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We propose priority pricing as an on-line adaptive resource scheduling mechanism to
manage real-time databases within organizations. These databases provide timely in-

formation for delay sensitive users. The proposed approach allows diverse users to optimize
their own objectives while collectively maximizing organizational benefits. We rely on eco-
nomic principles to derive priority prices by modeling the fixed-capacity real-time database
environment as an economic system. Each priority is associated with a price and a delay, and
the price is the premium (congestion toll resulting from negative externalities) for accessing
the database. At optimality, the prices are equal to the aggregate delay cost imposed on all
other users of the database. These priority prices are used to control admission and to schedule
user jobs in the database system. The database monitors the arrival processes and the state of
the system, and incrementally adjusts the prices to regulate the flow. Because our model ig-
nores the operational intricacies of the real-time databases (e.g., intermediate queues at the
CPU and disks, memory size, etc.) to maintain analytical tractability, we evaluate the perfor-
mance of our pricing approach through simulation. We evaluate the database performance
using both the traditional real-time database performance metrics (e.g., the number of jobs
serviced on time, average tardiness) and the economic benefits (e.g., benefits to the organi-
zation). The simulation results, under various database workload parameters, show that our
priority pricing mechanism not only maximizes organizational benefits but also outperforms
in all aspects of traditional performance measures compared to frequently used database
scheduling techniques, such as first-come-first-served, earliest deadline first and least slack
first.
(User Preference; Information Services; Electronic Commerce; Response Time; Real-Time Databases)

1. Introduction
In this paper we present a priority pricing mechanism
to manage negative externalities in the operation of
fixed-capacity real-time databases (RTDBs) that pro-
vide timely information services to users within orga-
nizations. The priority pricing mechanism lets users

select a level of usage that maximizes the overall or-
ganizational benefit. We present the design and the im-
plementation of this priority pricing approach, which
acts as a natural admission control and a scheduling
technique, as an online adaptive scheduling mecha-
nism for RTDBs. We also present simulation results to
demonstrate that our pricing mechanism not only
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maximizes organizational benefits, but also outper-
forms frequently used scheduling techniques, such as
first-come-first-served, earliest deadline first, and least
slack first, with respect to traditional database perfor-
mance measures (e.g., miss ratio, average tardiness).
This research seamlessly integrates economic princi-
ples into RTDB query processing to provide timely in-
formation services.
Timeliness of information services is important in

the present business environment with delay sensitive
users. From an economic perspective delay sensitivity
can be modeled as delay costs. When timeliness suf-
fers, the collective delay costs can be substantial at the
organizational level and can adversely affect organi-
zational benefits from information services (Dewan
andMendelson 1990). In this context RTDBs, where the
utility is measured by the responsiveness to user
queries, play a central role in organizations by provid-
ing timely access to relevant information. In the RTDB
environment, responsiveness is affected dramatically
not only by the CPU speed but also by issues such as
overload management, admission control, prioritiza-
tion, and resource scheduling (e.g., CPU, disks and
memory) (Abbott and Garcia 1992, Ramamritham
1993). However, commercial databases are not de-
signed to support timeliness criterion because they
provide no support for prioritization and dynamic re-
source allocation schemes (Jhingran 1996) and lack so-
phisticated admission control mechanisms.
Much of the research in RTDBs has been to address

the issue of timeliness criterion (Bestavros 1996, Ra-
mamritham 1993). However, the techniques suggested
in the computer science literature to improve timeli-
ness have provided little or no additional benefits,
while largely ignoring how users value information.
However, there is a rich literature in queuing theory
(some within a microeconomics framework) address-
ing some of these issues in the organizational context
(e.g., Dewan and Mendelson 1990, Mendelson 1985,
Mendelson and Whang 1990, Westland 1992). Gen-
erally, timeliness is affected when individual users
expand their usage of limited database processing ca-
pacity. This leads to negative (congestion) externali-
ties; that is, each user’s decision to utilize the database
server imposes additional delay costs on the rest of the

users and the organization. In an organizational set-
ting, where there is operating transparency and high
degree of trust, a pricing approach can manage and
regulate user demand for computing resources. Sev-
eral researchers have suggested the pricing approach
for efficient allocation of computing resources
(Mendelson 1985, Dewan and Mendelson 1990, Men-
delson and Whang 1990, Stidham 1992, Westland
1992).
We apply prior work in the domain of pricing com-

puting resources to RTDBs. We derive welfare maxi-
mizing priority prices and demonstrate the viability of
such pricing for scheduling jobs for RTDB services. In
our priority pricing approach, a premium is associated
with higher priority jobs because these jobs impose ad-
ditional (delay) costs on lower priority jobs. Addition-
ally, we assume users submit jobs in various classes
and are heterogeneous in how they value information
and incur delay costs. Users submit requests to the da-
tabase through agents that capture their cost and delay
expectations (similar to MARIPOSA1 in Stonebraker et
al. 1994, 1996). The database matches user preferences
against its own schedule of priority, price, and delay
expectations for each job class (henceforth referred to
as priority-price-delay schedule) and admits only
those jobs with positive expected net benefits. The
priority-price-delay schedule provides a natural ad-
mission control and discourages users who value in-
formation low from using database resources. This ap-
proach is significantly different from the traditional
admission control approaches suggested in the com-
puter science literature on RTDB. Typically, admission
control is enforced either by a multiprogramming level
that enforces the number of jobs that can be active in
the system or through complex, rule-based, dynamic
policies. Our research provides a mechanism to incor-
porate user preferences and organizational benefits
into admission control strategies.
Earlier studies in priority pricing take an abstract

view of internal pricing for the management and con-
trol of information processing services with an inten-
tion to provide normative insights. These analytical

1The prototype of the economic paradigm-based MARIPOSA, a
wide-area distributed management system, is available at �http://
mariposa.cs.berkeley.edu�, the University of California, Berkeley.
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models cannot be directly operationalized as an on-
line resource allocation mechanism. There are several
reasons:
1. Existing studies rely on steady-state queue lengths

based on known demand patterns to decide whether
or not a job should be submitted to the database. Fur-
thermore, prices are meant to be static for long periods
of time. These assumptions may not always perform
well in the short run as temporary database overload
could result in complete shutdown of the system (simi-
lar to “thrashing” in an operating system (Silberschatz
et al. 1992)). This is because the effects of congestion in
databases or real-time systems are known to be highly
nonlinear (Stankovic 1988, Westland 1992).
2. Analytical models have to make restrictive as-

sumptions to make the model tractable. They ignore
the operational intricacies, such as data conflicts,mem-
ory size, input/output (I/O) requirements, and inter-
mediate waiting times at CPU and disks. However,
these operational intricacies impact database perfor-
mance differently. For instance, the same query sent to
two servers with different CPU speeds may retrieve
information from the slower CPU server first if the re-
quired data (in terms of pages in computer science ter-
minology) are already in main memory. It is also dif-
ficult to incorporate database performance metrics,
such as jobs processed on time.
3. Many studies jointly optimize the arrival rates and

service capacity that can be used for initial design.
However, from an operational perspective, database
capacity is fixed and the database system has to man-
age the service requests.
Given the reasons stated above, the theoretically de-

rived prices need to be dynamically revised based on
the changes in the demand structure and the observ-
able attributes of the database. We provide an imple-
mentation strategy for this dynamic (incremental) ad-
justment of prices to regulate the flow to the database
system. We evaluate the pricing approach and the im-
plementation strategy through simulation. Simulation
is a widely acceptedmethodology to evaluate database
resource allocation techniques because it allows us to
analyze the sensitivity to various constructs not in-
cluded in the analytical model for the reasons of trac-
tability discussed earlier (e.g., studies include Abbott
and Garcia-Molina 1992, Agrawal et al. 1987, Stankovic

