

1. Introduction

In a world where a high percentage of citizens carry a
smart phone or iPod and most households have one or
more computers, it is difficult to understand why we
have not been able to leverage powerful personal
computing devices to allow citizens to cast their ballots
electronically. The argument turns on security
weakness in all kinds of network computing and on
theoretical limits on the ability to protect critical
applications.
Though there are several voting system vendors that
provide Remote Electronic Voting (REV) services, the
SERVE Report [1] and its subsequently published
version [2] continue to define REV security
discussions. One of the most serious security concerns
with REV is the danger of malware on the voter's client
machine. Malware can easily be designed to prevent
the voter from successfully voting, or to violate the
voter's privacy by sending a copy of the ballot to a third
party, or even to surreptitiously modify the voter's
choices before the ballot is encrypted for transmission
so that the wrong votes transmitted and counted
without anyone knowing. While we have no solution
to the first two kinds of malware threats, in this paper
we present an all-electronic protocol that greatly
reduces the likelihood that malware can modify a ballot
without detection. To date, we have not seen an
Internet voting solution proposed for real elections
whose design effectively addresses ballot integrity on a
computer that is malware infected.
In this paper, we propose a verifiable, paperless
Remote Electronic Voting protocol that leverages
independent computations, one for voting and one for
verification, to prevent acceptance of any ballot on
which malware on the voting client has altered the
voter’s selections. Our solution reduces the likelihood
that malicious software on the voting client or assistive
device can alter REV voter selections. While our
approach requires device properties that are not
widespread in the general population, we contend that
these protocols are well suited for use by U.S. military
members and federal service employees serving
overseas.
The rest of this paper is organized as follows. In the
next section, we give an overview of Internet Voting
architectures and follow with a description of our
protocols, the prerequisites of the voting environment,
and provide details of the system’s properties,

specifically including things that the protocol does not
do. We close with summary and concluding remarks.

2. Internet Voting Architectures

Voting integrity is commonly considered in terms of
the voter’s ability to have justified confidence in three
serial steps, i.e. that their selections are:

a. Cast as Intended
b. Recorded as Cast
c. Tallied as Recorded

These steps form the core of the five Voter Integrity
Phases (VI Phases) shown in Table I.

CaI involves ensuring that the voter is able to find their
preferred candidates/choices on the ballot and that they
are able to unambiguously indicate their selections.
This is usually managed through user interface
activities such as ballot design, analysis and testing for
paper ballots and electronic ballot engineering for
electronic voting devices.
The latter two self-descriptive VI Phases are beyond
the capabilities of current election practice. That is,
with existing voting technology (e.g. Precinct Count
Optical Scan and touch screen Direct Recording
Electronic devices) the voter has a limited ability to
prove that their ballot is either recorded as cast or that
it is properly included in the final tally.
Cryptographic voting systems leverage mathematical
formula in order to attempt to provide voters the full
spectrum “Tallied as Intended” (TaI) proof. Computer
scientists have been developing cryptographic voting
protocols that can have provable security and accuracy
properties for years, e.g. [3, 4, 5]. The key to many
cryptographic voting systems is that they leverage a
voter a feedback channel. That is, at the time of voting,
each voter receives, or generates, something that they
can use after results are reported to ensure the accuracy
of the voting process. Of course this information is
most useful if it also allows them to make corrections if
they detect an error or malicious entry.

