
Information Processing Letters 105 (2008) 108–113

www.elsevier.com/locate/ipl

Optimal point removal in closed-2PM labeling ✩

Farshad Rostamabadi a,b,∗, Iman Sadeghi a, Mohammad Ghodsi a,b, Ramtin Khosravi c

a Computer Engineering Department, Sharif University of Technology, Tehran, Iran
b School of Computer Science, Institute for Studies in Fundamental Sciences, Tehran, Iran

c Electrical and Computer Engineering Department, University of Tehran, Tehran, Iran

Received 17 July 2006

Available online 25 September 2007

Communicated by F. Dehne

Abstract

An optimal labeling where labels are disjoint axis-parallel equal-size squares is called 2PM labeling if the labels have maximum
length each attached to its corresponding point on the middle of one of its horizontal edges. In a closed-2PM labeling, no two
edges of labels containing points should intersect. Removing one point and its label, makes free room for its adjacent labels and
may cause a global label expansion. In this paper, we construct several data structures in the preprocessing stage, so that any point
removal event is handled efficiently. We present an algorithm which decides in O(lgn) amortized time whether a label removal
leads to label expansion in which case a new optimal labeling for the remaining points is generated in O(n) amortized time.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Computational complexity; Map labeling
1. Introduction

Optimal labeling of a set of points is generally a NP-
Hard problem, but with some restrictions, like ones in
the well known 1P and 2P models in point labeling [1],
it can be solved in polynomial time. Also, the special
cases of elastic labeling introduced in [2] where labels
should have an edge on the positive part of x and y axis
can be solved in polynomial time with a dynamic pro-
gramming technique. In another paper, a special case of
the line labeling where all lines are orthogonal and each

✩ Supported in part by Institute for Theoretical Physics and Mathe-
matics (IPM) under grant number CS1385-2-01.

* Corresponding author at: Computer Engineering Department,
Sharif University of Technology, Tehran, Iran.

E-mail address: farshad@parsebiz.com (F. Rostamabadi).
0020-0190/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2007.08.033
label has only three candidates, are solved in polyno-
mial time by a reduction to the 2SAT problem [3,8].

As other polynomially solvable problems in map la-
beling, we consider two specific labeling models, called
2PM and 4PM, where the labels for all points are equal-
size axis-parallel squares with maximum possible size.
The main restriction is that, each label can be attached
to its point only on the middle of one of its horizon-
tal or vertical edges. In 2PM model, each point has two
choices: top or bottom edges (or similarly left or right
edges), but in 4PM, each point chooses one of either
top/bottom or left/right edges, and this is known in ad-
vance.

The problems of dynamic insertion of point-obstacles
or new labels into an existing labeling and a fast re-
construction of a new optimal labeling (with possibly
shrunk labels) have been considered before. Relabel-



F. Rostamabadi et al. / Information Processing Letters 105 (2008) 108–113 109
ing in 4PM to avoid a single obstacle was considered
in [4] and a simpler algorithm in 2PM was later pro-
posed in [5]. The same authors consider the problem of
incremental labeling for 4PM model in [7] and a simpler
algorithm for the 2PM case was presented in [6]. The
latter algorithms do: (a) insert a label without shrink-
ing the labels in O(lgn) time and, (b) relabel all points
with smaller optimal labels in linear time, if part (a) is
not possible.

In this paper, we study the problem of removing a
label from a given optimal labeling. We perform some
preprocessing in O(n lgn) time and O(n) space so that
we can decide in O(lgn) amortized time whether such a
removal leads to a new optimal labeling with expanded
labels. We can then use [6] to relabel all points in O(n)

amortized time if needed. We will see that our removal
algorithm cannot easily be combined with our insertion
results, so an efficient and fully dynamic algorithm to
deal with both insertion and removal is our current chal-
lenge.