1988). We also use simulation to compare traditional
approaches for database scheduling and admission
control with the natural admission control and sched-
uling provided by the pricing policy. We compare our
approach with widely used first-come-first-served,
earliest deadline first, and least slack first techniques
along two dimensions: Traditional database perfor-
mance metrics, such as miss ratio, and economic ob-
jectives, such as organizational benefits. We bridge the
gap that exists between analytical studies and simu-
lation studies.
This paper is organized as follows: §2 discusses the

relevant research in the areas of economics and com-
puter science and argues the merit of incorporating
economic principles into RTDB management. Section
3 discusses an economic approach to managing RTDB,
an analytical model for pricing using economic theory,
and a methodology for overload management and
price recomputation. Sections 4 and 5 provide the
simulation model and the results of our study.We con-
clude in §6 with a brief discussion of future research.

2. Related Work
The related work extends to two broad areas of re-
search: Pricing in service facilities using queuing the-
ory within a microeconomic framework, and the
RTDBs in computer science. We first discuss related
work in pricing.
Several researchers have studied the issue of queu-

ing delays and the resulting negative externality
within a microeconomic framework in the context of
traditional service facilities, such as networks and com-
puter systems. Naor (1969) first discussed regulating
queue lengths by levying tolls. Kleinrock (1967) dis-
cussed priority pricing as a means to receive services
earlier using a schedule of price and delay. Yechiali
(1971, 1972) examined the optimal joining rule for
GI/M/I and GI/M/s queues. He showed that the op-
timal policy to join a queue is when the queue length
is below a threshold value and that the consumers’my-
opic decisions do not result in a socially optimal de-
cision for any arbitrary price. Several other studies
have extended and generalized Naor’s model to un-
derstand the individual joining behavior (including
balking and reneging) and socially optimal joining be-
havior in single queue systems. Mendelson (1985) and
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Mendelson and Whang (1990) derived incentive com-
patible prices for M/M/1 queues that lead to socially
optimal results when consumers make a myopic de-
cision to join the queue based on prices and expected
waiting times. Westland (1992) extended the work of
Mendelson and Whang (1990) by examining the de-
mand price elasticity and derived the profit-
maximizing prices for a monopolistic setting. He ar-
gued that in a competitive setting, the prices would be
set somewhere between the two extremes of monop-
olistic prices and social welfare prices. Dewan and
Mendelson (1990) investigated optimal allocation de-
cisions taking into consideration both users’ delay cost
and the capacity cost. Stidham (1992) extended this
work further by looking at the long run-problem
where capacity can be treated as a decision variable.
Stahl and Whinston (1994) derived socially optimal

prices in a network setting with a generic queue wait-
ing time structure. In this model, users choose an ar-
rival rate myopically based on the prices and expected
waiting times. Gupta et al. (1996, 1997) extended the
work by Stahl and Whinston (1994) by deriving pri-
ority prices in a network setting and provided a com-
putational mechanism for computing prices via an
adaptive pricing mechanism. Other studies in the net-
work setting that use an economic approach include
Cocchi et. al (1993), Shenker (1995), Giridharan and
Mendelson (1994), Mackie-Mason and Varian (1995),
and Kurose and Simha (1989). Our analytical model is
based on Gupta et al. (1997) and extends and applies
it to the RTDB environment.2 We assume that users
make myopic decisions regarding their flow rate (or
equivalently, the decision to join or balk from a queue)
and present a welfare-maximization model to derive
priority-prices.
A number of studies have investigated resource

techniques in RTDBs from an engineering viewpoint
with some success. Haritsa et al. (1991), Ramamritham
(1993), and Yu et al. (1994) provide a good overview
on RTDB resource allocation techniques. Principal
among scheduling techniques are earliest deadline first
(EDF), least slack first (LSF), shortest processing time

2Note that for a M/M/1 queue our model reduces to the model of
Mendelson and Whang (1990).

first (SPTF), weighted priority (Huang et al. 1989), and
various extensions of EDF. Some extensions of EDF are
adaptive earliest deadline (AED) (Haritsa et al. 1991)
that incorporates an admission control into EDF pol-
icy, and adaptive earliest virtual deadline (Pang et al.
1992), where AED was extended to make it fair to all
job sizes. These resource-scheduling policies perform
differently at different workloads. EDF is known to
perform better in moderately loaded systems, while
LSF performs better in overloaded systems (Abbott
and Garcia-Molina 1992). Most of these studies neglect
user values and delay costs and assume free database
access. Furthermore, these studies assume job dead-
lines are known a priori. An exception to these studies
is MARIPOSA (Stonebraker et al. 1994, 1996), a wide-
area distributed database system, where the query pro-
cessing is based on cost-delay curves. This system ne-
glects future arrivals of higher valued queries and
assumes that the cost is based on the load at the time
of bidding. Our research is different from the previous
studies in that we price jobs in a dynamic environment
taking into account both current and expected future
arrival rates. One of the key reasons for proposing an
economic paradigm-based architecture in MARIPOSA
is that cost-based optimizers do not scale well and do
not respond well to site-specific-type extension, access
constraints, charging algorithms, and time-of-day
constraints.
Konana et al. (1996a,b) note that economic issues im-

pact several database issues such as data classification,
transaction scheduling, buffer management, admis-
sion control, concurrency control,3 data replication,
and storage management. Timely execution of user
jobs may not be an issue when the database server has
less workload. In fact, most scheduling disciplines sug-
gested for database transaction processing perform
equally well at low workloads (Ramamritham 1993,
Abbott and Garcia 1992, Bestavros 1996, Konana 1995).
However, as the server becomes congested (referred to
as “overload” conditions in the computer science lit-
erature), the resource allocation mechanism can have
a significant impact on the performance.

3Concurrency control is needed to ensure that concurrent transac-
tions do not interfere with each other’s operation.
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3. Priority-Based Pricing Model
In this section, we develop a social welfare model for
pricing RTDB services within organizations. As Men-
delson and Whang (1990) and Westland (1992) note,
social welfare prices may not be able to recover the
costs if congestion-based externality prices are the sole
revenue sources. However, using social welfare prices
has the advantage of maximizing organizational bene-
fits from computing resources. Prices in these environ-
ments play a role of transfer prices rather than revenue
source. Westland (1992) discusses the role of
congestion-based pricing for cost recovery within a
two-part tariff scheme, where there is a fixed charge
for access (subscription charge) and externality-based
prices. However, we focus on resource allocation and
the resulting operational characteristics of the database
and do not focus on cost recovery or the profit maxi-
mization problem in this paper. We focus on external-
ity pricing to influence users’ decisions regarding the
level of their usage to optimize organizational benefit.
Subsequently, we develop a strategy for real-time im-
plementation of derived prices and investigate the per-
formance of the database.
We first discuss an abstract framework of the data-

base job processing and pricing scheme, and then de-
velop an analytical model to derive the optimal prices.
In our framework, the users submit queries using cli-
ent (software) agents. These agents capture and trans-
mit user preferences in terms of cost and delay to the
information server. The information server will then
find the best match from the precomputed priority-
price-delay schedule. Once a job is accepted in a par-
ticular priority class, it remains in the same priority
until completion. We assume that user requests have
a soft deadline (Ramamritham 1993), that is, jobs will
continue to execute until completion even when their
deadline expires (note that explicit job deadline is not
used in the analytical model, but is used in the simu-
lation for performancee valuation). We relax this as-
sumption and analyze through simulation the effect of
jobs dropping out of the queue when their deadlines
are reached. The pricing mechanism implicitly consid-
ers processing requirements, expected intermediate
waiting times, user values, and delay costs. For the im-
plementation of a pricing mechanism, the knowledge

of consumers’ private value for information services is
not required. However, for expository purposes we
use these values in the model description. The actual
price computation does require information on con-
sumers’ delay cost, which can be estimated from the
consumer choices as discussed in Gupta et al. (1997)
(see Appendix A).

