adolescent rat. This mTBI model was
used to assess the effects of RTBI on various outcome mea-
sures, including histology, cognitive performance, pituitary
function, metabolism, gender, and amyloid accumulation
(Table 3.1). A single injury produced brief transient apnea,
delayed toe-pinch response and righting response, acute

cognitive deficits, and mild gliosis."” Increases in axonal
injury, as indicated by amyloid precursor protein (APP)
immunohistochemistry, were observed to a greater extent
in RTBI (two injuries/24-hour interval) than single injury.
Novel object recognition task deficits were not observed in
single or RTBI groups when the interval between familiar
and new objects was 1 hour. Increasing the duration between
familiar and novel objects revealed increasing magnitude of
deficits with number of injuries. Recovery of novel object
recognition to sham level performances was observed at
3 days postinjury in those with single impact, but the RTBI
group remained impaired.

BRAIN IMPACT INTERVAL INFLUENCES
METABOLISM AND AMYLOID DEPOSITION

This CCI adolescent RTBI model was utilized to address the
issues regarding brain impact intervals. Changes in cere-
bral glucose metabolism (CMRg) have been established as
a hallmark response after experimental and clinical TBL
The magnitude and duration of TBI-induced CMRg depres-
sion increases with injury severity'® and age.'”~!° Brain cells
exposed to a concussion typically survive, but they exhibit
neurochemical and neurometabolic dysfunctions, which not
only contribute to neurobehavioral deficits, but also create
a state of vulnerability.?’ This vulnerability can last for days
to weeks, depending on the type and severity of concussion,
and cells that normally would tolerate a concussive event
are now compromised when exposed to a second injury.?-?2
Although the specific mechanisms behind this TBI-induced
CMRg depression are unknown, recent findings have dem-
onstrated that metabolic alterations?*?* mark the window of
cerebral vulnerability. The adolescent RTBI model was used
to demonstrate that CMRg depression recovered by 3 days
after a single mTBI in adolescent rat. When a second mTBI
was introduced during the glucose metabolic depression of
the first injury, it resulted in greater metabolic dysfunction
and behavioral impairments. However, if the second TBI
was introduced affer the glucose metabolic depression of the
first injury recovered, the metabolism and behavior effects
were not exacerbated.?! This was the first study to demon-
strate that the brain impact interval directly affects meta-
bolic outcome.

The brain impact interval has also been shown to influ-
ence amyloid accumulation in adulthood after RTBI during
adolescence in the same CCI injury model.>* Adolescent male
and female APP/PSI transgenic rats were given RTBI (four
impacts/24-hour or 72-hour interval), and amyloid plaque
load was determined at 12 months of age. Significantly greater
size and number of hippocampal amyloid (Af) plaque depo-
sition were observed in RTBI at the 24-hour interval than
those with RTBI at the 72-hour interval. Similar results were
seen in extrahippocampal regions, and the increased Af3
deposition was seen bilaterally in both males and females.
This study was the first to demonstrate that RTBI during
adolescence can accelerate deposition of Alzheimer’s dis-
ease pathology and that these effects are dependent on brain
impact interval.
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PITUITARY DYSFUNCTION

Adolescence is a developmental period characterized by hor-
monal changes that are necessary for time-sensitive devel-
opment of permanent brain structures, cognition, and
behavioral function. More recently, the adolescent CCI RTBI
model has been used to examine hypopituitarism following
injury and determine the effects on growth and behavior.
Adolescent male rats were given sham, single, or four RTBI/
24-hour interval, and the time course of growth hormones
(GH) and insulin-like growth hormone (IGF-1) changes were
determined. RTBI resulted in decreased circulating GH and
IGF-1 levels (1 week and 1 month postinjury), decreased body
weight and sexual maturation and increased permeability of
the pituitary vasculature.®> RTBI also produced deficits in
testosterone production, reproductive organ growth, erec-
tile dysfunction, and impaired reproductive behaviors at
1-2 months postinjury.?® These results demonstrate the risks
of undiagnosed hypopituitarism after repeat concussions in
the adolescent population, which can affect normal brain
development and neurobehavioral function in adulthood.
The WD model has also been adapted to produce RTBI
in adolescent female mice to address the consequences of
hormonal changes.’* PND38 rats were positioned on a taut
foil during the impact of a 95-g weight dropped from 1 m,
allowing the animal to freely move upon impact. The effect
of a single injury was not characterized in this study, but five
impacts at 24-hour intervals produced decreases in IGF-1
and tibial bone mass at 7-14 days postinjury. RTBI during
adolescence in females could negatively impact hormones
involved in growth and development of the skeletal system.