2. Problem definition and the method outline

A 2PM labeling L = {�1, �2, . . . , �n} of a point set
P = {p1,p2, . . . , pn} is a set of disjoint square axis-
parallel labels with side length σ positioned on the plane
such that each label �i is attached to pi on the middle of
one of its horizontal edges [4,5]. The edge of �i contain-
ing pi is denoted by ref (�i) and is called its reference
edge, and its opposite is denoted by opp(�i). Also, each
of its two other edges is called its side edge. A label
�i can be flipped only on its reference edge, the result-
ing label is denoted as f (�i). A Closed-2PM labeling
is a variation of 2PM labeling where there is no pair
of overlapping reference edges. A closed-2PM labeling
with the maximum length is called an optimal labeling.

Given a point set P and its optimal labeling L, sup-
pose a point pi with its �i is removed from L. If L−{�i}
is not optimal, we should compute a new optimal label-
ing for P−{pi}. The problem is to preprocess the input,
so that upon each removal of a point like pi we can ef-
ficiently determine if L− {�i} is still optimal. If not, we
use the algorithm presented in [6] to relabel P − {pi}
optimally with enlarged labels.

Using a naïve approach, the check for the optimality
of a labeling can be done in O(n). To improve this time,
we compute and maintain a data structure called con-
flict graph G (to be defined later). Likewise, computing
a new labeling from scratch takes O(n lgn) time using a
2SAT approach [1,7]. The algorithm in [6] uses another
data structure called adjacency graph H (originally de-
fined in [7]), to improve this running time to O(n). The
adjacency graph can be constructed in O(n lgn) time
and O(n) space and updated in O(lgn) time per each
removal.

The main steps of the algorithm are as follows. In
this paper, we concentrate on the optimality check step
and on the construction and maintenance of the conflict
graph G. Other steps have been worked out before.

Preprocessing: Compute G and H.
Point Removal: Upon removal of a point pi :

Optimality Check: Using graph G, test if L − {�i}
is still optimal.

Update: Remove pi from P and update the two
graphs G and H.

Relabel: In case the optimality check was negative,
compute a new optimal labeling.

3. The algorithm

Consider the labeling L′ = L − {�i} that is obtained
after removal �i from the original optimal labeling L. If
there are no two labels with touching boundaries, then
L′ is obviously not optimal. Otherwise, to see if L′ is
still optimal, we should check if we can flip some labels
such that there are no more pairs of touching labels. We
consider each touching pair (�i, �j ) in turn and see if �i

or �j (possibly with some other labels) can be flipped
to separate �i and �j . If the touching labels cannot be
separated, then L′ is optimal.

To flip a label �i and still having non-intersecting
labels, we should flip every other label that intersects
f (�i) too. The flips are propagated recursively. The end
to this recursion happens with two possibilities: (1) the
flips end with no intersecting labels, and (2) when some
�k is to flip and f (�k) intersects with both �l and f (�l),
for some �l . So, flipping of �i is not possible in the sec-
ond case.

There are two special situations in which it is possi-
ble to flip some labels, yet the length of the labeling is
not increased. First, it is possible to have two pairs of
touching labels (�i, �j ) and (�k, �l), such that each pair
can be separated individually, but not at the same time
(as illustrated in Fig. 1(a)). Second, it is possible to have
a pair of touching labels (�i, �j ) that can be separated,
but applying the flips to separate these labels creates an-
other pair of touching labels. It can be easily seen that
separating the new pair causes (�i, �j ) to touch again
(as illustrated in Fig. 1(b)).