3.1. RTDB Model
The RTDB is a disk-resident shared memory multipro-
cessor system. The server is associated with a priority
queue at the CPU and the disks. A job may have to
wait at the CPU and disk queues at multiple instances
due to disk access and time-sharing.4 In this paper, we
consider read-only queries and ignore updates. Hence,
any unpredictability in processing time due to concur-
rency control is eliminated (Ramamritham 1993). Thus,
we assume that the database processing capacity is a
function of the CPU processing capacity measured in
terms of pages processed per unit time. Table 1 shows
the notation and objectives functions used in themodel
and subsequent simulation experiments.
Each request arriving to the database can be prean-

alyzed off-line to identify the size. Wemeasure the size
of a job, s, in terms of the number of pages to be
fetched. Let sj be the size of the job in a known job class
j ( j 1,2, . . , J).5 Every job is assigned a particular pri-
ority class k (k 1,2, . . . , K) where k 1 is the highest pri-
ority class.
During processing of a job, the required data (in

terms of pages) are retrieved from the disk into main
memory. Each page requires q time units to fetch from
the disk and p time units to process at the CPU. Be-
tween processing of pages, a job may have to wait in
queues to access the disk and the CPU (intermediate
queues are not modeled for analytical tractability;
however they are modeled in the simulation). Let xjk

be the expected total waiting time at CPU and disk
queues for each job class j in priority class k. Then the
total expected time, s ( j,k), to process a request in job

4While the number of CPUs or disks is not used in the analytical
model, they are required for simulating the real environment dis-
cussed in §4.2.
5Transaction size has a direct impact on the processing or response
time. The higher the number of pages/data items to be fetched, the
higher may be the number of input-output (I/O) requirements.
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Table 1 Notation and Objectives Used in the Model and Simulation

Type
Notation and

objectives Description

i Index to represent a user (i 1, 2, . . . I)
j Index to represent a job class ( j 1, 2, . . . J)
k, h Index to represent a priority (k, h 1, 2, . . . K)

Workload
parameters

k

xjk

s( j,k)

Arrival rate of jobs
Waiting time in priority k for job class j.
Expected time to process a request in job class j and priority k. (Note: tij is used to indicate actual process time in §4)

p CPU time to process per page
q Disk access time per page
s Number of pages to be processed in a job
v Database capacity in terms of pages.

User related
parameters

Vij

ui

dij

c*ij
dij

Instantaneous value of information for user i for job class j.
Overall net benefit to user i.
Delay cost per unit time for user i in job class j.
Minimum cost of accessing information in job class j for user i.
Deadline of a job submitted by user i in job class j.

rjk Estimated access price at priority k and job class j. (t) rjk is used to represent estimated access price at time t.
r̂jk(t) Actual implemented price at time t.
� Adjustment parameter for access price (� � (0,1))

Function Xk(•;v) Waiting time function for a given database capacity v.

Matrix K Matrix of arrival rates for each priority k and job class j.

Objective
Function

W
S

Systemwide net benefits (During simulation we use benefits per unit time)
Consumer surplus (During simulation we use surplus per unit time)

Other Miss Ratio Percentage of jobs missing deadline.
Simulation NMR Miss ratio normalized by job size.
Objectivesa Average

tardiness
Average lateness of jobs completed after the job deadline

aThese simulation objectives are traditional database-related performance measures required for analysis.

class j and priority k is the sum of the expected waiting
time, xjk, and the total time to process pages at the CPU
and disks.

3.2. Users and Demand Function
We consider the RTDB system as an economic system
that serves each user i (i 1,2, . . I). A user i may be a
group of users, such asmarketing, finance, or customer
service group. We assume service needs for user i as a
stochastic arrival process with a specific arrival rate for
a job class j. Each user submits a job with a cost and
delay expectation to the database. The database then
assigns an appropriate priority k to each request. Let
kjk denote the average flow rate for user i for job class

j in priority k. Below we describe the value function,
delay costs, and the decision structure for user
requests.

Value Function. We assume that a user i has an
instantaneous value (i.e., at delay time zero) Vij (kij) for
a request in job class j with a realized6 flow rate kij
where Vij (kij) is continuously differentiable, nonde-
creasing, and concave. We assume that the user valu-
ation of information depends only on his average flow

6We define realized flow rate as the flow rate resulting from actual
submission of requests. Note that some of users’ requests may not
be submitted, either because the required performance criterion can-
not be met, or the cost to the user may be too high.
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rates and is independent of other arrival and service
processes. In an intranet setting, for example, a cus-
tomer service group has a very high value for customer
information since it is required to provide quick ser-
vice. However, the net value to a user is less than
Vij (kij) because the value of the information diminishes
with elapsed time (delay cost) and there is a cost to
retrieve this information. In the customer service ex-
ample, delays in retrieving customer information lead
to customer dissatisfaction and, therefore, the organi-
zation’s net benefits decreases.

Delay Costs. We assume a linear delay cost for all
users for analytical tractability.7,8 Each user i experi-
ences a delay cost, dij, per unit time for a given job class
j. Therefore, the expected delay cost for job class j of
priority k is dijs( j,k). The estimation of delay cost ap-
pears to be a difficult task because users have no in-
centive to truthfully report their true delay costs. How-
ever, one can approximate user delay costs by
monitoring user past choices with respect to priority,
delay expectations and cost for each job class. A brief
description of the methodology is discussed in the
Appendix.

Decision Structure. We assume that each user
maximizes his net benefits in the presence of access
price and delay costs. Let the cost to access information
from the database for job class j and priority k be rjk.
Then the minimum cost of accessing information in job
class j from the database with a given waiting time and
price is:

c* (r,x) � min [d s( j,k) � r ]. (1)ij ij jk
k

7Different types of delay costs have been used in RTDB (Abbott and
Garcia-Molina 1988) and queuing theory related (Dewan and Men-
delson 1990) studies. The deadline delay cost structure in Dewan
and Mendelson (1990) refers to soft deadlines in RTDB literature. In
a hard deadline, a significant negative value is imposed on the sys-
tem when a transaction is not completed on time. In a firm deadline,
a transaction has no value once the deadline is crossed.
8Note that delay cost is an implicit factor; rarely will users know
their delay cost factors. Instead users specify deadlines and the delay
costs have to be determined from it. In the database literature, often
piecewise linear delay costs are considered, where after the deadline
is reached there is no further decay in value, and the net user value
for service remains zero. Assuming continuous linear delay costs,
on the other hand, makes benefits negative once the deadline is
reached.

