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We develop a real-time estimation approach to predict bidders’ maximum willingness to pay in a multiunit
ascending uniform-price and discriminatory-price (Yankee) online auction. Our two-stage approach begins

with a bidder classification step, which is followed by an analytical prediction model. The classification model
identifies bidders as either adopting a myopic best-response (MBR) bidding strategy or a non-MBR strategy. We
then use a generalized bid-inversion function to estimate the willingness to pay for MBR bidders. We empirically
validate our two-stage approach using data from two popular online auction sites. Our joint classification-and-
prediction approach outperforms two other naïve prediction strategies that draw random valuations between
a bidder’s current bid and the known market upper bound. Our prediction results indicate that, on average,
our estimates are within 2% of bidders’ revealed willingness to pay for Yankee and uniform-price multiunit
auctions. We discuss how our results can facilitate mechanism-design changes such as dynamic-bid increments
and dynamic buy-it-now prices.
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1. Introduction and Background
Online auctions exemplify the Internet’s ability to
become a temporally and spatially unconstrained
market maker. Yet, while expanded in scale and
scope, Internet auctions can arguably be considered
to be lacking in the skills of an expert auctioneer.
An expert auctioneer can be credited with maintain-
ing the temporal order of the auction and the move-
ment of bids (Smith 1990). While critical to auction
outcomes, this feature has not been incorporated in
online auction design and has been paid scant atten-
tion in the literature. This motivates us to ask:
(a) Can we develop an analytical prediction model

to estimate, in real time, the willingness to pay (WTP)
of bidders participating in online multiunit uniform-
price and Yankee-price auctions?

(b) Can we test the efficacy of the prediction empir-
ically using data from online auction sites?
We believe that a real-time WTP estimation model

is a necessary first step in proposing mechanism-
design changes such as dynamic-bid increments,
commonly implemented by expert auctioneers, in
high-volume mechanized online auctions. We demon-
strate how an online auctioneer, equipped with an
estimation model such as ours, can use dynamic-bid
increments to achieve higher revenue and allocation
efficiency, as well as set dynamic buy-it-now prices.
From a theoretical perspective, progressive ascend-

ing multiunit auctions have received only limited
attention, usually under a set of assumptions that
do not hold up in the online context. For example,
bidders are assumed to be homogeneous, typically
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described as being symmetric, risk-neutral, and
adopting Bayesian-Nash equilibrium strategies. While
tenable in the context of face-to-face single-item auc-
tions, this set of assumptions readily breaks down in
the majority of multiunit online auctions. For such
auctions, it is well known that the computation of
equilibrium bidding strategies is intractable (Nautz
and Wolfstetter 1997).
Our approach relies on the enhanced information

acquisition and computational potential of today’s
Internet auctions. It makes use of microlevel bidding
data and assumes that bidders conform to a myopic
best-response (MBR) bidding strategy that ties bid-
ders’ revealed bids to their underlying WTP. MBR
bidding agents’ bids conform to an equilibrium strat-
egy with the assumption that the agents view the cur-
rent bidding round as the last of the auction and take
prices as given (Parkes 2001). Recent work (Bapna
et al. 2004) on bidding strategies in Yankee auctions
indicates that approximately 66% of the serious bid-
ders conform to this strategy. A serious bidder was
defined as a bidder whose highest bid was equal to
at least 70% of the final auction price. Other bidders
use a non-MBR strategy where they typically reveal
their WTP in the first bid they place.
We develop a two-stage nested approach that, in

the first stage, classifies bidders’ strategies, followed
by an estimation technique that predicts bidders’
WTP. The classification model identifies bidders as
either adopting an MBR or a non-MBR strategy. Then,
for bidders using an MBR strategy, we develop an
analytical model to predict their WTP. We empir-
ically validate our approach using data from two
different types of ascending auctions, showing that
our joint classification-and-prediction approach out-
performs two other naïve prediction strategies that
draw random valuations between a bidder’s current
bid and the known market upper bound. We can esti-
mate, on average, within 2% of bidders’ revealed WTP
for Yankee and uniform-price multiunit auctions.
In §2, we review the literature. In §3, we provide

insights into the market mechanism we investigate
and introduce our multiunit auction data set. Sec-
tion 4 focuses on the bidder strategy-classification
scheme and the development of an analytical model
for predicting MBR bidders’ WTP. Prediction accuracy
is tested empirically in §5. Section 6 demonstrates
the utility of WTP estimation in inferring the final
price prior to the close of the auction, and on setting
dynamic-bid increments as well as dynamic buy-it-
now prices. Section 7 provides conclusions.