Independent Computations for Safe Remote Electronic Voting

Alec Yasinsac
University of South Alabama

Independent Computations for Safe Remote Electronic Voting

-2-

The following three phrases are often used
synonymously: Cryptographic voting systems, End-to-
End voting systems, and Universally Verifiable voting
systems. The latter two are subsets of the former; that
is, end-to-end voting systems and universally verifiable
voting systems are distinct subsets of cryptographic
voting systems. Differences in the two include the
number of voters, the type of feedback channel, and the
VI Phase that is involved.
Universal Verification (UV) provides strong voter
integrity, giving the voter procedures that can provide
strong confidence that ALL published votes were
legally cast and accurately counted. Voting systems
that provide UV [4, 6] rely on a public broadcast
medium, e.g. a public bulletin board, to broadcast all
the voting information necessary to confirm the
election results. Usually, that includes the voter rolls
and some form of each voted ballot that is
cryptographically manipulated to both ensure election
integrity and to preserve voter anonymity.
End to End (E2E) voting systems provide voters
information that is sufficient to allow them to have a
high level of confidence that their own votes are
Recorded as Intended (RaI)1. This is a weaker standard
because voters in E2E systems are not necessarily able
to verify all ballots because their proof of inclusion is
at the recording, rather than tallying, level.
The E2E feedback channel may be in the form of a text
message, e-mail, or some other type of serial
communication between the elections office and the
voter. Like UV systems, E2E voter feedback may also
take the form of a public broadcast medium, such as
posting on a bulletin board or webpage, but the
broadcast is not necessary to meet the E2E feedback
requirement.
Voting client malware is the one of the greatest threats
to Internet elections, so being able to ensure that the
voting client is not infected can dramatically increase
the security of an Internet voting system that leverages
remote attestation. One approach to improving
confidence in networked applications systems is for
nodes to rigorously assess one another to determine
whether or not either node is malware infected using is
a technique known as remote attestation. There is
substantial research in literature that details the
approaches and technologies that can enable remote
attestation with a high level of competence [7, 8, 9,
10]. Once these solutions are fully mature, voting

1 Many equate E2E systems with those that offer universal

verification. In this paper E2E has a slightly different
meaning, reflecting transmission from the voter to the
elections official but without universal verification.

applications may leverage remote attestation to
mitigate voting client malware risks.

3. Voting Protocols with Independent Computations

We propose to protect integrity for Remote Electronic
Voting by requiring voters to create a signed, electronic
version of their ballot that is independent of the voting
client. The security of this approach turns on the
voter’s ability to safely enter the signed ballot into the
voting client.
If the voter can generate the signed ballot without the
help of a computer, then malware alterations can
always be detected. Unfortunately generating a digital
signature is a complicated operation that requires
automated assistance.
Two of our protocols rely on the voter using two
cooperating devices [11, 12]. In our case, the devices
are a voting client and an assistive device to compute
digital signatures. If the voting client and assistive
device are strongly independent, then a voting client
malware attack must independently infect both the
voting client and the assistive device in order to
undetectably alter a voter’s ballot, making the attack
much more difficult.

3.1. Preliminaries

Before voting, voters must generate a public/private
key pair and register the public key with a Certification
Authority from which election officials can retrieve a
certificate for the voter's public key.
For the protocols that use two computing devices, the
voter must have a smart assistive device with a
camera/scanner, proper computational ability, and an
appropriate voting application. The assistive device
holds the voter’s private key which must not be
accessible to the voting client.
Connectivity is not required on the assistive device to
prevent ballot manipulation2. The primary computation
on the assistive device during voting is to decode a
barcode and to compute a hash and signature.

3.2. Device Independence

The phrase “device independence” can have many
connotations. We are concerned about device
relationships relative to malware infection, as given in
the following definition.

Definition #1. Two electronic computing devices
are malware independent if and only if, in the
threat environment they are both embedded in,

2 Connectivity on the assistive device may help defend

against denial of service attacks

Independent Computations for Safe Remote Electronic Voting

-3-

the probability that the two devices will be
infected by a pair of cooperating malware

modules at the time of voting is the product of
the probabilities that either of them will be
infected by one of the malware modules
separately.

The significance of this independence property is that
the protocols that we describe can only be defeated
when both devices are infected by a pair of malware
modules that were designed to cooperate to subvert the
voting process. If, for example, there is a (10-2)
probability that one device is infected with one of a
pair of malware modules that can undermine our
protocol and a 10-3 probability that the other device is
infected with another malware module that can
cooperate with the first one, then we want to be able to
say that there is only a 10-5 probability that they are
both infected with a cooperating malware pair, and if
that is true, then the devices are malware independent.
Of course there are circumstances that can undermine
device independence. If the devices communicate
directly with each other before the election and one of
them is infected, the malware might be able to pass a
cooperating malware infection to the other device, in
which case the probability that both are infected can be
almost as high as the probability that the first one is
infected. If the two devices communicate indirectly
with each other, or both communicate with the same
third device or server, they are also less malware
independent.
Other factors affecting malware independence include
the hardware and software architectures of the two
devices. Sharing the same processor, motherboard, or
disk drive model reduces independence, as does
running the same operating system, device drivers, or
other software because it makes it easier for the same
malware module [with similar proliferation strategies]
to infect both machines.
It is common for smart phone users to connect their
phone directly to a laptop, e.g. to synchronize files or
download mobile applications. Some smart phones
tether to the laptop to provide remote connectivity.

Devices that are directly connected are never malware
independent.