That is, the optimal cost, is the minimum of the sumc* ,jk
of delay cost (dijs( j,k)) and access cost (rjk) over all pri-
orities. Equation (1) determines the appropriate pri-
ority class, k, that delivers the information at the lowest
possible cost. Note that the delay cost term dijs( j,k) and
access cost rjk are inversely proportional. This is be-
cause higher priority is associated with higher access
price but with lower delay costs, while lower priority
is associated with lower access price but with higher
delay costs. However, the delay costs depend on the
waiting times, which are themselves a function of the
realized flow rates into the system; that is, the waiting
times depend on the current demand and expected fu-
ture demands from all users.
To arrive at the realized flow rates into the system

for each user, we need to consider the overall net ben-
efit to the user. The overall net benefit, ui, of user i for
a given realized flow rate ki, rental cost, and waiting
time can be defined as:

u (k ,r,u) � (V (k ) � k c*(r,x)). (2)i i � ij ij � ijk ij
j k

Equation (2) states that the overall net benefit to each
user i is the instantaneous value of jobs minus the cost
of delays and access price summed over all jobs in each
job class. If we assume that each user i will choose
arrival rates that will maximize his net benefits then
the realized flow rates from each user are determined
by the following:

�V (k )/sk � c*(r,x) ∀ j and k,ij ij ijk ij (3)

and �V (k )/�k � c* (r,x) ⇒ k (r,x) � 0.ij ij ijk ij ijk

That is, a user will evaluate his marginal benefits
before his request is submitted for processing. If the
marginal benefit is greater than or equal to the access
cost, then the request is submitted, otherwise he balks.
Then, the realized flow rate from each user is the result
of all submission decisions. This implies that the in-
formation server can potentially manipulate the flow
into the system to achieve a desired response time for
all jobs.

3.3. Optimal Resource Allocation
In this subsection, we develop the methodology for
generating the priority-price-delay schedule that max-
imizes the net benefits given the demand function,
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user’s value function and delay costs, and decision
structure. The database is said to be in equilibrium
when the demand for services, �i,j,k kijksj , equals the
processing capacity m (in terms of pages) of the data-
base. However, in any stochastic process, if the arrival
rates are equal to the capacity then the waiting times
r �. Any feasible pricing mechanism has to provide a
rationing mechanism that ensures that the demand is
less than the capacity at all times. Let K represent the
matrix of job arrival rates, kjk, at all priority and job
classes. For a given database capacity m, we can rep-
resent the waiting times xjk as a function of the arrival
rate matrix K.

x � X (K;m) ∀ j, (4)jk k

where Xk(K;m) is assumed to be continuously differ-
entiable with respect to kjk, strictly increasing and con-
vex as long as demand for services is less than the da-
tabase capacity and Xk(0;m) � 0. Differentiability is
implicitly assumed in related work to obtain optimal-
ity conditions. Furthermore, Xk(K;m) r � as demand
approaches the database capacity. We assume that
�Xh/�kjk � �Xh/�kjk� for all k � k� � h ((note that the
highest priority is 1 and the lowest priority is K); that
is, the incremental waiting time imposed on priority h
jobs is greatest for jobs arriving with the highest pri-
ority (negative externality). The waiting time for any re-
quest in the higher priority is notaffected by the new
requests in lower priority, while any new request in
the higher priority affects all lower priority requests.
To derive the optimal trade-off we need to define a

systemwide welfare function. Wemaximize user bene-
fits, that is, benefits of all users minus the delay cost
for all users:9

W(k,x) � (V (k ) � d k s( j,k)). (5)� ij ij ij � ijk
i,j k

We now seek an allocation of demands, kijk, and
waiting times xjk that maximizes W(k,x) subject to
Equation (4). We solve the global maximization prob-
lem using the standard Lagrangian method and Kuhn-
Tucker (K-T) conditions for optimality (Bazaraa and
Shetty 1993). Substituting the Lagrangian multiplier to

9Note that the price is the transfer of revenue from the users to the
provider. Therefore, the sum remains in the economic system and,
hence, is part of the total welfare.

the K-T conditions, we find that the allocation of de-
mands, kijk, will satisfy the K-T conditions when:

r � [�X /�k ] • k . (6)jk � h jk � ij ijk
h i,j

The rental price is the welfare-maximizing price for
database access in priority k and is equal to the average
cost of aggregate delays (�i,j dijkijk), weighted by the
waiting-time/throughput trade-off (�Xh/�kjk).
Given our assumptions about the waiting time func-

tion, Xk (•;m), the rental prices are highest for highest
priority class (priority 1) and decreases as the priority
class decreases, i.e., rjk 	 rj(k�1). Hence, one could think
of rjK, where K is the lowest priority, as the base price,
and (rjk � rjK) as the premium for accessing the higher
priority k for job class j.
Note that Equation (6) is not an explicit formula for

rental price rjk, since rjk enters the right-hand side
through kijk and the resulting arrival rate matrix K.10

Instead of using traditional fixed-point methods of
computing prices we favor an approach which is mo-
tivated by the classical tatonnement process (Hahn
1982). Our approach has the benefit of providing an
adaptive mechanism to compute and implement prices
in real-time while not requiring the knowledge of the
delay factors.
In summary, we generate an optimal priority-price-

delay schedule that maximizes systemwide welfare. In
this schedule every job class j is associated with a pri-
ority, a price, and a delay. At optimality, the rental cost
for a particular job class and priority class is equal to
the aggregate delay cost of users wishing to use the
system for a given time period. When a user’s request
arrives with service characteristics and a price range,
the server agent can identify the best priority for that
job by minimizing the expected total cost (delay cost
� price). This priority is then used for resource allo-
cation (CPU and Disk) in the RTDB. Jobs in the same
priority class are prioritized on a first-come-first-
served (FCFS) basis.11 A request may not be serviced
if the price a user is prepared to pay is infeasible with

10This is true for all microeconomic models where demand is price
elastic.
11Note that our model assumes a fixed number of priority classes
and then uses FCFS for scheduling.
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the service requirements. In the next section, we de-
scribe how the priority-price-delay schedule can be op-
erationalized in a database environment to manage
overload conditions.