2. Related Literature
The literature on auctions is vast (see, for exam-
ple, McAfee and McMillan 1987, Milgrom and Weber

1982, Milgrom 1989, Rothkopf and Harstad 1994,
Menezes 1996). Recent literature on online auctions
is comprehensively summarized in a recent survey
(Ockenfels et al. 2006).
Many online auctions use progressive open multi-

unit formats, which have the following benefits over
their sealed-bid counterparts (Cramton 1998): (i) effi-
ciency of the price-discovery process; (ii) revenue
maximization; (iii) reduction of the winners curse;
and (iv) privacy and implementation. Ausubel (2004)
proposes an ascending-bid auction for multiple units
that ameliorates the demand-reduction incentive by
progressively and iteratively increasing the asking
price, but without showing how auctioneers should
determine the increments of the ask price. The price-
increment aspect has implications on auction effi-
ciency and revenue. We posit that accurate prediction
of bidders’ WTP can form the basis of dynamically
determining optimal asks. Carare (2001) demonstrates
the utility of working with microdata, observable in
online auctions, by deriving marginal valuations of
bidders in a focused market for computer central pro-
cessing units, with a goal to recover distributions of
valuations for computer processors. Our work also
relies on transient within-auction data but, in contrast,
attempts to model bidding behavior for real-time pre-
dictive purposes for a broad spectrum of products
sold through both uniform-price and Yankee auctions.
Both auction mechanisms are widely used in the
business-to-consumer (B2C) online market. uBid.com
and Samsclub.com are representative popular sites.
Using the Paris Bourse as a test bed, Biais et al.

(1999) examined the accuracy of valuation informa-
tion derived from preopening market trade games.
Their study shows that, although the information
derived from such games is noisy in the early stages
of the game, there is some convergence to true mar-
ket values as the market opening time approaches.
This approach is similar to ours, predicting bidder
WTP in open ascending-price auctions. The utility of
valuation prediction has also been recognized in the
artificial intelligence field, where automated agents
use value-discovery models as components of bid-
ding agents. Parkes and Ungar (2000) use the notion
of MBR bidding strategies among agents to illustrate
how proxy bidders that embrace this strategy can be
shielded from manipulation.
Another study (Plott and Salmon 2004) uses a

surplus-maximization strategy to describe bid-
ding behavior in simultaneous ascending auctions.
Although the auction mechanism is different from
the one studied by Parkes and Ungar (2000), the
notion of MBR strategies is used as a way of tying
bidders’ iterative type revelation to their WTP.
For a real-time prediction-and-calibration approach

to be applicable, it is first necessary to understand
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the space of bidding strategies used by the bidders.
We can then use the information available during
the course of an auction to identify a given bid-
der’s strategy accurately. In this context, we justify
our assumption of bidders adopting an MBR strat-
egy in multiunit online auctions based on Bapna et al.
(2001, 2004), which identify different bidding strate-
gies adopted in Yankee auctions, two of which (used
by approximately 66% of all bidders) are consistent
with the MBR definition.
Bapna et al. (2002) study multiunit auctions and

provide a strategy with which an auctioneer can max-
imize her gains and empirically approximate bidder
behavior as we do here. The specific problem solved
in Bapna et al. (2002) is to compute a fixed opti-
mal bid increment for an auction to maximize the
expected revenue given the tail distribution of high-
est N + 1 bidders, where N is the number of units on
sale. In contrast, in this paper, we estimate the dis-
tribution of bidders’ WTP by individually estimating
every bidder’s maximum WTP. Thus, the technique
developed here can be used to estimate the highest
N + 1 bidders’ WTP. These can be seen as a proxy for
valuations and can be used to maximize the seller’s
revenue using the model described in Bapna et al.
(2002). However, applications of the WTP prediction
model developed here are broad and not limited to
computation of optimal bid increments. While Bapna
et al. (2002) yield fixed-bid increments for the auction-
eer, we show in §6 how an auctioneer could develop
dynamic-bid increments. Other unique applications
are the ability to infer a lower bound on the final auc-
tion price during the early stages of an auction and
also to establish dynamic buy-it-now prices.