Any connection, wired or wireless, can allow a
sophisticated intruder to install cooperating
malware on the connected devices. So, in order to
maintain the strongest malware independence,
one of the two devices would never be network
connected. In our protocols, only one message is
sent to the assistive device and this as its last
protocol action. This minimizes the amount of
connectivity, and optimizes the devices’ malware
independence.

3.3. Digitizing the Ballot

Our protocols leverage properties of a ballot’s binary
representation and there are many ways to digitize a
ballot. For our purposes, it is beneficial to have a
representation that minimizes the ballot size and that
the voters can compute themselves.
In the sample ballot shown in Figure 1, the fourth row
represents a voter’s selections reflecting the traditional
‘x’ in the box. The fifth row is the translation of the
votes into their binary representation. Of course binary
representation is not intuitive, or convenient, for voters.
By partitioning the digital ballot into six-bit groups, we
can translate the selections into an alphanumeric form a
base-64 representation using digits 1-0, letters a-z and
A-Z, and special symbols ‘@’ and ‘*’ to reflect the
base-64 values. In Figure 1, the character string “kAo”
represents selection of Hunt, Arthur, Snow, Went,
Beck, and Good and no others.
 We do not suggest this as a regular, general election
voting approach. However, we argue that it is not
unreasonable for certain constituencies, such as the U.
S. military and federal service employees serving
overseas, to be able to enter their votes using a ballot
constructed as shown in Figure 1 and a conversion
table as shown in Figure 2 to cast their ballot in base-
64 format.

000000 0 001000 8 010000 g 011000 o 100000 w 101000 E 110000 M 111000 U

000001 1 001001 9 010001 h 011001 p 100001 x 101001 F 110001 N 111001 V

000010 2 001010 a 010010 i 011010 q 100010 y 101010 G 110010 O 111010 W

000011 3 001011 b 010011 j 011011 r 100011 z 101011 H 110011 P 111011 X

000100 4 001100 c 010100 k 011100 s 100100 A 101100 I 110100 Q 111100 Y

000101 5 001101 d 010101 l 011101 t 100101 B 101101 J 110101 R 111101 Z

000110 6 001110 e 010110 m 011110 u 100110 C 101110 K 110110 S 111110 *

000111 7 001111 f 010111 n 011111 v 100111 D 101111 L 110111 T 111111 @

Figure 2. Binary to Base 64 Conversion Table

Federal Contests State Contests

President

U
S Senator

U
S Congress

State Senator

State
Representative

State Attorney
G

eneral

Doran

Hunt

Katz

Arthur

Ford

M
ack

Snow

Clay

Jeff

W
ent

Rick

Tripp

Sm
ith

Beck

G
ood

Farm
er

Clark

Davis

 x x x x x x
0 1 0 1 0 0 1 0 0 1 0 0 0 1 1 0 0 0

k A o

Figure 1. Sample Digital Ballot

Independent Computations for Safe Remote Electronic Voting

-4-

3.4. Quick Response (QR) Code Technology

In simplified terms, a QR Code™ is a high capacity
barcode definition3. QR codes store data in images that
can be captured via a camera or scanner and translated
with image-interpreting software.
Reading a QR Code from the screen of one device
through the camera of another device offers several
positive security properties. The communication is
short range, with no repeaters, amplifiers, switches,
routers, or other devices, and no software required
between sender and receiver. Unlike electronic
communications media, the “sender” is passive; it is
the “receiver” that performs the active role. No
network is necessary, no MAC address, IP address,
phone number, or Bluetooth addresses are needed. The
receiving device need not be discoverable or detectable
other than to the intended sender.

4. Voting-Client-Malware Safe Voting Protocols

4.1. A Two-Pass Protocol

The de facto standard remote electronic voting
configuration is for the voting client to reside on a
classic networked workstation, such as a desktop or
laptop computer, which provides a full suite of user
interface tools. Most importantly, the workstation
model provides a full screen display to allow the voter
to effectively understand their options and accurately
capture their intended selections. We refer to this
workstation as the “voting client”.
For our protocols, the voter selects a second,
independent device as described above, to generate a
computation that cannot be spoofed by the voting
client. An obvious selection would be for the voter to
use their smartphone or personal digital assistant for
that purpose. We call this the assistive device.
Once the voting client and assistive device software
and the other prerequisites are met, the voter attains a
blank electronic ballot. The blank ballot may be
delivered via electronic network or out of band as long
as the ballot is delivered safely and does not
compromise the cooperative voting devices’ malware
independence.
With the proper blank ballot loaded the voting protocol
proceeds as follows:
1 The voter enters his or her selections on the voting

client.