The process of optimality check as described above
(i.e., separating each pair of touching labels in turn by
recursive flips) is not efficient. The problem we are fac-
ing is to efficiently determine which touching pairs can



110 F. Rostamabadi et al. / Information Processing Letters 105 (2008) 108–113
Fig. 1. Two special cases while removing the touching pairs of labels
(green labels are touching, and gray labels are flipped version of orig-
inal labels): (a) Only one pair of the touching labels can be removed;
(b) Removing the touching pair creates another pair of touching la-
bels.1

be separated using the free room previously occupied
by the label just removed. To solve this, we use the
conflict graph introduced in [4,7]. The conflict graph
G = (P,F ∪B), is a multi-graph with P as its vertices.
A directed edge (pi,pj ) belongs to F if and only if
f (�i) intersects �j , but does not intersect f (�j ). An
undirected edge (pi,pj ) belongs to B if and only if
f (�i) intersects f (�j ) or touches �j . Intuitively, having
an edge (pi,pj ) in F means �i cannot be flipped unless
�j is flipped too. The edges in B help us find the end of
the flipping sequences. We sometimes slightly abuse the
notation and use the labels corresponding to the points
as the vertices of G.

The conflict graph is constructed in the preprocess-
ing phase, when no point is removed yet. Note that it is
possible for the initial labeling to contain some touching
pairs that can be separated successfully. Prior to con-
structing the graph, we separate these touching pairs
one by one until no pairs can be separated successfully
(without generating a new touch). We call each remain-
ing touching pair, a constraint pair.

We can observe that a constraint pair (�i, �j ), can
only be of one of the following three categories (as il-
lustrated in Fig. 2):

Type 1: Only one endpoint of ref (�i) coincides with
one endpoint of ref (�j ).

Type 2: ref (�i) touches opp(�j ) or opp(�i) touches
ref (�j ).

1 For interpretation of the references to color, the reader is referred
to the web version of this article.
Type 3: opp(�i) touches opp(�j ) or two side edges are
touching.

Suppose that we have removed a point with its label
and have a constraint pair (�i, �j ). If flipping �i removes
the constraint, we call �i a relaxing label. The same rule
applies to �j as well. For a type 1 constraint pair, none
of the labels are relaxing, since flipping labels cannot re-
lax the constraint. For a type 2 constraint pair, assuming
ref (�i) touches opp(�j ), �j is relaxing. �i is not relax-
ing in this case since f (�i) touches ref (�j ). Finally, for
a type 3 constraint pair, either one label or both of them
are relaxing.

If a relaxing label �i is to flip, we will have a se-
quence of recursive flips. Since �i is a part of a con-
straint pair, we fail doing all these flips. But, not all
labels considered during this process are failed to flip.
We mark those that fail as red. Any label that is not red
is marked as green.

Definition 1. A path π = (�i1, �i2 , . . . , �im) of labels is
a complete red path if,

1. �i1 is relaxing,
2. (�ij , �ij+1) ∈F for all 1 � j < m, and
3. there is a label �k where

(a) f (�im) intersects both �k and f (�k) (i.e.
(�im, �k) ∈ B), or

(b) f (�im) intersects f (�k) and there is a path of
edges in F from a relaxing label to �k .

We mark �i1, �i2, . . . , �im as red labels and denote any
sub-path of π as a red path.

The item 3 in the above definition of path π specifies
the condition where a sequence of flips finally fails.

Having the path π as defined above, suppose a label
�id (1 � d � m) is to be removed. Since the removal of
�id disconnects π , the remaining labels on this path can
be turned into green, unless they also belong to some
other red path(s). To do this, we successively apply the
following rules and try to turn all red labels into green.

Rule 1. If a red label �x has no outgoing edge in F to a
red label, and has no connecting edge in B to a red label,
�x is turned into green.

To describe this rule, suppose �y is red. Having the
edge (�x, �y) in F means that flipping �x requires �y

to flip which is impossible. For the second case and as-
suming that �x and �y are red and the edge (�x, �y) in B.
This means that there is not enough room for both labels



F. Rostamabadi et al. / Information Processing Letters 105 (2008) 108–113 111
Fig. 2. Three different types of constraint pairs: (a) Touching reference edges; (b) A reference edge touches the opposite edge; (c) Touching opposite
edges (left) and touching side edges (right).

