

Page 1 of 15

Managed Complexity in Embedded Control Systems
for UAVs, Drones and Robotics

Harry Direen, Ph.D., P.E.
DireenTech Inc.
www.direentech.com
October 5, 2017

Introduction	
Embedded software for autonomous control systems such as UAVs (Unmanned Ariel Vehicle /
Drones) and robots can be hugely complex. The complexity derives from all the tasks that must
be accomplished and work in unison in order to have a feature rich, smoothly operating, robust,
autonomous system. When first jumping into a project the tendency is to think… how hard can
it be to write a little software to control a drone? After all what needs to be done:

 Sends some waypoints to the drone’s autopilot

 Send/Receive a few messages to a ground station

 Capture some images and do a little image processing

 …

There is a strong tendency in software development to under estimate the system
requirements. The tendency is to focus on the lower level aspects such as how to send
waypoints to the autopilot, or send messages to/from the ground station, or focus on the fun
image processing. Once the lower level code is figured out… some type of loop structure to pull
all the pieces together is thrown in and wallah we are done… right? This process kind-of, sort-
of works so isn’t that good enough? The problem is as the system complexity grows, and it
always seems to, the code becomes more and more spaghettish. New features become harder
and harder to add without breaking the current code. The house of cards becomes very
tenuous.

There are much better ways to handle the software system level design and I will be outlining
one approach that works very well for the systems I have designed. The approach is not new,
but I believe tends to be over looked. I developed the system as part of my work innovating
control software for UAVs at the US Air Force Academy. I have used the approach in a variety
of other projects and products including a wheelchair control system for the NeuroGroove
project (www.direentech.com). To make life easier DireenTech developed software libraries

 DireenTech

Page 2 of 15

which may be obtained at: https://github.com/rdireen/rabitcsharp and
https://github.com/rdireen/rabitcpp.

UAV	Control	
I will set the stage by describing overall key tasks and functionalities of the UAVs we have flown
at the Air Force Academy. The concrete examples should help in grasping, and better
understanding the software design approach and highlight many of the issues that arise in
embedded systems control.

Projects at the Academy Center for UAS Research typically involve multiple, coordinated UAVs
running a mission autonomously, meaning that once the UAVs are in the air, all flight control
and mission control of the UAV are handled by the on-board computer and not by a human
operator. The UAVs communicate between each other and communicate with a ground
station. The ground station operator monitors the mission progress of the UAVs and may
update mission parameters through the ground station software. Each UAV has its own
onboard computer and operates autonomously, making decisions on where and how to fly the
aircraft based on its own sensor data and data from other participating UAVs to meet the goals
of the mission. Each aircraft has an autopilot. The autopilot handles the actual flight control of
the aircraft and provides aircraft position, velocity and attitude information (vehicle latitude,
longitude, roll, pitch, yaw, and related information) to the autonomous operating system. Each
aircraft typically has a camera system used to take pictures of and autonomously identify
targets of interest. A mission usually involves flying to an area to search; searching an area for
targets of interest; calling in other UAVs to help validate a target; and tracking moving targets;
all handled autonomously by the aircraft.

A breakdown of the primary subsystems of the UAV is:

 Communications: wirelessly communicating with a ground station and
communicating between other UAVs and possibly other autonomous systems.
Communications use well defined messages.

 Autopilot Interface: sending command messages to the autopilot and receiving
information from the autopilot. Information coming from the autopilot typically
includes:

o Latitude and Longitude aircraft position
o Altitude of the aircraft
o Velocity vectors
o Attitude (roll, pitch, yaw) data along with rates of change of these items
o Other status information

 Image Processing: a camera for capturing images along with the image processing
required to identify targets in those images along with the geolocation of the targets.

 Sensor Fusion: Target information can come from the UAV’s image processing and
may come from other UAVs and sensor systems. Sensor fusion is responsible for

 DireenTech

Page 3 of 15

fusing target information from multiple sources and providing a best estimate of a
given targets location. Sensor fusion has the capability to keep track of multiple
targets simultaneously.

 Mission Control: mission control is responsible for taking current aircraft location,
mission state, target information, and any other parameters deemed necessary and
determine where to direct the aircraft to next. Mission control is responsible for all
the high-level operational control of the aircraft to carry out the given mission.

 Aircraft health monitoring: This module monitors fuel/battery levels,
communications status and other parameter associated with the health of the
aircraft. If fuel levels become low or communications with the ground station is lost,
then the aircraft can be sent home.