3www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnum

ber=30789

2 The voting client translates those selections into a
digital ballot representation and presents it on its
display screen as a QR code to the voter.

3 The voter scans the QR code, containing the voted
ballot, with the assistive device.

4 The assistive device presents the voter’s choices on
its display for verification.

5 On voter approval, the assistive device generates a
hash of the ballot representation, signed with the
voter’s private key.

6 The voter scans the signed hash into the voting
client via QR code generated by the assistive
device.

7 The voting client returns the signed hash along with
the voter’s ballot to the voting server.

8 The voting server calculates the hash of the ballot
and compares it to the hash that it received.

9 If the hashes match, the voting server sends a
success message to the voter on both devices,
confirming his or her selections.

10 If the hashes do not match, the voting server refuses
the ballot and sends a failure message notifying the
voter of the problem.

The concept is straightforward, with the voter entering
their selections into the voting client, transferring them
to the assistive device via QR code signing the ballot
on the assistive device, and then transferring the
signature back to the voting client. The voting client
then submits the digital envelope, containing ballot and
signature, to the voting server where the signature is
verified. When the votes are transferred between the
assistive devices, they are presented to the voter for
verification.
This protocol defends against the following three
possible malware attacks:
a. Ballot manipulation on an infected voting client.

Since the voting client does not have access to the
voter’s private key, the voting server will detect any
ballot manipulation through malware on the voting
client, reject the ballot, and notify the voter.

b. Ballot manipulation on an infected assistive device.
The voting client submits the original ballot that the
voter entered into the voting client. The assistive
device has no access to, thus cannot manipulate, the
ballot. The most that a malware-infected assistive
device can do is to generate a false signature, which
would be detected by the voting server and reported
to the voter.

c. Denial of Service. The voter can detect a denial of
service attack by either the voting client or the
assistive device by noticing that the success notice

Independent Computations for Safe Remote Electronic Voting

-5-

does not arrive on both devices (specifically, it will
not arrive on the uninfected device).

4.2. A One-Pass Protocol

In electronic communications protocols, every message
transmission introduces vulnerability. If voters are
willing and capable of making their selections on their
assistive device, they may reduce the number of
communications between the cooperative voting
devices using the following steps.
1 The voter enters his or her selections on their

assistive device.
2 The assistive device translates the voter’s selections

into a binary ballot representation, generates a hash
of the ballot signed with the voter’s private key,
and presents it on its display screen as a QR code to
the voter.

3 The voter scans the QR code containing the digital
envelope containing the voted ballot and signature
into the voting client, which decodes the ballot and
presents the ballot choices to the voter.

4 The voter verifies his or her selections on the voting
client and authorizes the voting client to return the
signed hash with the voter’s ballot to the voting
server.

5 The voting server generates the same hash, decrypts
the voter-provided hash using the voter's public
key, and compares the two.

6 If the hashes match, the voting server sends a
success message to the voter on both devices,
confirming his or her selections.

7 If the hashes do not match, the voting server refuses
the ballot and sends a failure message to the voter,
notifying them of the problem.

The security properties of this protocol are similar to
the previous protocol, except that in this protocol, there
is only one electronic message between the cooperative
voting devices.

4.3. Independent Computation With No Device-to-
Device Communication

Two vulnerable components of the protocol given in
Section 4.2 are: (1) The image processing software in
the voting client (as described above in Section 3.4)
and (2) The scanning device itself, which contains
sensitive components. In addition, the PC-connected
scanners that are needed to collect barcode messages at
the voting client are in declining demand.
In the following protocol, the voter casts their ballot on
the assistive device, but there is no “transmission” to
the voting client. Rather, the voter enters an
alphanumeric string that represents their encrypted
ballot directly into the voting client.

An additional prerequisite to this protocol is for the
voting client to hold a valid public key certificate for
the voter.
1. The voter enters his or her selections on their

assistive device.
2. The assistive device:

a. Translates the voter selections into a binary
ballot representation

b. Generates a hash of the binary ballot signed
with the voter’s private key

c. Appends the signed hash to the binary ballot
to form the digital vote envelope.

d. Translates the digital vote envelope into a
base-64 format and

e. Presents the vote envelope on its screen to the
voter as a base-64, alphanumeric string.