3. Progressive Online Multiunit
Auctions

We deal with two popular online auction mechanisms
in the wider B2C category of auctions: Yankee and
uniform-price progressive multiunit auctions. These
mechanisms offer consumers multiple units of the
same item. Bidders compete for the items, with
each bidder submitting a bid indicating the quantity
desired and the per-unit price he is willing to pay.
These auctions are conducted in an open format and
bidders can see the bids of competing bidders. Bid-
ders can join the auction at any time during the auc-
tion duration, typically several days. The auctioneer
spells out the rules that govern the bidding activity.
All bidders are expected to submit bids that are

at least as high as the minimum required bid. The bid
increment is the minimum increment by which a bid-
der must exceed the minimum winning bid to win an
item. Bidders are not bound to bid strictly following
the bid increment. As noted by Easley and Tenorio

(2004), jump bidding is often observed in Yankee auc-
tions. Auction sites usually specify an auction closing
time; however, some auctions sites extend the auction
duration if bidding activity is observed in the last few
minutes of the auction. Another common feature of
online auctions is the suggested retail price, or a buy-it-
now price. Essentially, these variables cap the expected
auction revenue because rational bidders will not bid
beyond the suggested retail price. This is validated
empirically. In no case, in our data set of 787 uniform-
price online auctions, did the final bid exceed 90%
of the suggested retail price. Thus, bidders’ WTP is
capped by the suggested retail prices. In §3.1, we pro-
vide further details of our data set.

3.1. Online Auction Data Collection
Our analysis uses data from two multiunit online
auction websites (Samsclub.com and uBid.com).
We deployed automatic auction-tracking agents to
observe and collect data on entire auction proceed-
ings. One auction site uses a uniform-price auction
mechanism, while the other uses a Yankee auction
mechanism. Our automated agent collected bidding
data from 787 uniform-price auctions and 205 Yankee
auctions, for a total of 78,014 bids or bid revisions.
The auction-tracking agent was programmed to visit
the identified online auction’s Web pages in intervals
of 5 to 15 minutes, take snapshots of the auction, and
record the bidding history of the auction site. With
this technique, we were able to maintain a complete
history of the auction, noting each of the bids sub-
mitted and revisions made by each bidder in the auc-
tions we tracked. Sample validation was done based
on Bapna et al. (2003a, b).

3.2. Description of the Data
Data on the uniform-price auctions represent 90
products, mainly electronics. The Yankee auctions
data set contains electronics and computing goods.
The average number of bidders per auction in
the uniform-price auctions is close to 36 (standard
error = 2�26), while the Yankee auctions on average
attracted 47 (standard error = 4�35) bidders per
auction. The average lot size in both Yankee and
uniform-price auctions is 13. On average, bidders
submit 1.3 (0.01) and 1.83 (0.05) bids for the uniform-
price and Yankee auctions, respectively. The range of
number of bid revisions is 9 and 38 for the uniform-
price and Yankee auctions, respectively. Appendix 1
in the Online Supplement to this paper (available at
http://joc.pubs.informs.org/ecompanion.html) pro-
vides details of the variables collected as well as
summary statistics of some key variables.
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4. Prediction Model—Myopic
Best-Response Strategy

We begin with the model for the MBR bidding
strategy, which can be interpreted as a surplus-
maximizing bid calculated by a bidder in a given
round of the auctions assuming that all competing
bids remain unchanged from the previous round. As
new arrivals come in, and bidders get displaced from
the winning list, the myopic assumption allows for
belief revision by the same bidder to account for addi-
tional information. This results in a revision of the
bidder’s WTP each time a bidder revises her bid.
Consider an auction for N units of an item. Let

the current winning bids be denoted by x1�x2� � � � � xN ,
in increasing order of magnitude. Bidders submit-
ting these bids are assumed to have WTP values
W1�W2� � � � �WN , respectively, bounded below by the
bids already submitted, i.e., W1 ≥ x1�W2 ≥ x2� � � � �
WN ≥ xN . When a new bid b is received, it must be
greater than x1, which is displaced from the winning
list. We assume that b was determined to optimize
myopically the expected surplus that the bidder will
derive from the auction. The MBR strategy maximizes
a bidder’s expected surplus, given already-submitted
bids and a belief of the actual WTP values of bid-
ders who submitted the earlier bids. The belief regard-
ing other bidders’ WTPs is a probability distribution
with support in the range of the lowest winning bid
and an upper bound, which can be set to a publicly
known price for the item being auctioned, such as
the suggested retail price for the auction. The myopic
approach allows for belief revision as the auction pro-
gresses, allowing us to capture the information signals
of the new arrivals. Bidders who resubmit bids revise
their initial beliefs about others’ WTP values.
Let the bidder who submitted the new bid b have

a WTP value W . Suppose that the new bid b is
greater than k of the current winning bids. Therefore,
the new sequence of winning bids is x2�x3� � � � � xk� b�
xk+1� � � � � xN . For the new bidder to win, given this
state of the auction, at least one of the k bidders
whose bids are smaller than b must have WTP less
than b, assuming no new bidders join the auction.
Let the new bidder’s belief about the WTPs of