As can be seen from the outline above, control of an autonomous vehicle is complex and results
in a highly complex software system. As is well known in the industry, complex system must be
broken down into manageable subsystems in order to handle the complexity in a robust,
reliable, and feature expandable way.

Modular	Multi-threaded	Control	
Complex software systems such as robotics and drone control may be, and should be, broken
into simpler, easier to design and code modules. There is a real advantage to breaking the
system into relatively independent modules that run on separate threads. Breaking a system
into relatively independent modules allows the designer and coder to focus on one aspect of
the system’s operation without having to worry about how other aspects of the system
operate. Running on separate software threads allows the system to take advantage of and
distribute the processing over multiple processor cores.

For instance, the UAV Communications is separated into a module that formats and sends
messages out to other UAVs and the ground station while also receiving messages from other
UAVs and the ground station and passed the received message to the proper module. The
communications module acts like a post office. The communications module is not concerned
with what is in a message, i.e. it is not responsible for generating messages or with responding
to a received message. The communications module simply takes messages generated by other
modules, formats them to the correct transport format, and sends the message to the intended
location(s) (other UAV(s) and/or ground station). Messages received by the communications
module are reformatted from the transport format to the internal system format, and send to
the proper module(s). This isolates the other modules from having to handle communications
of messages to outside systems.

Many embedded system processors are multi-core processors. Even the small, inexpensive,
Raspberry Pi (www.raspberrypi.org) computers have a quad-ARM-core processor. Running
modules in separate threads allows the system to take advantage of the additional power of
multiple core computers. Single threaded software can only take advantage of one of the

 DireenTech

Page 4 of 15

processor cores, leaving the other cores un-used by the software system. For embedded
systems that only have single core processors, there is still an advantage of using multi-
threaded programing techniques. A multi-threaded approach provides a clean separation of
modules.

The problem is that multithreaded systems are more difficult to design and there are issues of
thread synchronization and the protection of shared resources that if not handled properly will
cause insidiously difficult bugs in the system. The Rabit (sic) Multithreaded Management
system software libraries developed by DireenTech are designed to hide most of the difficulties
of building a multithreaded system and to provide a relatively easy to use base for embedded
control systems. C++ and .NET/Mono versions of the libraries can be obtained from GitHub at:

 https://github.com/rdireen/rabitcpp

 https://github.com/rdireen/rabitcsharp

Rabit (sic) is a multi-threaded management system library, or framework, which may be used as
the basis for autonomous UAVs/Drones, robots, and many other embedded control systems.

Rabit		
The Rabit (sic) Multi-threaded Management System is a system composed of managers that run
on separate threads; and a messaging system to safely communicate between the managers.
The thread safety features are hidden in the back-ground so that a user does not have to be
concerned with the specific threading and locking operations.

Rabit is designed around managers. Each manager runs on a separate thread which is designed
to handle the operation of some aspect of the system. For instance, in the UAV system a
separate manager was established for each of the primary subsystems noted above
(Communications, Autopilot Interface, Image Sensor, …). For those familiar with ROS (Robot
Operating System) a Rabit Manager corresponds loosely with a ROS Task. One of the key
differences between ROS and Rabit is that Rabit runs as a single mutli-threaded process where
each manager is running on a separate thread. In ROS each Task is a separate operating system
process. It would be quite possible, and maybe desirable, to use Rabit in the design of a
complex ROS Task. The goal of this paper is to describe Rabit and how to use Rabit and not to
compare Rabit with ROS, so that is all I will say in comparing the two systems.

Rabit Manager

Figure 1 shows a block diagram of a Rabit Manager. A Rabit Manager is composed of an
Execute Unit-of-Work, which is supplied by the user along with optional Startup and Shutdown
processes; any number of Publish-Subscribe Messages; and one or more Message Queues. The
grey-ish boxes (“Shutdown Manager”, “Sleep”, and “Wake-Up Events”) are part of the
underlying Rabit Manager.

 DireenTech

Page 5 of 15

Rabit Manager

Publish Subscribe
Message

Publish Subscribe
Message

Unique Name

Push()
Fetch()

Publish Subscribe
Message

Any Number of
Publish Subscribe

Messages
Message Queue
(Unique Name)

Message Queue
(Unique Name)

One or More
Message Queues

Shutdown
Manager

Execute
Unit-Of-Work

Wake-Up
Event(s)
(Timer)

Sleep

Shutdown
Process

Startup
Process

Enque
Event

Message Published Event

Figure 1 Rabit Manager

The Rabit system provides two mechanisms which safely communicate between managers.
The two mechanisms are publish- subscribe messages and message queues. Each has distinct
advantages. The messaging system is fully described in the section: Information Sharing
between Managers.