3.4. Operational Model—Overload Management
and Price Recomputation

Our model estimates the expected delay times based
on the predictions of the arrival rates for various job
classes and priorities. However, the variability in the
actual arrival rates may result in overload situations
where the system consistently processes user requests
late. While stochastic equilibrium results are valid
when the system is run on a long-term basis, it may
not be applicable for a short-term increase in arrival
processes as temporary variability may dramatically
alter database performance. Overload situations may
lead to performance degradation fairly rapidly, some-
times leading to system downtime, such that none of
the jobs will be processed, an effect similar to “thrash-
ing” observed in operating systems (Silbershatz et al.
1992, Stankovic 1988). Therefore, when the system ob-
serves overload conditions some actions must be taken
to control admission at the earliest. In our case, over-
load implies that the priority-price-delay schedule
must be adjusted to reflect the actual demand for sys-
tem resources, which in turn changes the admission
control. That is, when the demand increases, the prices
are recomputed to induce further restrictions on the
admission. On the contrary, if all the jobs are processed
well within the delay estimates, then the price schedule
must be revised downwards to allow more jobs. This
priority-price-delay schedule is adjusted incrementally
as discussed below.
Our price computation approach measures the av-

erage flows to the database and predicts the expected
demand and waiting times. We compute the priority-
price-delay schedule at discrete times where the time
interval between any two successive times is some con-
stant, tc. Let kjk(t) denote the current time-averaged es-
timate of kjk, let xjk(t) denote the current time-averaged
waiting time for a given job class and priority at time
t, and let rjk(t) denote the estimated prices from the
analytical model at time t. Let the actual (imple-
mented) prices at time t be r̂jk(t). We compute rental
price rjk(t � tc) at time (t � tc) by using the estimates

of kjk(t) and xjk(t) at time period t. Because rjk(t � tc) is
based on short-term observations of arrival rates and
waiting times, it may be quite volatile in a stochastic
environment. To reduce the chances of instabilities re-
sulting from overresponsiveness, rjk(t � tc) is used as
an indicator of whether to increase or decrease the pre-
vious price r̂jk. The prices for period (t � tc), rjk(t � tc),
is set to

r̂ (t � t ) � �r (t � t ) � (1 � �)r̂ (t) (7)jk c jk c jk

where � � (0,1) is the adjustment parameter deter-
mined empirically. The price differences between two
time periods are larger when the value of � approaches
one.
In the next section, we provide details of the simu-

lation study and report results regarding the system-
performance with pricing mechanism and contrast the
results with those obtained from several commonly
used database scheduling and admission control
mechanisms. We first motivate the simulation and
thenprovide the simulationmodel that uses the param-
eters described in our analytical model.

4. Performance Evaluation
4.1. Analytical Versus Simulation Analysis
The analytical models for evaluating computer sys-
tems using queuing theory typically make stochastic
assumptions and involve problem abstractions. As dis-
cussed earlier, the operational intricacies are generally
neglected for analytical tractability (Stankovic 1988).
Such assumptions and problem abstractions are valid,
as the purpose of these studies is to provide normative
insights (behavior of the system). Similarly, the ana-
lytical model in this paper generates the priority-price-
delay schedule based on problem abstraction, neglect-
ing the complex operations of the database systems.
However, our model is proposed to be an integral part
of the RTDB by adapting dynamically to the state of
the database system and to changes in the demand
structure (generally referred to as the online adaptive
scheduling mechanism in computer science literature).
Since we intend for our model to be a basis for an on-
line resource scheduling technique, the performance
must be evaluated within a database environment
where some of the modeling assumptions are relaxed.
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We use a simulation approach to evaluate the RTDB
performance-related issues. The specific objectives of
the simulation study are:
1. Evaluation of the performance of our model under

short-term increase in arrival processes. Analytical
models use convenient stochastic assumptions that are
justified by large populations and stable operating con-
ditions (Stankovic 1988). However, database systems
(particularly real-time databases) can observe highly
nonlinear performance degradation under short-term
overload situations leading to complete shutdown of
the system. In such situations, we need to evaluate
whether our priority-price-delay schedule recompu-
tation (§3.4) will return the system to equilibrium fairly
rapidly. If the priority-price-delay schedule computed
based on short-term observation using Equation (7) di-
verges significantly from the optimal schedule, then
our approach may not yield expected economic gains.
The simulation also allows us to observe the types of
jobs that are allowed into the system during short-term
increase in arrival processes.
2. Testing the performance of the RTDB system us-

ing our model with respect to traditional performance
measures, such as the number of jobs processed on
time (or the number of jobs processed late), throughput
and tardiness. These performance measures, typically
used in computer science literature, are difficult to in-
corporate into microeconomic models. While our
model is designed tomaximize organizational benefits,
it is interesting to observe whether it dominates the
performance with respect to traditional measures as
compared to first come first served (FCFS), earliest
deadline first (EDF), and Least Slack First (LSF) (Ab-
bott and Garcia-Molina 1992, Haritsa et al. 1991).
3. Evaluation of the robustness and the equilibrium

results when certain model assumptions are dropped.
In our model, we assumed that once accepted a job is
executed until completion even when the performance
requirements (e.g., timeliness requirements) cannot be
satisfied. We test the system performance and evaluate
economic benefits by relaxing this assumption.12 We
drop user requests from the queue during processing
if the actual waiting times are higher than the expected
waitingtimes.

12We are indebted to the anonymous referee that suggested we test
this assumption.

4.2. Simulation Model
We implemented a computer simulation model that
captures the main elements of a RTDB system in CSIM,
a discrete event simulation language (Schwetman
1991). The simulation uses a queuing model ofa single-
site, shared-memory, disk-resident database system.
This model is a modified version of the simulation
model provided in (Abbott and Garcia-Molina 1992,
Agrawal et al. 1987, Konana 1995).
The simulator consists of six active modules

(namely, request generator, request preanalyzer, transac-
tion manager, resource manager, statistics collector, and
price generator), and one passive component, namely,
the database. The price generator implements our
priority-pricing mechanism. We neglect concurrency
control since we are dealing with read-only jobs. Fig-
ures 1 and 2 show the logical and physical simulation
models. The database is modeled as a set of pages dis-
tributed uniformly across all disks. Therefore, a given
page can be mapped to a specific disk. As discussed in
§3.1, there is one queue for all CPUs while each disk
has its own queue.
The request generator generates user requests from a

Poisson process with a mean arrival rate that is set at
various values during simulation. This arrival rate cap-
tures the exogenous arrival of request for database ser-
vices. Each request generated is assigned a particular
job class j. The size (in terms of pages) of a request, sj,
is chosen uniformly from a range. Every incoming re-
quest is associated with an instantaneous value Vij and
a delay cost factor dij drawn from normal distributions
withmean and standard deviations (lv, rv) and (ld, rd),
respectively. Given the Vij and dij , we compute an ex-
pected deadline13 (dij) for a request as follows:

d V /d (8)ij ij ij

The preanalyzer matches user requests according to
Equations (1) and (2) in §3.2 with the priority-price-
delay schedule generated by the price generator. The
price generator uses Equations (6) and (7) to set prices
rjk(t) at time t. The preanalyzer acts as an admission con-
troller by accepting requests for which the net benefits
are positive.

13We need to assign a deadline to each request to monitor whether
or not requests are executed within their deadlines and to compute
consumer surplus.
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Figure 1 Simulation Model

Figure 2 Physical Queuing Model

Once a request is accepted, it is assigned an appro-
priate priority and is executed until completion. The
transaction manager is primarily responsible for imple-
menting the scheduling policy. The transactionmanager
closely interacts with the resource manager and moni-
tors the completion of a request. When a request is

completed, the request is removed from the system
and sent to the statistics collector. We do not explicitly
implement a full memory management system. Most
performance evaluation literature assumes a probabi-
listic database buffer pool rather than modeling indi-
vidual pages as it is likely to affect all algorithms
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Table 2 Resource Parameter Values

Parameter Meaning Value

p CPU time for each data page 10 msec
q Disk access time for each data page 20 msec
J Number of job classes 40
K Number of priority classes 1

equally (Abbott and Garcia-Molina, 1992). If the page
is not in memory, then an input-output service request
is sent to the appropriate disk.
The price generator computes the prices based on

Equation (6) while the price recomputation is based on
Equation (7). The parameter estimates are derived
from the statistics collector. In the simulation we update
the price and waiting time information at fixed inter-
vals of time.