any of the current winners be an independent ran-
dom variable with density function fi, and a distri-
bution function Fi, with support in the range �x1�m
,
where x1 is the smallest winning bid, and m is an
indicative fixed price for the item. We assume that Fi
is continuous and twice differentiable over its sup-
port. Consistent with early auction studies (Milgrom
and Weber 1982) and based on current online auction
research studying similar auction types (Hidvégi et al.
2006, Pinker et al. 2003), we assume an independent
private-values setting. Thus, the probability that at

least one of the currently winning bidders has a WTP
value that is less or equal to b is 1−∏k

i=1�1− Fi�b��.
Let Pd and Pu be the prices paid by the new bidder

in Yankee and uniform-price auctions, respectively.
Pd = b, as each bidder pays a price equal to their bids
in the Yankee auction. On the other hand, x1 <Pu ≤ b,
and will be a function of the WTP of the k bidders
who are outbid by the new bid and by the value of
the new bid b itself.
If the auction uses a discriminatory-pricing scheme,

where bidders pay a price equal to their bids, the new
bidder will enjoy an expected gain

E�G�= �W − b�

(
1−

k∏
i=1
�1− Fi�b��

)
� (1)

and the expected gain in a uniform-price auction
will be

E�G�= �W − Pu�

(
1−

k∏
i=1
�1− Fi�b��

)
� (2)

We assume that the observed bid b maximizes the
expected gain (1) or (2), depending on the pricing
scheme. Therefore, the observed bid should satisfy
the first-order and second-order conditions for a max-
imum expected gain. Equations (3) and (4) show
the first-order conditions for maximum expected
gain under Yankee and uniform-pricing schemes,
respectively.

��E�G��

�b
= −

(
1−

k∏
i=1
�1− Fi�b��

)

+�W−b�
( k∑
j=1
fj�b�

k∏
i=1−�j�

�1−Fi�b��
)
=0� (3)

��E�G��

�b
= −�Pu

�b

(
1−

k∏
i=1
�1− Fi�b��

)

+�W−Pu�
( k∑
j=1
fj�b�

k∏
i=1−�j�

�1−Fi�b��
)
=0� (4)

After observing bid b, and assuming that it was
determined to maximize the bidder’s expected sur-
plus, we can make inferences about the corresponding
WTP value. By solving (3) and (4) for W , we get the
predicted WTP value of the bidder under the respec-
tive pricing scheme. The expressions for WTP value
prediction are

ŴYankee = b+ 1−∏k
i=1�1− Fi�b��∑k

j=1 fj�b�
∏k

i=1−�j��1− Fi�b��

and

ŴUniform = Pu+
P ′
u

(
1−∏k

i=1�1− Fi�b��
)

∑k
j=1 fj�b�

∏k
i=1−�j��1− Fi�b��

�
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Because the distribution of WTP, of a new bidder,
is bounded below by the minimum required bid and
above by the suggested retail price, we use a left tri-
angular distribution for empirical validation. This dis-
tribution is a special case of the beta distribution and,
because it requires fewer parameters, is easier to esti-
mate (Johnson 1997). Appendix 2 in the Online Sup-
plement provides the specific analytical derivation of
WTP values assuming a triangular distribution.

5. Empirical Validation of the
Prediction Model

Our WTP estimation technique first classifies the bid-
ders as conforming to an MBR strategy or not. For a
non-MBR strategy, we estimate their WTP to be their
current bid. We compute the WTP for MBR bidders
using the prediction model in §4. We now present
three alternative methods for MBR-strategy identifi-
cation, and later the results of the prediction accuracy
of the model.

5.1. Bidding-Strategy Classification into
MBR and Non-MBR

To separate MBR from non-MBR bidders, we begin
by examining the extant understanding of bidding
strategies adopted by real-world online bidders.
Bapna et al. (2004) used online auction data from
1999 and 2000 and found a stable taxonomy of bidder
behavior containing five types of bidding strategies
in Yankee auctions. Bidders pursue different strate-
gies that, in aggregate, realize different winning like-
lihoods and consumer surplus. Bapna et al. (2005)
extend this analysis to uniform-price auctions and
find a remarkable consistency in the mix of bid-
ding classes across the two auction types. Further, the
robustness of the Bapna et al. (2004) classification is
confirmed by Slavova’s (2006) replication of the orig-
inal classifications using a different sample of Yankee
auctions.
We first examine how to determine whether a bid-

der is myopic. One indication of this would be if
there were bid revisions made by the bidders, imply-
ing that at the time of bid placement, the bidders
were relying on information available to them. Recall
that MBR bidders conform to an equilibrium strategy
with the assumption that the bidders view the current
round as the last round of the auction and take prices
as given (Parkes 2001). Bapna et al. (2004) indicate
that while the participatory and opportunistic strate-
gies conform to this behavior, the evaluatory strategy
does not.
We first define two naïve rules. These are called

naïve because both rely on only the response variable
(observed bids) to undertake a classification. They do
not use any other predictor attributes that we may
know about the bidder in question or the auction itself.