A Rabit Manager runs in a continuous loop with a “sleep” at the end of the loop. A manager is
started at the beginning of a program and designed to run for the entire time the program

 DireenTech

Page 6 of 15

(control system) is running. A Manager is designed to run a “Unit-of-Work” in each pass of its
internal loop. So what does it mean to run a unit-of-work?

Let’s take the Mission Control subsystem of the UAV’s operation as an example. Figure 2 is a
rough flowchart of some of Mission Control’s responsibilities. The details are not important or
complete. The flowchart simply gives an example of things that can be accomplished in a unit-
of-work. The flowchart shows a couple of sub-tasks (Target Search and Target Tracking) that
are selected based upon a Mission Control Operational Mode or State Variable.

 DireenTech

Page 7 of 15

Figure 2 Mission Control Unit-of-Work

Suppose the UAV is sent to a search an area with the responsibility of finding a target in that
area and if a target is found… track the target. We will assume we start of in the “Find Target”
mode
.
A unit of work might compose the steps of:

 DireenTech

Page 8 of 15

1. Get the UAV’s current position, velocity vector and attitude information. This
information is stored in publish-subscribe messages so those messages are fetched at
the start of the process.

2. Check the Mission Control Mode of Operation and take the path based on that mode
(assume the Target Search mode).

3. Check to see if the UAV is within the bounds of the search area.
a. If the UAV is outside the bounds of the search area, determine the

location/center of the search area.
b. Send a message to the Autopilot Interface Manager with the direction or

location coordinates of the search area. This message will be sent to the
Autopilot Interface Manager’s message queue.

c. End unit-of-work… which puts the manager back into the sleep mode.
4. Check to see if a new target was found. This might come from a message in the

manager’s receive queue which would have been inserted there by Sensor Fusion.
a. If a target is found… switch to the Target Tracking mode.
b. End unit-of-work… which puts the manager back into the sleep mode.

5. Using some search algorithm, determine the next location or direction to send the UAV.
Part of the algorithm will be to keep the UAV within the bounds of the search area.

6. Send a message to the Autopilot Interface Manager with the direction or location
coordinates of the search area. This message will be sent to the Autopilot Interface
Manager’s message queue.

7. End unit-of-work… which puts the manager back into the sleep mode.

The key concept here is that a Manager is sleeping (idle). An event wakes the manager up. The
manager handles the unit-of-work (task) at hand, and then goes back to sleep. The manager
will be forever (as long as the program is running) being woken up, handling its unit-of-work,
going back to sleep, only to be woken up again at the next wake-up event. If a manager is
designed well, and does not have too arduous of a task, the manager will spend most of its time
sleeping which allows other managers (running on independent threads) with a difficult, time-
consuming task such as image processing, to have more of the processor’s compute cycles.

A Manager’s task should be designed to be as independent as possible from other manager’s
tasks. For instance, the Mission Control manager should not be concerned with how messages
are sent to or received from the ground station or other UAVs. The Mission Control manager
should not be concerned with how Image Processing processes images to find targets or how
Sensor Fusion combines and filters target information. Mission control should only obtain UAV
location and current target information and make decisions based on the latest location and
target data.

As another example, let’s look at the Communications Manager. The communications manager
is responsible for sending and receiving messages from the ground station, other UAVs, and
possibly other autonomous systems. In our system, the communications manager acts a lot
like a post office. The communications manager is not concerned with what the contents of
message is, it is only concerned with formatting a message to the correct format for

 DireenTech

Page 9 of 15

transmission and sending it to the right location (ground station, UAV x, …) on the transmit side.
On the receive side the communications manager receives messages from the various other
UAVs or ground station; formats the message into the correct internal format; and posts the
message to the correct manager or managers for their consumption. I will give a few more
details of the Communications Manager after discussing some of the messaging features of
Rabit.