4.3. Resource and Model Parameters
Table 2 provides resource parameters. These parame-
ters have been adopted from published simulation lit-
erature on real-time databases (Abbott and Garcia-
Molina 1992, Konana 1995, Kim and Srivatsava 1991,
Haritsa et al. 1991) and modified for our study.
We assume one CPU and two disks. The number of

disks is assumed to be twice the number of CPU to
make balanced resource utilization, as opposed to be-
ing either strongly CPU bound or strongly I/O bound
(Agrawal et al. 1987). The database is assumed to con-
sist of 1,000 pages. These assumptions are made in nu-
merous other simulation studies in the computer sci-
ence literature (e.g., Abbott and Garcia-Molina 1992,
Haritsa et al. 1991). Other parameters, such as p (i.e.,
CPU time to process a page) and q (i.e., disk access time
for each page) are also borrowed from the above simu-
lation studies (These parameters are used in §3.1 in
describing the RTDB model.) We assume that each re-
quest has a maximum of 20 pages (size s) and is drawn
from 40 job classes. Since no real data are available for
instantaneous user values (Vij) and delay costs (dij), we
have assumed distributions based on the law of large
numbers (i.e., normal distributions)14 (Gupta et al.

14In future studies, we intend to perform extensive studies for the
robustness to these values similar to the study in Gupta et al. (1997b).

1997). We assume a mean and a standard deviation of
(25,7) and (4,1) for user values and delay costs, respec-
tively. We believe that, given the processing speeds
and the data requirements in this model, we have cho-
sen a conservative set of values. Thus, our benefit re-
sults are, at best, understated. Note that to get ki we
specify an overall exogenous arrival rate k. Since the
database does not require the knowledge of who sub-
mitted a particular job for price computation (see
Equation (6)) andwe are only interested in systemwide
benefits, we do not explicitly model the jobs for indi-
vidual users i. We assume � 0.1 for price recomputa-
tion using Equation (7).

4.4. Performance Metrics
We evaluate the performance of our pricing model
against traditional scheduling policies, such as FCFS,
EDF and LSF using both the RTDB and economics re-
lated performance metrics. In the simulation, we com-
pute net system benefits (W) according to Equation (9)
(equivalent to Equation (5)) and consumer surplus (S),
a key indicator of consumer welfare, according to
Equation (10). Both of these statistics are collected on
a per time unit basis for consistent presentation of
results.

V � d tij ij ijW � , (9)� ti,j ij

(d � t )dij ij ijS � , (10)� ti,j ij

where tij is the actual time delay faced by the user i
for a job j. Note that tij is different from tij which is the
expected time of completion and is used only for es-
timation of expected cost according to Equation (1).
The deadline as computed by Equation (8) is dij .
To compare the database performance under pricing

with other admission control and RTDB scheduling
approaches, we use the traditional performance met-
rics from the RTDB literature, such as the normalized
miss ratio (NMR) (Pang et al. 1992) and the average tar-
diness. The average tardiness is defined as the average
lateness of jobs completed after the deadline. TheNMR
captures the fraction of the offered load that is not com-
pleted on time, weighted by job size. It is weighted by
job size because some scheduling algorithms, such as
EDF, seem to favor smaller size job classes (Pang et al.
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1992). To minimize this bias, the miss ratio is normal-
ized by the size. The NMR is computed as follows:

s � miss ratio(s )j jNMR � . (11)� sj j

Where miss ratio (sj) denotes the miss ratio of jobs of
size sj and denotes the range of job sizes in the work-
load. The miss ratio is computed as follows:

# of jobs missing deadline
miss ratio � . (12)

# of jobs arriving

5. Simulation Results
The simulation was run on HP workstations. Our
study, with a wide range of parameter values, gives us
confidence that the results presented here are robust
against parametric disturbances. We are particularly
interested in the system performance under overload
conditions and comparing that performance against
traditional approaches, such as FCFS, EDF, and LSF.
Therefore, we opted to have a single processor in order
to reach overload situations quickly.
The sets of experiments considered are shown in Ta-

ble 3. We carried out two sets of experiments to ana-
lyze how the system behaves and to compare perfor-
mance against traditional admission control and
scheduling techniques. In the first set of experiments,
we compare access pricing (Strategy 1a) against no
pricing with admission control (Strategy 1b), and no
pricing and no admission control (Strategy 1c). In each
case, the scheduling discipline is FCFS. For Strategy 1a,
the pricing itself acts as an admission control and,
therefore, there is no explicit admission control. In
Strategy 1c, every request that arrives to the database
is allowed to enter the system. In Strategy 1b, requests
that have positive expected net benefits are allowed to
enter the system by disregarding the cost of accessing
the databases. Therefore, more requests are allowed
into the system in Strategy 1b compared to Strategy 1a,
but significantly fewer than those in Strategy 1c. Al-
though it may be obvious that the pricing scheme pro-
vides higher benefits, this experiment is carried out to
observe the true behavior of the system. Apart from
investigating the net benefits, NMR and tardiness, we

are interested in observing the types of requests al-
lowed into the system as the system becomes
overloaded.
In the second set of experiments, we investigate how

our pricing model performs against EDF and LSF
scheduling techniques at various multiprogramming
levels. Tomake a fair comparison across all themodels,
we first evaluate the NMRs of Strategies 2b and 2c un-
der various multiprogramming levels with that of
Strategy 2a. We then compare the benefits across all
three techniques where NMRs are approximately the
same. We conduct Experiment 2 at arrival rates 20 re-
quests/second and 50 requests/second.

5.1. Experiment 1
In these experiments, we varied the arrival rate from
10 jobs/sec to 50 jobs/sec in increments of 10. Statistics
were gathered based on the replication-deletion ap-
proach (Law and Kelton 1991). Each experiment con-
sisted of 10 runs with a transient period of 1,000 time
units and length of 10,000 time units each. Statistics
collected were averages of these 10 runs.

5.1.1. Effect on Net Benefits. Figure 3 shows the
net system benefits, W, (objective function of the ana-
lytical model) with and without the pricing mecha-
nism. In all the cases, a user with a positive expected
net benefit is admitted to the system. At low k, pricing
is not an issue because the system in not overloaded
and every request’s response time is satisfied. How-
ever, at higher k the collective benefits with pricing
(that is, with database access cost) is significantly
higher than that without pricing (that is, without da-
tabase access cost) at a 99% confidence level. The ex-
periment was also repeated for a system with no ad-
mission control and pricing. In fact, as expected, the
system provided significant negative benefits (the re-
sults of no admission control and pricing are not
shown). The reason for higher system benefits with a
pricing mechanism is that at higher arrival rates only
those requests with higher values were admitted. This
value-based admission control effectively blocks the
requests with lesser values and those that require sig-
nificant resources.
In our theoretical (and thus simulation) model, users

decide a priori whether or not theywill enter the queue
based on the prices and the expected waiting times.
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Table 3 Experimental Setup

Strategy Pricing Admission Control Scheduling Discipline

Experiment 1 1a Yes No*
(Vij � (dij � tij) � rjk) � 0

FCFS

1b No Yes
(Vij � (dij � tij)) � 0

FCFS

1c No No FCFS
Experiment 2 2a Yes No

(Vij � (dij tij)) � 0
FCFS

2b No Yes
Multiprogramming level of [20–70] requests

EDF

2c No Yes
Multiprogramming level of [20–70] requests

LSF

*Pricing acts as an admission control.