Definition 1 (Basic MBR Classification Rule).
Classify a bid that is lower than the largest winning
bid XN to be MBR, while a bid that exceeds the largest
winning bid as non-MBR.
Using this classification method, 16% of the bids in

our uniform-price auctions data set and 12% of the
bids in our Yankee auctions data set would be classi-
fied as non-MBR.
It is also conceivable that determining a threshold

that takes into account more information about the
current winning bids would intuitively improve the
strategy classification. Intuitively, a bid that is signif-
icantly higher than current winning bids, relative to
the variance of the winning bids, does not conform to
an MBR strategy.
Let � and � be the mean and standard deviation

of winning bids. Suppose that b is the next bid that is
submitted to the auction. Define z= �b−��/� , and let
z′ = �z/�x1−�� represent the corresponding truncated
left-end measure that accounts for the fact that bids
submitted must exceed the minimum winning bid.
Definition 2 (Normalized MBR Classification

Rule). Classify a bidder with z′ greater than an empir-
ically determined cutoff as not conforming to the
MBR strategy. All other bidders are MBR. The cutoff
is arrived at by randomly partitioning the data into
a training set (20% of the data) and a validation set
(80%). The cutoff is chosen to minimize the overall
misclassification rate in the training set, and the accu-
racy of the process is judged based on examining the
confusion matrix of the validation set.
Note that if x1 =�, i.e., when all the previous win-

ning bids have the same value, then � = 0 and z′ is
indeterminate. In such cases, Definition 2 cannot be
used to classify a bid. While we did not encounter
this condition empirically in our data set, when such
a condition occurs, Definition 1 can be used to classify
the bid.
We tested different cutoff points on the train-

ing set to get z′ values with the highest classifica-
tion accuracy. These values are 0.9 and 0.5 for the
uniform-price and Yankee auctions, respectively. By
applying these critical values to the remaining 80%
of the validation data, we realized accuracy levels of
62% and 47% in predicting MBR bidders in uniform-
price and Yankee auctions, respectively.
Next, we consider a more sophisticated rule that

considers further auction attributes, in the form of
independent variables, to enrich the classification
scheme.
Definition 3 (Logistic-Regression Rule). Clas-

sify bidders into MBR and non-MBR based on the
logit of their odds, derived from a multiattribute
logistic-regression model.
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5.1.1. Dependent Variable. The dependent vari-
able has a binary value that shows if the bidder is
using an MBR or non-MBR strategy. At each bid-
ding instance, our prediction model estimates the con-
sumer’s WTP for a product. If the predicted WTP at a
particular bidding instance is less than the final bid of
a specific bidder, the dependent variable takes a value
of one, indicating that the bid was constituted using
an MBR strategy. Otherwise, we consider the bidder
to be non-MBR.

5.1.2. Explanatory Variables. We consider vari-
ables for which an auctioneer can acquire data at the
time of making a prediction on the bidders’ WTP. The
explanatory variables used in the logit model were
based on the analytical model, as well as some observ-
able strategic behavior or aggressiveness measures.
From the analytical model, we can infer that the upper
bound on the expected bid price for an item m and the
lot size of the auctions N are likely to influence the
adopted bidding strategy. These are captured in X1i
and X3i, respectively, in (5), the best-fit logit regression
model

Log
(

Pi
1− Pi

)
= �+ 1X1i + 2X2i + 3X3i

+ 4X4i + 5X5i + !i� (5)

where

Pi is the probability that the bidder is MBR;
X1i is the ratio K/N , where K is the number of cur-

rent winning bids that are smaller than the new
bid and N is the lot size;

X2i is the number of times the bidder has revised his
bid;

X3i is the standard deviation of current winning bids;
X4i is the average of current winning bids;
X5i is the normalized elapsed auction time.

X1i and X2i capture the strategic behavior of the
bidders. High values of X2i would indicate that the
bidder was a participator. A ratio close to 1 for X1i
would suggest an evaluatory non-MBR bidder.
Table 1 shows estimates of the model coefficients

and their statistical significance for the uniform-price
and Yankee auctions. All model variables, except
X2i in the uniform-price auctions, are significant in
explaining the predicted classification. Appendix 3 in
the Online Supplement, which presents correlation
matrices for the variables used in the model, supports
independence of the predictor variables.
The logit-classification model developed on the ran-

domly chosen 20% training data yields a classifica-
tion accuracy of 81% and 90% on the remaining 80%
validation set for uniform-price and Yankee auctions,
respectively. This is higher than both the normalized
and the basic classification rule. Armed with the three
classification schemes, we next seek to infer the WTP
for both types of bidders.