The Image Processing Manager has the well-defined task of capturing images from a camera
sensor; processing the image to identify specific targets; and then pass the target information
on to Sensor Fusion. In each execute-unit-of-work loop of the Image Processing Manager, the
manager:

1. Captures an image from the camera sensor
2. Obtains the latest UAV position and camera pointing angle
3. Processes the image to find targets located in the image
4. If a target or targets are found:

a. Calculate the target’s physical ground location
b. Send the target type and location information to Sensor Fusion

5. Go to sleep until woken by event which returns to step 1. (Actual sleep time is typically
very short or zero).

The Image processing mode will typically be dependent on the mission behavior. Image
processing like the other managers focus on its task of processing images without being
concerned at all with what is done with the resulting target information. This keeps the design
of the module straight forward, which is a primary feature of the Rabit Management system.
Each manager handles its task without being concerned with other manager’s tasks.

Startup	Process	

The Startup Process is an optional user provided process/method. This method is called by the
Rabit system before the manager enters its main loop (reference Figure 1). The Startup process
is used to initialize any resources and processes the manager’s Unit-of-Work requires. For
instance, in the UAV system, the Autopilot Interface manager must communicate with the
autopilot over a serial interface. The startup process for this manager will be responsible for
initializing that communications interface.

Shutdown	Process	

The Shutdown Process is an optional user provided process/method. This method is called by
the Rabit system before the manager is shut down and exited. This is where resources used by
the manger can be cleaned up or shut down before the manager is shut down.

 DireenTech

Page 10 of 15

Wake-Up	Events	

As noted above, a manager runs in a continuous loop calling the Unit-of-Work each time
through the loop (reference Figure 1). After executing the Unit-of-Work, the manager goes into
a sleep state. Going into a sleep state frees up the CPU for use by other managers and other
processes running on the computer. The Wakeup Events Block is responsible for waking up the
manager from the sleep state so that the Unit-of-Work can be executed.

The general philosophy in Rabit is that once the manager is woken up do to the occurrence of
an event, it is best to carry out the all the functionality within the Unit-of-Work rather than
some small subset of the work related to a specific event. The reason for this is that there is
significant overhead in an operating system context switch to a manager’s operating thread.
Therefore it is typically more efficient to run all the code in the manager’s Unit-of-Work at one
time and then release the thread context by going back to sleep than it is to wake up more
often and only perform a small subset of the Unit-of-Work. The user of Rabit has control of
what operations an event triggers. What I have found in general, that works best and keeps the
manager’s code straight forward, is simply to use events to wake up the manager from the
sleep state and execute the complete Unit-of-Work.

Rabit supports a number of events that can be used to wake up the manager from the sleep
state. These are:

1. Timer Event: a timer is started when the manager enters the sleep state and a wake-up
event will be triggered when the timer is complete. The default for this timer is 1
second. The user can set this timer to most any value that makes since. A lower bound
is around 10 milliseconds. Operating systems and frameworks such as .NET have lower
bounds on context switches, so it does not make sense to go below this boundary. If
the use is relying primarily on other events to wake up the manager, the timeout can be
set to a large number. The timeout cannot be disabled, but the timeout can be set to a
large number to effectively disable it. Even if other events are being used as the
primary mechanism to wake up the manager, I prefer to keep a timeout at a reasonable
value so that there is a guarantee that the manager will be woken up periodically to run
the Unit-of-Work and verify that anything that needs to be done is done. The timeout
can be set by the Unit-of-Work to actively change the timeout period based upon the
systems state or mode of operation. The user is responsible for taking advantage of the
timeout event to meet the overall system’s requirements.

2. Publish-Subscribe Message Event: A wakeup event can be generated when another
manager publishes new data to a publish-subscribe message. A manager that wishes to
be woken up whenever a specific message is updated will subscribe to that message’s
wakeup event. For example, let’s say that a publish-subscribe message is used to set
the course/direction of the UAV. Both the Mission Control and the Autopilot Interface
managers will have copies of this message. The Mission Control manager will be
responsible for setting and updating the content of the message. The Autopilot
Interface manager will be responsible for reading the message and sending the

 DireenTech

Page 11 of 15

course/direction information to the autopilot. The Autopilot Interface manager will
subscribe to a wakeup event that wakes the manager up whenever the message is
updated. When Mission Control publishes new course/direction information to the
message, the Autopilot Manager will automatically wakeup, and as part of its Unit-of-
Work, read the course/direction message and send the information to the autopilot.

It is a user’s responsibility to determine which, if any, publish-subscribe messages
should be used to wake up a manager and to subscribe to the wakeup event. The code
for subscribing to a wakeup event is typically added to the manager’s constructor code.