Figure 3 Net System Benefits With and Without Pricing at Various Job
Arrival Rates

Since expected waiting times, by definition, mean that
actual waiting time observed by a user could be higher
(or lower) than the expected value, one might wonder
about the behavior of marginal users who may expe-
rience longer than the expected waiting times. When
this occurs, users with expected net positive benefits
actually incur negative net benefits. Therefore, we ex-
perimented with a system in which users can monitor
their net utility while they are in the queue and decide
to drop out of the queue when the actual waiting time
is too long (this drop out is not modeled in our ana-
lytical model). Figure 3 shows the net system benefits,
W, when such a system is implemented. The results
may seem surprising at first glance, as there is virtually
no difference in net benefits when thesemarginal users
drop out. However, this result can be explained when
we analyze the equilibrium behavior. Consider what
happens to the system benefits (i.e., aggregate user val-
ues minus aggregate delay costs). When a user request
drops out, its value is not added to the system benefit,
while the cost suffered by this request is added to the
total delay cost. The system receives a negative impact
from the request that drops out. However, when a re-
quest drops out, all the other requests in the queue
benefit because their actual waiting times are now re-
duced by the service time that the dropped out request
would have consumed. In equilibrium, the cost result-
ing from dropping a request and the benefit as a result
of the reduction in delay costs of all the other users

should balance out; our simulation results indicate that
this is indeed the case. In the next section, we will also
explore the effect of dropping marginal users on the
database performance metrics.

5.1.2. Effect on Miss Ratio and Average Tardi-
ness. In this experiment, we are interested in analyz-
ing how the pricingmechanism performedwhenusing
traditional performance metrics. Figure 4 shows the
miss ratio with pricing, pricing with drop outs, and
without pricing mechanisms. At higher arrival rates,
the miss ratio for the system without pricing was sig-
nificantly higher than that with pricing. Surprisingly,
the miss ratio in both cases decreases at higher arrival
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Figure 5 Average Tardiness at Different Loads
Figure 4 Miss Ratio at Different Jobs Arrival Rates (k)

rates. This became apparent on analyzing the actual
miss ratios at various job sizes. In fact, at very high
arrival rates, a sufficient number of smaller jobs that
provided significantly more benefits than the larger-
sized requests were admitted. The larger jobs consume
more resources, while adding little to the collective
benefits. At arrival rates between 10 and 20 requests
per second, some large-sized requests were allowed to
execute that affected execution of smaller sized re-
quests, resulting in higher miss ratios. It is also impor-
tant to note that the miss ratio does not dramatically
increase when overload occurs, as observed in numer-
ous studies in the computer science literature (Abbott
and Garcia-Molina 1992, Haritsa et al. 1994). This be-
havior results from the pricing mechanism acting as a
natural admission control and overload management
mechanism.
In the case of pricing with dropout, the miss ratios

were found to be higher relative to that of pricing and
no dropout.15 This has to be expected because, as ex-
plained earlier, the net result of drop out is that the
system waiting time is reduced (fractionally). Thus,
more marginal jobs may provide positive expected
benefits. However, since these jobs are marginal and
have smaller positive values, a larger number of them
drop out, resulting in higher miss ratios.
The above results are consistent with the average

tardiness of late jobs shown in Figure 5.16 The average

15Note that in the case with drop outs, miss ratio (# drop outs � #
missing deadline)/total.
16Average tardiness for the case with drop outs cannot be computed
since drop outs do not actually enter service.

tardiness is actually reduced at higher arrival rates
since larger jobs were blocked and smaller jobs were
executed. Note that this behavior is analogous to the
well known c-l17 scheduling rule in queuing theory in
which between two jobs that cost the same, the smaller
job is executed first. We also conducted experiments
without either pricing or admission control. The miss
ratio hits over 90% even with an arrival rate of 20 jobs/
sec and, hence, is not shown in the figure.

5.2. Experiment 2
In this experiment we evaluated the performance of
our pricing approach against EDF and LSF scheduling
policies under various multiprogramming levels. The
multiprogramming level implies that the maximum
number of requests executing (active) in the system is
fixed for each run. For example, a multiprogramming
level of 50 implies that only 50 requests can be pro-
cessed at any given time. We chose to conduct this ex-
periment at arrival rates of 20 jobs/second and 50
jobs/second to simulate a moderately and a highly
overloaded system, respectively. When the system is
full any new request is rejected. In traditional data-
bases, such requests are queued and allowed into the
system as and when active requests are completed.
Our modified multiprogramming approach provides
a best case scenario from the perspective of system
performance.

17In our model, c-l rule corresponds to dij/(E(response-time) where
the denominator is the expected processing time (Mendelson and
Whang 1990).
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Figure 7 Normalized Miss Ratio at k of 50 Jobs/Second and at
Different Multiprogramming Levels

Figure 6 Normalized Miss Ratio at k of 20 Jobs/Second and Different
Multiprogramming Levels

Figure 6 shows the natural logarithm of NMR (in %)
at various multiprogramming levels for EDF, LSF and
our pricing model at 20 request/second.18 In the pric-
ing model, multiprogramming is not required because
pricing itself acts as an admission control. As expected,
at low multiprogramming levels both EDF and LSF
perform very well. Consistent with previous studies in
RTDB, LSF performs better than EDF as the system is
allowed to become overloaded (Abbott and Garcia-
Molina 1992). At higher multiprogramming levels, as
expected, the performance deteriorates. We now com-
pare the economic performance of all three policies at

18Natural logarithm is used to providemore resolution to the graphs.

a multiprogramming level of 60 where NMRs are ap-
proximately the same.19

Table 4 shows the economic performance of the sys-
tem at job arrival rate of 20 jobs/second. The column
descriptions are self-explanatory. The last column in-
dicates the percentage of requests that were actually
admitted to the database. As the table indicates, the
economic performance of pricing is far superior to EDF
and LSF. Pricing performs better on two accounts: (i)
the percentage of jobs submitted to the database are
higher, resulting in slightly higher accumulation of in-
stantaneous value, and (ii) the delay costs suffered are
significantly smaller (approximately 12%) than that ex-
perienced with EDF or LSF. Clearly, pricing does a
much better job of scheduling requests than EDF and
LSF, and judiciously chooses which requests to accept
for processing. Another notable statistic in the table is
the consumer surplus; even though there is no charge
for access with EDF or LSF, the consumers are worse
off and retain only 50% of the surplus, compared to
pricing.
To compare the performance of these load manage-

ment approaches under heavy demand, we repeated
the experiment for arrival rates of 50 jobs/sec. The log-
arithm of NMR for the three models at various multi-
programming levels is shown in Figure 7. At lower
multiprogramming levels, EDF or LSF provide similar
results as compared to 20 jobs/second. The reason be-
hind this is that at lower multiprogramming levels the
system is always full at both 20 and 50 jobs/second.
However, at higher multiprogramming levels more re-
quests enter the system, thus affecting the execution of
all jobs. This explains the increase in NMR for LSF and
EDF. An interesting result is that our pricing model
had a lowerNMR relative to the arrival rate of 20 jobs/
second. This is consistent with our results in Experi-
ment 1, where the miss ratio and average tardiness ac-
tually declined at higher arrival rates in our pricing
scheme. The reason is that smaller requestswith higher
user values were accepted for processing. Requests
that consumed more resources and added little to the
benefits of the systemwere rejected. The economic per-
formance for various priority schemes is shown in Ta-
ble 5. As expected, the results indicate even higher