Table 1 Strategy-Classification Model’s Coefficient Estimates

Uniform-price auctions Yankee auctions

Coefficient Estimate S.E. Wald Sig. Estimate S.E. Wald Sig.

�1 −7�48 0�74 103�12 0�00 −9�98 0�50 398�30 0�00
�2 −0�43 0�40 1�18 0�28 1�88 0�37 26�16 0�00
�3 −0�05 0�03 5�03 0�03 −0�004 0 9�41 0�00
�4 −0�02 0�01 9�31 0�00 −0�003 0 46�28 0�00
�5 2�42 0�56 18�88 0�00 1�34 0�45 8�90 0�00
Constant 3�77 0�59 39�87 0�00 1�65 0�40 16�89 0�00

5.2. Accuracy of the WTP Prediction Model
Recall that for bidders classified as non-MBR, we
estimate their WTP to be their current bid. For
MBR bidders, we apply the model developed in §4.
Table 2 shows the absolute mean percentage differ-
ence between WTP as predicted by our model and
the actual WTP, as conservatively estimated by bid-
ders’ final bids. The results show the accuracy lev-
els when the WTP model for MBR bidders is applied
to all bidders (without any classification) and, subse-
quently, when the three strategy-classification models,
the basic, the normalized, and the multiattribute logit,
are used.
With no classification and considering all bidders

(winners and losers), our predictions’ mean abso-
lute error is 20.43% and 9.9% in uniform-price and
Yankee auctions, respectively. As we incorporate the
strategy-classification schemes, the prediction error is
reduced for uniform-price and Yankee auctions, with
the multiattribute logit-classification rule yielding the
smallest errors (2.6% and 1.8% error for uniform-price
and Yankee auctions, respectively). Table 2 also indi-
cates that the exclusion of winners reduces the pre-
diction error in uniform-price auctions from 20.43% to
11.96%. A similar effect, albeit of a smaller magnitude,
is observed among Yankee auctions.
We also sought to isolate and report the perfor-

mance of our model on the set of bidders whose final
bid was at least 50% of the final auction price. The
motivation to isolate these bidders comes from the
observation that there are many bidders who partici-
pate in the initial part of the auction when prices are
very low and then drop out of the auction. Making
predictions for these types of bidders results in an
overprediction that may not be representative of the
overall picture. When we isolated these early drop-
outs, we realized a 3.63% prediction error in uniform-
price auctions and 10.74% for Yankee auctions.

5.3. Performance of the WTP Prediction Model
and Alternative Solutions

Although, to the best of our knowledge, there are no
dynamic models for predicting bidders’ WTP with
an approach similar to ours, some alternative and
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Table 2 Prediction Accuracy of Bidders’ WTP

Absolute mean (standard deviation) of prediction error (%)

Uniform-price auctions Yankee auctions

MBR/non-MBR Bidders’ with Bidders’ with
classification strategy All bidders Losers only bids> 50% of price All bidders Losers only bids> 50% of price

None 20�43 (40.69) 11�96 (21.29) 3�63 (14.83) 13�43 (24.03) 11�20 (33.65) 10�74 (12.81)
Basic 15�41 (37.62) 11�41 (21.08) 2�36 (14.18) 12�80 (23.83) 8�04 (31.52) 10�31 (12.82)
Normalized 8�48 (21.25) 7�79 (19.23) 2�45 (21.03) 7�89 (21.53) 6�34 (22.65) 7�19 (17.89)
Multiattribute logit model 2�63 (16.59) 2�31 (17.90) 1�89 (15.21) 1�89 (6.97) 2�03 (8.34) 2�16 (7.27)

fairly naïve approaches can be conceived. One poten-
tial method is to use the bids themselves as proxies
for the WTP. We call this the actual-bids proxy method.
Using this method, the auctioneer errs only by under-
predicting the bidders’ actual WTP. This method does
not provide the auctioneer with any additional infor-
mation that can be used to calibrate the auction pro-
cess. It provides an absolute lower bound on the WTP.
Definition 4 (A Random-Draws Model). As-

sume that bidders’ WTPs will be a random variable
with support between the bid submitted and a known
fixed price [b�m]. The random model takes indepen-
dent draws, one for each bidder, from this distribution
and assumes those to be their WTP.
For consistency and comparison purposes, we

assume the same WTP distribution as we used in the
empirical results above. This method has a two-sided
risk of both overpredicting and underpredicting the
actual WTP. It also lacks rationality, but certainly pulls
a value from a feasible range.
Using our data set, we conduct a comparison of