3. Message Queue Events: There are two types of events associated with message
queues: push event and a pop event. The push event occurs when a message is pushed
onto the queue and a pop event occurs when a message is popped off the queue. The
most common use will be to wake up a manager when a message is pushed onto the
manager’s queue. For instance, in the UAV system, the Communications Manager is
responsible for taking message sent to the manager from any other manager and
sending the message out to other UAVs or to the ground station. The Communications
Manager subscribes to it’s receive message queue’s push event. Whenever any other
manager pushes a message to be sent into the message queue, the Communications
manager will wake up, and as part of its Unit-of-Work pull whatever messages are on
the receive queue, format the message and send the message to its destination. Once
the Communications Manager is woken up, it should process all the messages in the
receive queue.

The queue pop event could be used by a manager to wake up after another manager
pops a message from its message queue. This is not as common of an event to use, but I
have found it useful to help control some overall system timing.

It is a user’s responsibility to determine which, if any, queue events should be used to
wake up a manager and to subscribe to the event. The code for subscribing to a wakeup
event is typically added to the manager’s constructor code.

Rabit wakeup events do not stack up. Whichever wakeup event occurs first will cause the
manager to wake up from its sleep state and start executing the Unit-of-Work. All other
wakeup events that occur essentially at the same time will be lost. If wakeup events occur
during the Unit-of-Work execution time, Rabit will note this and instead of going to sleep at the
end of the Unit-of-Work will clear the events and start the next execute Unit-of-Work. If no
other events occur during this time, the manager will enter the sleep state at the end of the
Unit-of-Work.

 DireenTech

Page 12 of 15

Information Sharing between Managers

In any practical system, managers must be able to communicate between each other. Rabit
provides two distinct, thread-safe, methods of communicating between managers. The two
communications methods are:

 Publish Subscribe messages

 Message Queues

Each communication method has its advantages and disadvantages. Together, the two
methods complement each other and provide a rich form of thread-safe, reliable,
communications between the managers.

Publish-Subscribe	Messages	

Publish-Subscribe messages allow a manager to publish information in a message that all other
managers will have access to as needed. For instance, in the UAV example, the Autopilot
Interface Manager receives UAV location and attitude data from the autopilot on a regular
basis. A UAV Position-Attitude Publish-Subscribe message is established that contains data
such as:

 UAV Latitude

 UAV Longitude

 UAV Altitude

 UAV Velocity Vector

 UAV Pitch Angle

 UAV Roll Angle

 UAV Yaw Angle

 GPS Time stamp when data was captured.

The Autopilot Interface Manager collects this data from the autopilot several times a second
and simply posts the UAV Location message. This makes the position and attitude information
available to all the other managers that subscribe to the UAV Position-Attitude message. Image
processing must tag every image captured with the information. So when image processing
captures a new image, the image processing manager will fetch the latest copy of the UAV
Position-Attitude message and include this data with the image. The Mission Control Manager
requires the current UAV position and velocity information to compute next flight control
directions and to perform other mission processes. The Mission Control Manager simply
fetches the UAV Position-Attitude message as needed which supplies the latest position and
velocity information. The Communications Manager fetches the UAV position and velocity
message on a regular basis in order to send this information to the ground station and other
UAVs for situational awareness purposes.

 DireenTech

Page 13 of 15

A publish-subscribe message is ideal for the example given above and any other similar
situation. One manager is responsible for capturing or generating specific information that
other managers need. The manager simply posts the information message as it is captured or
generated. The manager posting the information is not concerned with how the information is
used by other managers; the manager simply keeps the information up-to-date. The receiving
managers that subscribe to a given message are not concerned with who makes the
information available or how the information is generated; the receiving managers simply fetch
the information in the message as that manager needs the information.

A publish-subscribe message is typically used where the receiving manager is not concerned
with obtaining the given information every time it is updated, but simply requires the latest
copy of the data. In the example above, image processing might take some time to process an
image. In the meantime, the Autopilot Interface manager might publish updates to the UAV
Position-Attitude message several times during the processing of a single image. The Image
processing manager only cares about getting the UAV’s current position and attitude
information when it captures a new image and is not at all concerned with the fact that the
information might be updated several times during the processing of each image.