Fig. 3. A step by step example of color changes in a sample labeling (green labels are shown as white). In the left, a sample labeling with initial
label colors is shown. At each step, a label, shown in gray, is deleted and label colors are adjusted. Finally there is no more red labels hence the
points should be relabeled.
to flip at once. Note that only one of these two labels can
be turned into green. But, this would not turn the other
into green, we leave both as red.

Rule 2. If a non-relaxing red label �x has no incoming
edge in F from another red label, it is turned into green.

This rule implies that, having no incoming edge from
another red label in F , means that nobody forces �x to
flip, so it can safely turn into green.

Rule 3. If a red relaxing label �x which is a part of a
constraint pair of type 3 turns into green, the other label
is turned into green (if it is not already green).

To make a procedural view of color updates, ob-
serve that removing and changing the color of a label
may only affect the color of its neighbors in G. So, we
start by the neighbors of the label just removed, and re-
cursively apply the above rules to the neighbors of the
labels just turned into green.
In case all labels are turned into green, we should
relabel the whole map with enlarged label length, and
re-color all labels to prepare for the next removal. If
there exist some red labels, the current labeling is opti-
mal and this is proved in the following section. Fig. 3
illustrates how label colors are changes, according to
our algorithm, for an arbitrary input. After deleting three
labels, the remaining points of Fig. 3 should be rela-
beled and recolored since there is no more red labels.

4. Proof of correctness and analysis

Lemma 1. After a point removal, assume that no more
red label be turned into green. Then each red label be-
longs to at least one complete red path.

Proof. Consider a red label �x that does not belong to
any complete red path. Two cases may happen: either
we fail reaching a red label �y from �x such that �y has
an edge in B to another red label, or there is no red path
from a relaxing label to �x . In the first case, consider



112 F. Rostamabadi et al. / Information Processing Letters 105 (2008) 108–113
a longest red path from �x to some other label �z, in
which case, Rule 1 changes the color of �z into green
which is a contradiction. In the second case, consider a
longest red path from some label �z to �x . In this case,
�z is not relaxing and has no incoming edge in F from
a red label. So, the second rules is applicable, which is
a contradiction. �

The following lemma is easy to prove based on
Lemma 1 and Rule 3.

Lemma 2. After a point removal, assume that no more
red label be turned into green. If a relaxing label �x is
green, then either �x can be successfully flipped, or �x

is a part of a constraint of type 3 and the other label in
the constraint pair can be successfully flipped.

Proof. The label �x is made green by either Rule 1 or
Rule 3. In the first case, there is no red path starting from
�x , so it can be successfully flipped. Rule 3 yields to the
second case stated in the lemma. �

Finally, the following lemma concludes the correct-
ness of the algorithm.

Lemma 3. After a point removal, assume that no more
red label be turned into green. The length of the labeling
can be increased if and only if no red label exists.

Proof. If a red label exists, according to Lemma 1, there
is a complete red path which means there is a constraint
pair that cannot be resolved. If there is no red label, then
any constraint pair contains green labels and can be re-
solved according to Lemma 2. �

To analyze the running time of the algorithm, assume
that a simple algorithm applies the three rules recur-
sively to the neighbors of the label just removed. The la-
bel �y is a neighbor of �x if �x and �y are connected in F
or B. Then, the algorithm applies the rules to the neigh-
bors of all labels turned into green. We use the potential
method to show that the time of color changes for each
point removal, is amortized O(1). This should be added
to the cost of updating H which is always O(lgn) [6].
So, each point removal needs O(lgn) amortized time.
Define the function φ(L) = 9r(L) as the potential func-
tion of L where r(L) is the number of red labels in L.
Since each label has at most eight neighbors, each la-
bel is considered at most eight times when its neighbor
turns into green and once when the label itself turns into
green. So, the actual cost of visiting and assigning new
colors to red labels and their neighbors are covered by
the potential function.