3. The voter enters the base-64 digital vote envelope
into the voting client via the voting client keypad.

4. The voting client verifies the hash using the
voter’s Public Key and displays the voter’s
selections on its display screen.

5. The voter verifies their selections and authorizes
the voting client to deliver the digital vote
envelope to the voting server.

6. The voting server generates the same hash,
decrypts the voter-provided hash using the voter's
public key, and compares the two.

7. If the hashes match, the voting server sends a
success message to the voter on both devices,
confirming their selections.

8. If the hashes do not match, the voting server
refuses the ballot and sends a failure message to
the voter, notifying them of the problem.

The security properties of this protocol are similar to
the previous protocols, however, in this protocol, there
are no electronic messages between the cooperative
voting devices. The user enters their choices on the
assistive device and manually transfers the ballot and
signature to the voting client, where the voter verifies
their votes.

5. Experimental Results

A team implemented the two-pass protocol in a system
that included necessary elements of the voting server,
voting client, and assistive device [13]. The project
demonstrated the efficacy of the protocol that captured
voter selections, exercised hashing and public
cryptography to protect ballot integrity, passive
communication capabilities to transfer data between
the devices, and return messaging to allow voter
verification.

Independent Computations for Safe Remote Electronic Voting

-6-

QR Code software is openly available and the system
effectively encoded, transferred, and delivered the
ballots using QR Codes to communicate between the
voting client and the assistive device. The implemented
system meets the design functionality and
demonstrated that the protocol is practical in prototype.

6. Security Review

We simplified these protocols to focus on the power of
independent computations to protect against voting
client malware. We do not claim that these protocols
provide comprehensive security.
In this section, we discuss our protocols security
strengths and weaknesses. We also describe the
security properties that these protocols alone do not
improve over existing remote voting methods.

6.1. Voting Client Malware

The goal of these protocols is to protect the integrity of
cast ballots against voting client malware attacks.
Independent computations in each protocol accomplish
strengthened malware protection by isolating the
voter’s private key to protect it from compromise. In
the second and third protocols the assistive device
application does not receive any data other than
through the keypad.
Consider the probability that any arbitrary Voting
Client ‘a’ (vca) is infected with a specific Voting
Malware version ‘b’ (vmb). If that probability is non-
absolute then:

0 <= P(vca, vmb) <= 1
This probability is difficult to assess, but is certainly
dependent on the protective measures taken by the
device and network administrators. If the probability is
low, it complicates the attacker’s job and reduces the
possible impact that an attacker could have.

6.2. Computation Independence Attacks

As we noted above, in order for protocols 4.1 and 4.2
to conclusively prevent malware attacks on the voting
client, the two computers used to conduct computations
must be independent. Network-based software
applications offer opportunity for sophisticated
intruders to corrupt different devices with cooperating
malware that could defeat our protocols. However, our
protocol complicates the attacker’s job in several ways.
First, the attacker must have cooperating malware
versions that match the voting client and the assistive
device that the targeted voter uses. Second, if the
voting client and assistive devices are never connected,
the attacker must infect the two devices independently,
in which case, using the notation above, the Probability
of a Successful Attack is:

 PSA = P(vca, vmb) * P(ada’, vmb’)
Where ada’ is the assistive device that matches voting
client ‘a’ and vmb’ is voting malware that can
collaborate with vmb and is able to attack assistive
device b.
On the other hand, like any other data transfer protocol,
barcodes offer an avenue for intruders to introduce
malware. That is, if there are software flaws in the
barcode interpreter, an intruder might be able to
construct a barcode that can inject malware into the
interpreting device. Protocols 4.1 and 4.2 may be
susceptible to barcode malware attacks.

6.3. Voting Server Malware

The protocols that we present are designed to prevent
malware attacks on the voting client, but they are not
intended to prevent attacks that install malware on the
voting server. Our protection can ensure that the
voter’s ballot is cast to the voting client as intended and
that an honest voting server can identify and refuse to
accept a manipulated ballot.
Our protocols provide only “Recorded as Intended”,
not “Tallied as Intended”, confidence. An infected
voting server controls the interactions with the voter so
could interact inappropriately with the voter (i.e.
provide the results as the voter expects), but could
tabulate maliciously without the voter being able to
detect the changes.
REV systems that utilize our protocols must implement
other protections against voting server malware attacks.