the predictions from these three models: our proposed
model, actual-bids proxy, and the random-draws
model. For uniform-price and Yankee auctions, the
error in predicting the bidders’ WTP from his first bid
(using our method as well as the other two) is sta-
tistically greater than zero. Due to the large number
of observations (4,752 for uniform-price and 3,872 for
Yankee auctions), the power of the test is extremely
high, and even minor deviations from the observed
WTP results in rejection of the null hypothesis of
equality.
Our prediction is statistically and qualitatively

closest to the observed WTP compared with other
approaches even with the first bids. As we move to
second and third bids, our prediction starts making
accurate WTP estimates as indicated by the p-values
of paired t-tests in Table 3. However, the other
two prediction methods result in rejection of the
null hypothesis with high significance. This provides
strong support for our method in comparison to other
ad hoc prediction approaches.
To further examine the performance of our pre-

diction model, we ask whether the actual predic-
tions made from the different approaches are indeed

significantly different. This approach offers a more
direct comparison of the three approaches because
they are not measured against the ex-post actual bid.
The results provide overwhelming support to reject
a hypothesis that equates predictions of our model
to predictions from the naïve methods (p-values for
the comparison between predictions were all less than
0.0001).
To gain further insight into the performance of our

prediction model, we classify our prediction mean
absolute error according to the auction duration and
compare against the random model. The results are
shown in Figures 1(a), 1(b), and 1(c). In both the Yan-
kee and uniform-price cases, the random model has
prediction errors that are significantly higher than our
model in every time interval. Additionally, the sig-
nificance of the difference between the model and
random predictions of WTP increases over time (Fig-
ure 1(c)). This trend in noted for both Yankee and
uniform-price auctions.

6. Applications of the Two-Stage
Classification-Prediction Approach

6.1. Inference on Final Auction Revenue
It is logical to assume that if the predictions are
accurate, an auctioneer should be able to infer a
lower bound on the final auction revenue from the

Table 3 p-Values for the Variation Between Predictions and Actual
WTP for Alternative Prediction Methods

p-value for H0: Predicted
WTP= Actual WTP

Prediction Comparison Uniform-price Yankee
method bid auctions auctions

Our prediction 1st bid 3�33279E−26 2�0827E−152
2nd bid 0�001082154 0�078658
3rd bid 0�798344 0�14566224

Current bid proxy 1st bid 4�99491E−20 1�00126E−29
2nd bid 0�00090675 4�82E−18
3rd bid 0�087145 7�8489E−08

Random prediction 1st bid 6�2769E−168 1�74903E−87
2nd bid 4�18539E−23 0�0007637
3rd bid 7�848E−05 2�69E−12
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(a)  Comparison of accuracy trends between proposed model and  random
predictions of WTP (uniform auction)
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(c) Trends in the significance of difference of prediction errors between proposed
model and random predictions of WTP
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(b) Comparison of accuracy trends between proposed model and random
predictions of WTP (Yankee auctions)

0

100

200

300

400

500

600

700

800

Pe
rc

en
t m

ea
n 

ab
so

lu
te

 e
rr

or
 (

%
)

Predicted
Random

Figure 1 Comparison of Prediction Accuracy Between the Proposed WTP Prediction Model and a Random-Based Model

predicted WTPs. Such inference can be done prior
to the close of the auctions, as soon as the number
of bids exceeds the lot size offered. Conservatively,
we can assume that the current estimates correspond
to the final WTPs. Using the predicted WTPs at any
stage of the auction, the predicted revenue for the

uniform-price and the Yankee auctions, say Ru and RD,
respectively, are

Ru = NW�1�� (6)

RD =
N∑
i=1
W�i�� (7)
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Figure 2 Percentage of Predicted and Auction Revenue to Final Auc-
tion Revenue

where W�i� represents the ith highest estimated WTP
among the top N WTPs, at that time. The earlier such
an estimate can be made accurately, the more utility
it has for the auctioneer to use it to dynamically cali-
brate the mechanism.
Figure 2 displays a comparison of the progression

of the actual auction revenue to the predicted rev-
enue, as per (6) and (7), by the proportion of bids
received. Observe that we are able to estimate, on
average, the final auction revenue with just 85% of the
bids that were submitted in uniform-price auctions
and with just 70% of the bids that were submitted in
the Yankee auctions.
When coupled with the enhanced computational

capabilities inherent to Internet auctions, it is interest-
ing to consider mechanism-design opportunities that
rely on WTP estimation.

6.2. Dynamic-Bid Increments
While a full-blown analysis of how to use the estima-
tion technique to determine dynamic-bid increments
optimally is beyond the scope of this paper, we pro-
vide some intuition using an example.
In one of the auctions in our data set, a uniform-

price auction was conducted for a power tool. This
auction used a fixed-bid increment of one dollar.
Using the same stream of bids as were received in
the actual auction, we replicated the evolution of this
auction.