Thus, the main result of the paper can be summarized
in the following theorem:

Theorem 1. Having an optimal labeling L of a set P of
n points in closed-2PM labeling, and using an O(n lgn)

time and O(n) space preprocessing, assume that an ar-
bitrary event point pi ∈ P is removed from the map. We
can decide in O(lgn) amortized time whether L− {�i}
is optimal. If not, a new optimal labeling with enlarged
labels can be constructed in O(n) amortized time.

5. The relabeling algorithm

For the sake of completeness, we briefly mention the
main ideas of the relabeling algorithm [6] of a set of
points in closed-2PM model.

The main idea is that in every optimal closed-2PM
labeling, the top most label can be placed above its
point. This idea, generates a sweep line based algorithm,
which moves a sweep line upward, and stops at each
point of P . At each stop, all points not above the sweep
line are labeled optimally. In other words, in the very
first steps, there are a few points labeled by large labels
and as the sweep line moves upward, more points are
involved and the labels are shrunk.

Assume that the sweep line is going to label pi , and
the �i intersects with an existing label, like �j . Authors
showed the following properties: (a) �j is forced to flip
down, which may generate a label shrink, that can be
computed from a set of stored weights at each label in
previous steps, (b) no label flips twice, and (c) there
is no need to update previously stored weights at each
label. By combining all these properties together and
spending O(n lgn) time and O(n) space for preprocess-
ing, the sweep line algorithm can assign optimal labels
to a set of points in O(n) time.

6. Conclusion

In this paper, we proposed an algorithm to preprocess
an optimal labeling of a set of n points in O(n lgn) time
and O(n) space, so that after removal of any point, one
can efficiently determine whether the remaining labels
form an optimal labeling in O(lgn) amortized time. If
the labeling is not optimal, a relabeling algorithm can be
used to construct an optimal labeling in O(n) amortized
time. Using this result, we can start with an optimal la-
beling and remove an arbitrary number of points, and
relabel the point set only when the length of the optimal
labeling can be increased.



F. Rostamabadi et al. / Information Processing Letters 105 (2008) 108–113 113
There are two possible directions to extend the algo-
rithm. One is to provide a method for the similar prob-
lem in 4PM labeling. Applying the method used in this
paper directly to the 4PM case is not easy, since there
are more possible cases for constraint pairs in 4PM.
Another problem is to consider combination of point
insertion and removals. This extension is not straight-
forward and is our current undergoing challenge.

References

[1] S. Doddi, M.V. Marathe, A. Mirzaian, B.M.E. Moret, B. Zhu, Map
labeling and its generalizations, in: Proc. 8th ACM–SIAM Sym-
posium on Discrete Algorithms (SODA’97), 4–7 January 1997,
pp. 148–157.

[2] C. Iturriaga, Map labeling problems, PhD thesis, University of
Waterloo, 1999.
[3] C.K. Poon, B. Zhu, F. Chin, A polynomial time solution for label-
ing a rectilinear map, Information Processing Letters 65 (4) (1998)
201–207.

[4] F. Rostamabadi, M. Ghodsi, A fast algorithm for updating a la-
beling to avoid a moving point, in: Proceeding of the 16th Cana-
dian Conference on Computational Geometry (CCCG’04), 2004,
pp. 204–208.

[5] F. Rostamabadi, M. Ghodsi, Label updating in 2pm to avoid a
moving point, in: The 21st European Workshop on Computational
Geometry (EWCG’05), 2005, pp. 131–134.

[6] F. Rostamabadi, M. Ghodsi, Incremental labeling in 2pm model,
in: The 11th International CSI Computer Conference (CSICC’06),
2006, pp. 9–13.

[7] F. Rostamabadi, M. Ghodsi, Label updating to avoid point-shaped
obstacles in fixed model, Theoretical Computer Science 369 (1–3)
(2006) 197–210.

[8] T. Strijk, M. van Kreveld, Labeling a rectilinear map more
efficiently, Information Processing Letters 69 (1) (1999) 25–
30.