GENDER

Although the majority of TBI research has focused on male
animal models, epidemiological studies show an increase in
the number of females experiencing concussions and RTBI.
The incidence of sports-related concussions and repeat con-
cussions have increased annually since 1997 in teens and
young adults! with many sports showing greater incidence
of head injury among female athletes.?3-* Although this
issue is of growing public concern, to date, only two research
studies have addressed RTBI in a female adolescent animal
model.33¢ The same repeat CCI injury model discussed in
the previous sections was used to study memory and social
interaction in the female adolescent rat.3¢ Unlike the males,
adolescent female rats failed to perform the novel object
task. It has been previously demonstrated that females at this
age show gender differences in preferences for novel objects.?”
This emphasizes the importance in taking gender differences
into account when studying the effects of TBI. Females with
four RTBI at 24-hour intervals did show significant decreases
in total social time, number of times play was initiated, and
times play fighting with novel females with increase in play
avoidance. These results demonstrate that repeat concussions
could have significant impact on adolescent female social
interaction, which can contribute to quality of life during a
period of dynamic cerebral development.

CHRONIC PATHOLOGY

Another WD model has also been applied to PND35-42
mice to examine the effects of RTBI on chronic pathology.?’
After establishing that a 40-g weight released from 1 m pro-
duced a mild injury, one impact or three impacts per day
were given at 0, 1, 3, and 7 days. The magnitude of axonal
injury increased with number of injuries in the optic tract,
cerebellar lobule, and corpus callosum at 7 days postinjury.
Density of microglia cells also increased with injury num-
ber at 7 days after injury, which returned to sham levels at
10 weeks postinjury. No phospho-tau immunoreactivity
was detected in this model. This model produces detectable
changes in axonal injury with RTBI in the visual system
and cerebellum that can be used to examine adolescent TBI
therapeutic interventions.

Prepubertal repeat TBI

CHARACTERIZATION OF PATHOLOGY TIME COURSE

In contrast to the adolescent age group, RTBI models have
also been applied to younger postnatal age groups to exam-
ine age-related differences in outcomes. Modification of the
CCI injury model impactor tip to include a 9.5-mm rubber
end was used on an exposed skull in postnatal day (PND)
18 rat pups to give one, two, or three injuries at 24-hour
intervals to examine early and chronic histology and behav-
ioral outcome measures.’ A single mTBI produced axonal
degeneration, but no behavioral assessments were done in
this group. Evidence of axonal injury was greater in RTBI
groups with increased microglial reactivity at 7 days postin-
jury. No differences between sham and RTBI groups in
beam balance, Morris water maze (MWM), or elevated plus
maze (2 weeks, 2 months), but impairments were present
in novel object recognition (18 days) and fear conditioning
tasks (day 92 postinjury).

A modified WD model was used to address gross patho-
logical changes after RTBI in the prepubertal brain. PND20
rats were positioned on a taut Kimwipe™ during the impact
of a 92-g weight dropped from 865 mm, allowing the animal
to freely move upon impact.>? In this model, the effects of a
single injury were not characterized, and the RTBI group of
five injuries at 24-hour intervals was compared to sham ani-
mals. At 14 days postinjury, MRI analysis revealed cortical
thinning at the impact site, ventriculomegaly of the lateral
ventricles, and Neu-N staining showed neuronal loss within
the motor cortex after RTBI. Among the models discussed
thus far, the pathology in this animal model is more severe.

REPEAT MILD TBI IN ADULT ANIMAL
MODELS

Metabolism

A hallmark characteristic of all types of TBI includes acute
and long-term alterations to cerebral metabolism. It has
been well characterized after experimental and clinical
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brain injuries that glucose metabolism increases immedi-
ately after injury transiently, followed by a prolonged period
of cerebral glucose metabolic depression.* Changes in cere-
bral metabolism, blood flow, and vascular responsiveness
have been recently addressed in models of RTBI (Table 3.2).
WD (Kimwipe) injury of five impacts (24-hour interval)
delivered to adult mice produced significant decreases in
cerebral blood flow that did not recover until 3 days postin-
jury along with MWM performances.”® A single impact
showed CBF recovery within 24 hours after impact. These
findings are consistent with the impairments in vascular
reactivity observed after repeat WD in the adult rat.40-4
A cranial window was used to measure cortical vascular
response to acetylcholine application after RTBI at vari-
ous intervals (3, 5, or 10 hours). A single injury showed no
impairment in vascular response to acetylcholine applica-
tion, but after two injuries at 3-hour intervals, failure of
vessels to vasodilate was observed. The vascular reactivity
impairment decreased with greater intervals between inju-
ries with 10-hour interval groups responding similarly to
single and sham animals. The axonal injury burden fol-
lowed the pattern of impaired microvessel reactivity, and
both measures were improved with animals that were
treated with FK506 and hypothermia.*!:#2