In the Rabit system, each manager keeps a local copy of a given publish-subscribe message. A
global copy of the message is hidden behind the scene. The manager that is responsible for
keeping the information up-to-date simply fills in his local copy of the message with data
captured or generated by the manager. When the data is filled into the local copy of the
message, the manager “Posts” the message. When the message is posted, Rabit thread-locks
the global copy of the message and copies the data into the global message and then releases
the lock. Rabit also time-stamps the global message whenever a post occurs. A manager that
wishes to receive information from a publish-subscribe message will create a local copy of the
message and subscribe to the message. Any time the manager wants or needs a copy of the
latest information stored in the global copy, the manager uses the “Fetch” method of the
message. When a Fetch is issued, Rabit goes to the global copy of the message and checks the
timestamp of the global message and the manager’s copy of the message. If the timestamps
are exactly equal, it is assumed the manager has the latest message data. This prevents having
to obtain a thread-lock. If the timestamps are not equal, Rabit will thread-lock the global
message, and copy the data, including the timestamp, from the global message into the
manager’s local copy. After copying the data, Rabit releases the lock on the global message.

One advantage of Rabit’s publish-subscribe message system is that a manager is responsible for
fetching the latest copy of the message data when that manager deems it appropriate. This
prevents the manager from starting to use a messages’ data only to have the data change
spontaneously out from under the manager during its use which could cause unpredictable
results.

Rabit’s Publish-Subscribe message system supports event triggers. A manager may subscribe to
a message’s event trigger that will trigger whenever another manager posts new data to the
message. The most common use of this trigger will be to wake a manager up from its sleep

 DireenTech

Page 14 of 15

state when new information it posted to the message. Rabit also supports user-defined events
triggered by a message post. This is less common, but can be used to meet a system’s needs.

Message	Queues	

Rabit supports thread-safe message queues as another independent method of safely sending
messages from one Manager to another Manager. In Rabit, one manager is the receiver of
messages put into a particular message queue while one or more other managers can send
messages to the receiving manager by simply pushing messages into that message queue. For
example, in the UAV system, the Communications Manager has a message queue that will
contain messages the other managers wish to send outside the UAV such as to the ground
station or to one or more other UAVs. The Mission Control manager might create and send a
message to another UAV to request help validating a target, or the manager might send a
message to the ground station to verify a target. The Mission Control manager simply creates
the message and pushes it into the Communications Manager’s message queue. The
Communications Manager will pop the message from the message queue, format the message
for transmit, determine the intended destination and send the message on its way. The
Communications Manager does not care what the message is or where it was generated, the
manager simply determines the destination based on header info in the message, formats the
message for transport, and sends the message on its way.

In the opposite direction, the Mission Control Manager and Sensor Fusion Manager may have
their own receive queues. If the Communications Manager receives a response message from
another UAV or the ground station for target verification, the Communications manager will
reformate the message into an internal message format, determine the message is for Mission
Control, and simply push the message into Mission Control’s message queue. If the
Communications Manager receives a target information message destined for Sensor Fusion,
then the Communications manager will reformate the message into an internal message format
and push the message into Sensor Fusion’s message queue.

Message queues are important for cases where each and every message must be processed by
the receiving manager. The manager is not interested in just the latest message data, but each
and every message dataset that comes in.

Rabit Message Queues support event triggers. An event can be triggered whenever a message
is pushed into a message queue, and an event can be triggered whenever a message is popped
from a message queue. A typical use would be to wake a manager up whenever a new
message is pushed into its receive message queue. In the UAV case, the Communications
Manager can subscribe to a wakeup event whenever another manager pushes a message to be
transmitted into his message queue. The Communications Manager will then immediately
wakeup when there is a new message to be sent.

 DireenTech

Page 15 of 15

Summary	
Embedded software for autonomous control systems is typically very complex. The complexity
derives from all the tasks that must be accomplished and work in unison in order to have a
feature rich, smoothly operating, robust, control system. It is very import to manage the
complexity of these systems by building upon a robust underlying system framework. The
DireenTech Rabit library is a proven, multi-threaded, management system framework with
witch robust, feature rich, expandable, embedded control system can be built upon. The Rabit
library is being used to control:

 UAV’s at the US Air Force Academy’s Center for Unmanned Aircraft Systems:

o https://www.usafa.edu/research/research-centers/center-unmanned-aircraft-
systems

o https://direentech.com/portfolio/drone-research-project/

 The NeuroGroove wheelchair and upcoming racecar control systems:

o https://direentech.com/portfolio/neurogroove-project/

o https://www.usafa.edu/the-neurogroove-project/

o http://falcibiosystems.org/

o http://www.falconworks.org/projects