19Note that at a multiprogramming level of 60 the natural logarithm
of NMR is negative, i.e., the NMR is less than 1%.
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Table 4 Net Benefits and Consumer Surplus for 20 Jobs/Second

Total
Instantaneous

Value per second
(V)

Total Delay
cost per second

(D)

Total Net
Benefits (W)

(W � V � D)
Total Price

(P)
Consumer Surplus

(W � P)
Submitted

(%)

EDF 316 214 102 0 102 63.3
LSF 316 213 103 0 103 63.3
Pricing 373 25 348 153 195 67.2

Table 5 Net Benefits and Consumer Surplus for 50 Jobs/Second

Total
Instantaneous

Value per second
(V)

Total Delay
cost per second

(D)

Total Net
Benefits

(W � V � D)
Total Price

(P)
Consumer Surplus

(W � P)
Submitted

(%)

EDF 316 222 94 0 94 25.3
LSF 316 224 92 0 92 25.3
Pricing 563 33 530 246 283 39.5

Figure 8 Total User Cost in Different Priorities With Different dij

benefits by using pricing as compared to that at a job
arrival rate of 20 jobs/sec. The net benefits are more
than five times higher and consumer surplus is almost
three times higher with pricing, compared to those at
EDF and LSF. The significant difference in these bene-
fits is because with pricing, jobs with a higher ratio of
value to processing requirements were admitted and,
as a result, a significantly higher number of jobs were
admitted (39.5% versus 25.3%).

These simulation results indicate that both economic
efficiency and database performance can be improved
by using a pricing mechanism for admission control
and scheduling.

6. Conclusion and Future Research
In this paper, we have explored a unique approach for
providing timely information services within organi-
zations using RTDBs. We apply a priority-pricing
mechanism to manage negative externalities in the
operation of RTDBs as an alternative to complex con-
gestion control and scheduling techniques suggested
in the RTDB literature. Our approach maximizes or-
ganizational benefits in the presence of user delay costs
and fixed database processing capacity, while improv-
ing traditional database performance metrics, such as
miss ratio and average tardiness. This research has two
significant components: (1) ananalytical model of the
database as an economic system to generate priority-
price-delay schedule that maximizes organizational
benefits, and (2) adaptation of the results from the an-
alytical model as an online admission control and
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scheduling technique for real-time databases. The sec-
ond part of this research is validated by simulation.
The analytical model at optimality generates the

priority-price-delay schedule where each priority for a
given job class is associated with an expected delay.
The optimal prices are congestion tolls; that is, they are
equal to the aggregate delay cost imposed on all other
users of the RTDB. Therefore, prices are higher for
higher priority jobs because they impose additional de-
lay costs on lower priority jobs. This pricing mecha-
nism controls the flow of jobs to the system to achieve
a desired response time for all the jobs in the system.
The second part of this paper involves operational-

ization of the analytical results to manage database re-
sources. The analytical results, based on long-run sto-
chastic equilibrium, may not hold true for short-run
increases in the arrival processes as temporary
database overload may bring down the system com-
pletely. Therefore, we proposed an adaptive mecha-
nism that incrementally adjusts the priority-price-
delay schedule to reflect the true demand and the state
of the system. When congestion increases, the priority-
price-delay schedule is adjusted to restrict the flow of
jobs. Alternatively, the schedule is adjusted to accept
more jobs when the resources are idle. This has prac-
tical implications in managing a database system, as is
evident from our simulation results. We compared the
results from theoretically derived prices against those
from traditional admission control and scheduling
mechanisms suggested in the computer science litera-
ture. We compared our model against FCFS, EDF and
LSF scheduling algorithms for various workload pa-
rameters. In the simulation experiments, we model the
RTDB operational intricacies (such as intermediate
queuing for disk and CPU accesses) that were ignored
in the analytical model for tractability.
Our simulation results showed that our pricing

mechanism not only maximized organizational bene-
fits, but also improved traditional database perfor-
mance measures, such as the miss ratio and the aver-
age tardiness, when compared to existing admission
control and scheduling mechanisms. There were cer-
tain interesting observations in the simulation experi-
ments. At higher arrival rates, the system admitted
only those requests that had significant net benefits.
On the other hand, jobs with low values that consumed

significant resources were effectively blocked. Even if
user jobs decided to drop out because of delays greater
than expected, the net system benefits remained un-
changed. The performance gain is particularly signifi-
cant in overload conditions. This is not surprising, be-
cause at low arrival rates most schedulingmechanisms
work equally well.
Our theoretical model is applicable only to database

services within organizations where pricing is used as
internal transfer pricing. To apply our model in com-
petitive environments we need to consider several
other factors. For example, pricing for commercial ser-
vices must consider the issue of competition and com-
petitive pricing strategies. In particular, competitive
pricing involves niche pricing and market segmenta-
tion, not considered in this paper. There is a significant
amount of research that has investigated the issue of
pricing in the context of competition (Kalai et al. 1992,
Li and Lee 1994, Lederer and Li 1997). Another limi-
tation of this study is that the delay cost is assumed to
increase linearly with time. Note that our results will
hold qualitatively under traditional deadline oriented
delay cost structures considered in the database liter-
ature, where once the deadline is reached the net bene-
fits of the requests are zero. Furthermore, as is evident
from our simulations involving drop outs, the pricing
implementation seems to be quite robust with respect
to variations in delay cost. Even with drop outs, the
system stays at a similar benefits level.
In future studies, we will also investigate how to

allocate resources in a dynamic environment for vari-
ous categories of workload, such as update, triggered,
and read-only transactions. We will further enhance
the model to consider different sets of job values and
types of delay cost structures (e.g., nonlinear delay
costs). We will also investigate the issues of data rep-
lication and service location from an economic per-
spective. An economic transaction management is a vi-
able option for managing resources in a database
environment.
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Appendix A: Estimation of Delay Costs
By monitoring the current state of the database (prices and waiting
times), the users’ delay costs can be estimated by monitoring their
choices, assuming that users are rational and maximize their own
utility. Consider Figure 8, where there are two priority classes, Pri-
ority 1 is associated with a price of 20 and a throughput time of 10,
while Priority 2 is associated with a price of 10 and a throughput
time of 20. Depending upon the dij of users, different priorities are
optimal for them. For example, in the case presented in Figure 8,
users with dij of less than or equal to one will choose Priority two
and users having dij of greater than 1 will choose Priority 1. There-
fore, by monitoring the choices users make, one can create a histo-
gram of user delay costs based on their transaction classes. These
histograms can then be upgraded in a Bayesian manner by consid-
ering the historic histograms collected so far and allocating the cur-
rent period distribution in accordance with the historical patterns.
In the case in which there is a single priority class, similar differen-
tiation can be made as long as the service provider has an idea of
opportunity costs of the users (for example, by having price and
performance information regarding a competitor). Gupta et al. (1997)
provide the complete description of this approach and its effective-
ness. Their results show that with the estimated average delay cost
of users in each priority class, the resulting system benefits show
minimal loss in efficiency.
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