These RTBI-induced acute changes in cerebral vascular
responses occur simultaneously with markers of metabolic
crisis and oxidative stress. RTBI with the Marmarou WD
model in adult rats at various intervals showed that the inter-
val between injuries directly affected the decreases observed
in metabolic markers (ATP, NAA, NAD, and acetyl CoA) and
increases in oxidative stress (malondialdehyde, glutathione,
nitrite).**>** Maximal impairments occurred with injuries
that were given at 3-day intervals, and with 5-day injury
intervals, the markers reflected sham levels. Injury interval
was also related to changes in cerebral glucose metabolism
after RTBI in adult mice.*> A lateral WD injury was used
to deliver one or two injuries at 3-day or 20-day intervals,
and CMRg was quantified with “C-2DG autoradiography
at 3, 6, and 10 days after the last injury. The cortical pat-
tern of CMRg differed from previously reported patterns of
change with increases in CMRg observed at 6 days after a
single injury followed by prolonged metabolic depression.
It is unclear if this difference can be attributed to species
response differences or the lateral nature of this WD injury
model. Injuries given at 3-day intervals did not show signifi-
cant changes from sham animals, but those with impacts at
20-day intervals showed cortical CMRg increases at 6 days
after the last injury. Collectively, these acute studies demon-
strate that many of the early cascades that are initiated fol-
lowing moderate and severe injuries are present after repeat
mild injuries and that the interval between injuries directly
affects the magnitude of accumulating impairments.

Inflammation

Another cascade that is well characterized after TBI is the
evidence for inflammatory responses. Moderate and severe

TBI both cause significant morphological changes in astro-
cytes and microglia as well as increases in cytokines.*
Single mild brain injuries produced by either CCI or WD
models generally produce small increases in astrocytosis
and microgliosis during the first week in cortex, hippocam-
pus, corpus callosum, or cerebellar regions in the absence
of cell loss*’-#° (Table 3.3). It is important to note that there
are some unique features among the models reported in
Table 3.3 that should be considered. Huang*® and Aungst*
both use modified injury models that produced cell loss
with a single impact that increase with increasing number
of injuries. Cell loss and contusions are not pathologies that
are commonly seen among single or repeat concussions
and may reflect a greater severity of these models. Another
consideration between studies is the type of anesthesia. The
majority of studies utilize isoflurane, but several use pen-
tobarbital prior to injuries, which can cause significantly
greater metabolic depression than inhaled anesthesia.
Interestingly, Petraglia and colleagues® is the only study,
thus far, to report a repeat injury model conducted with
no anesthesia while the animal is held in a restraint cone.
Despite the differences in models used, number of injuries,
and interval between injuries, RTBI given at shorter inter-
vals produced greater increases in reactive astrocytosis and
microgliosis during the first postinjury week, and evidence
of chronic inflammatory responses (2-6 months) has also
been observed.*'->* The long-lasting nature of the inflam-
matory response to RTBI suggests a role in exacerbation of
axonal injury, synaptic dysfunction, and development of
neurodegenerative diseases.

Axonal injury

Clinically, concussions are usually both CT and MRI
negative, but subtle axonal disconnections could be used
to characterize mTBI. Axonal injury has been assessed in
many of the RTBI models presented (Table 3.4). A modified
CCI injury was used to deliver a single or two injuries at
24-hour intervals to 2- to 3-month-old mice.”! The single
mTBI group showed no gross neuronal loss, no APP stain-
ing, or MWM deficits. RTBI animals showed MWM defi-
cits during the first week with partial recovery by 7 weeks
postinjury with evidence of corpus callosum injury, few
APP staining and positive reactive microgliosis at 7 weeks
postinjury. This study was followed by the use of diffusion
tensor imaging (DTI) in combination with immunohisto-
chemistry techniques to assess the time course of axonal
injury.>*No changes in DTI were detected at 24 hours. There
were significant decreases in axial and mean diffusivity in
white matter that correlated with silver staining, but not
APP, at 7 days. Application of the same injury paradigm
to a CD11b-TK knockout mouse with reduced microglial
population did not alter the degree of axonal injury with
RTBIL> suggesting that microglia may not contribute to
axonal injury. In addition to the closed head CCI injury
model, the FP injury model has also been used to address
cytoskeletal changes after repeat injuries in the adult rat.>
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Table 3.4 Adult animal models of repeat TBI: Axonal injuries