Dynamic bid-increment rule. Let the minimum-bid
increment be determined as the difference between
the minimum winning bid value and the �N th + 1�
highest predicted WTP.
The motivation behind this choice of a bid incre-

ment is to give bidders with the lowest WTP the
incentive to bid at the earliest opportunity. In the long
run, such an approach will increase the mechanism’s
allocative efficiency. In this particular auction, there
were six units of the product, so the bid increment

was set as the difference between the minimum win-
ning bid value and the seventh-largest predicted WTP.
In Figure 3, we show the variability in the computed
minimum-bid increment. We also compare the rev-
enue formation in the two auctions under the respec-
tive bid-increment-setting methods.
Figure 3(a) shows that, based on the predicted WTP

values, the estimated minimum bid will differ from
fixed-bid increments. Figure 3(b) shows marginal gain
in revenue, realized through reallocations that are
forced by the dynamic-bid increments. Interestingly,
from the perspective of the social planner, these real-
locations account for an increase in the allocative effi-
ciency of the auction from 99.8% to 100%. Allocative
efficiency measures to what extent the goods are allo-
cated to the bidders that value them the most. This
anecdotal example is meant to give the reader a fla-
vor of our ongoing work in calibrating multiunit auc-
tions in real time. Note that such changes in bidders’
strategy may have an endogenous impact on auc-
tion dynamics, but investigation of such endogenous
impact is beyond the scope of this paper.

6.3. Dynamic Buy-It-Now Prices
A cursory look at current online auctions reveals that
auctioneers have modified their auction models to
cater to buyers who are interested in a quick deal,
in lieu of waiting for the auction to close. eBay calls
this a buy-it-now price. At any time during the auc-
tion, the auctioneer offers the bidders a fixed-price
offer, and bidders may opt to buy the product at
that price instead of continuing to participate in the
auction. In the case of single-item auctions, this termi-
nates the auction. While similar features (namely, sug-
gested retail prices) are offered on multiunit auctions,
anecdotal evidence, presented in §1, suggests that the
current implementation is not effective, in that a vast
majority of auctions close below the suggested prices.
In setting a buy-it-now price, the auctioneer has to

achieve a balance between setting a price that is too
high to be effective and setting a price that is too low
such that it results in lost expected revenue. We pro-
pose that auctioneers can use the predicted WTP to
adjust buy-it-now prices dynamically in accordance
with the bidders’ demand functions for specific auc-
tions. The key to buy-it-now prices should be to avoid
cannibalization, i.e., not setting a price that is too low
such that a person who will not win otherwise ends
up buying. Our predictions allow auctioneers to tai-
lor buy-it-now prices in accordance with their risk
profile. These prices could range from a risk-seeking
N th–highest-valuation estimate to a more conserva-
tive highest-valuation estimate, as well as all the
interim possibilities.
We also expect that dynamic buy-it-now prices will

decrease the duration of multiunit auctions, a bene-
fit that is already being reaped by single-unit eBay
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Figure 3 Comparison of Dynamic and Fixed-Bid Increment Setting—(a) Bid Increments, (b) Revenue

auctions that offer the buy-it now option. Setting opti-
mal dynamic buy-it-now prices in multiunit settings
remains a promising area of future work.

7. Conclusion and Future Research
Our work is motivated by the opportunity to bring
back the skills of an expert auctioneer in the phys-
ical world, capturing by gut and feel the under-
lying essence of the auction room’s WTP, into a
high-volume, automated but computationally power-
ful online environment. We present a two-stage clas-
sification followed by a WTP estimation approach
that performs well on real online bidding data. We

are able to estimate, on average, within 2% of bid-
ders’ revealed WTP for a large number of online
Yankee and uniform-price multiunit auctions. Our
joint classification-and-prediction technique signifi-
cantly outperforms alternative approaches that draw
random valuations between a bidder’s current bid
and the known market upper bound.
Our findings enable inference on final auction

prices prior to the close of the auction, which in
turn can be used to make real-time mechanism-design
changes to increase the auctioneer’s revenue, max-
imize allocative efficiency, and potentially, through
smart agents, bidders’ surplus. We expect future
research to find more interesting uses of the prediction
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model developed here. We believe that real-time value
discovery tools, such as the one demonstrated in this
paper, will provide the foundation for dynamically
calibrating the online auction mechanism, to maxi-
mize the likelihood of obtaining desirable equilibria.
They can also serve as building blocks for designing
the next generation of smart bidding agents whose
incentives are aligned with bidders.
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