Age/ Injury
Type species Injuries specifics parameters
CCl Mice adult ~ 9-mm rubber tip, One or two
3.3 mm, 5 m/s, impacts (24-h
restrained, skull interval)
exposed
CCl Mice adult ~ 9-mm rubber tip, Sham, two
3.3 mm, 5m/s, impacts/24-h
restrained, skull interval
exposed
FP Rat adult 1 atm, lateral Seven
impacts/24-h
interval

CCl Mice adult Sham, one or
two impacts/3-,
5-, 7-day

intervals

9-mm rubber tip,
3 mm, 5m/s,
restrained, skull
exposed

Outcome Time
Anesthesia measures postinjury  References
Isoflurane APP and silver 2 months Shitaka
staining et al.%
Isoflurane DTl imaging, APP  1-3 weeks Bennett
staining et al.®;
Bennett
and Brody®®
Pentobarbital MAP2, 1 week, Kanayama
neurofilament 1 month et al.>¢
staining
Isoflurane APP staining 1 week Longhi
et al.®0

At 1 week postinjury, microtubule-associated protein 2 and
phosphorylated neurofilament proteins accumulated in the
neuronal perikarya and dendrites. After 1 month, these
protein accumulations increased further, and tau-1 immu-
noreactivity was detected in the cell bodies. Increasing the
interval between injuries has been shown to decrease the
degree of axonal injury observed. CCI injuries given to
adult mice at 3-, 5-, or 7-day intervals showed increases
in APP labeling in axons in the corpus callosum, hippo-
campus, thalamus, and hypothalamus during the first
week.® The RTBI 3-day interval showed a greater number
of injured axons than those animals with injuries at 7-day
intervals. These indicators of early cytoskeletal disruption
indicate ongoing impairment of axonal transport after
RTBI.

Acute and chronic behavioral profiles

The clinical presentation of concussions and mTBI include
transient functional impairments in the absence of gross
pathology. The balance between generating animal inju-
ries that produce minimal pathology with an injury that
produces detectable functional impairments has been
a great challenge for experimental model development.
Functional deficits within the first week postinjuries have
been easier to detect. Several studies have characterized
the effects of multiple impacts on acute behavioral func-
tion (Table 3.5). Adult mice were given one, three, five, or
10 concussions with the modified WD (Kimwipe) model
at 24-hour intervals to examine the effects of cognitive
performance 1 day after these injuries.! Animals with a
single injury had MWM escape latencies similar to sham
animals, but the cognitive deficits increased with the num-
ber of concussions. A separate group of animals with five
concussions at 24-hour, 1-week, 1-month, or 1-year inter-
vals were examined to determine the impact of injury

interval on cognitive performance at 1 day post last injury.
Consistent with other injury interval studies, animals with
injuries sustained at 24-hour or 1-week intervals showed
the greatest cognitive impairments when tested 1 day
postinjury and continued to show deficits at 1 year post-
injury, even without histological pathology. Similar results
were obtained with the modified CCl injuryin adult mice.*
The magnitude of impairments in spatial learning and ves-
tibulomotor function increased with the number of inju-
ries and decreased with greater intervals between injuries
(3- and 5-day intervals). RTBI generated with a WD injury
also revealed delayed righting times and impaired MWM
performance (5 days postinjury) but demonstrated ventral
cerebral cell loss.®? In the absence of cell loss or blood-
brain barrier compromise, a modified WD injury in mice
(four impacts/24-hour interval) resulted in significant
spatial learning deficits 1 week postinjury in the MWM. %3
These studies of the acute effects of RTBI on behavioral
function consistently demonstrate the cumulative nature
of multiple concussions on cognitive impairments and
that the interval between injuries directly affects this out-
come measure.

These RTBI models have also been used to address the
question of the enduring nature of these behavioral impair-
ments. MWM, novel object recognition, and Barnes maze
impairments were detected during the first month after
repeat FP impacts,*®% repeat CCI injury,*® and repeat fron-
tal CCL.** Adult rats with repeat CCI injuries did not show
MWM deficits when the injury interval was increased to
20 days.%> Manipulation of these deficits at 1 month postin-
jury with chronic alcohol did not improve MWM perfor-
mance,® but reduction in the tau allele of the transgenic
mouse model prevented spatial learning and memory defi-
cits.®* Reports of chronic impairments in MWM latencies
3-6 months after injury were characterized after repeat WD
(Kimwipe).#-52:53
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