6.4. Cryptographic Key Protection Vulnerabilities

Like most schemes that depend on cryptography, key
management is critical to our protocol’s success. If the
voter’s secret key is divulged to a malicious intruder,
that malicious intruder could masquerade as the voter.

6.5. Receipt-Freeness

Our protocols are receipt free-neutral. That is, none of
the three protocols that we present address the issue of
receipt-freeness or coercion resistance [14]. Because
the voter is unsupervised, similarly to vote-by-mail,
voters could demonstrate to a third party how they
vote.
On the other hand, our protocols are simply designed
for delivering verifiable results from the voter to the
voting server and are in no way inconsistent with
methods for preventing vote buying and voter coercion.
So, coercion resistance could be handled via other
mechanisms, many of which are in the literature, see
e.g. [15, 16, 17, 18].

Independent Computations for Safe Remote Electronic Voting

-7-

6.6. Voter Privacy

Similar to vote-by-mail, our protocols do not protect
voter privacy. The voting application would need to
incorporate standard network encryption to prevent
transmission eavesdropping and elections officials
would need to incorporate rigorous application
operation procedures to ensure that voter privacy is not
compromised.
Additionally, if the voting client is infected with
malware, that malware can send a copy of the voted
ballot, with voter identification, to a third party. Again,
receipt-freeness and coercion resistance techniques
could mitigate this effect.

6.7. Denial of Service.

As we noted above, the protocols can detect denial of
service through a feedback loop. If notification is sent
to both devices, neither can be used to independently
accomplish undetectable denial of service.

7. Conclusions and Future Work

Malware on the voting client is one of the most
challenging problems to overcome in remote electronic
voting. Cryptographic voting protocols have attempted
to provide systems that can overcome malware attacks
by allowing voters to verify that their votes were
Tallied as Intended independent of the voting platform.
Our approach provides Recorded as Intended
confidence even in the face of malware infection. We
offer three voting protocols that leverage independent
computations to prevent acceptance of any ballot on
which malware on the voting client has altered the
voter’s selections. These protocols are simple in design
and rely on voters using two independent devices to
cast their ballot.
By leveraging malware independence we ensure that
the difficulty of malware infestation is factored across
the two platforms. We also leverage the positive
security properties of barcode transmission to reduce
the likelihood of malware transfer between the voting
devices and offer one protocol in which no electronic
communication between the devices is necessary.
Because of the properties of our protocols, specifically
the properties of the voting devices, this protocol may
be best suited to military voters, where both of the
voting devices may be government issued and
professionally maintained.
In order to move these protocols to the general voting
public, it may be necessary to incorporate a third
voting device that is never network connected, but that
only communicates via keyboard and QR codes. This
research is ongoing.

In this paper, we introduced the concepts of
independent computations and malware independence
and leverage the positive security properties of QR
Codes™ for safe device-to-device communication. We
propose three protocols that reduce the prospective
impact that a malware attack on either the voting client
or the assistive device can have.

8. Acknowledgments

We offer many thanks to Matt Bishop and Paul
Syverson for their helpful comments on an early
version of this paper. We also acknowledge the
contributions of the University of South Alabama
students that implemented this system (Erin Pettis,
Naquita Hunter, Son Le, and Mengchu Lin) and their
mentor, Terri Gilbert.

9. Bibliography

[1] David Jefferson, Aviel D. Rubin, Barbara Simons,
and David Wagner, "A Security Analysis of the
Secure Electronic Registration and Voting
Experiment (SERVE)," January 20, 2004,
http://www.servesecurityreport.org/

[2] David Jefferson, Aviel D. Rubin, Barbara Simons,
and David Wagner, "Analyzing Internet Voting
Security," Communications of the ACM, October
2004, Vol. 47, No. 10, pp. 59-64

[3] Chaum, D., “Untraceable electronic mail, return
addresses and digital pseudonyms,” Comm. of the
ACM, v.24, n.2, pp. 84-88, 1981

[4] J. D. Cohen(Benaloh) and M. J. Fischer, “A robust
and verifiable cryptographically secure election
scheme,” In FOCS ’85, pp. 372–382, 1985

[5] K. Sako and J. Kilian, “Secure voting using
partially compatible homomorphisms,” In Proc. of
International Cryptology Conference (CRYPTO),
pages 411–424, Aug. 1994

[6] Ben Adida, “Helios: Web-based Open-Audit
Voting,” Proceedings of the Seventeenth Usenix
Security Symposium (USENIX Security 2008)

[7] George Coker, Joshua Guttman, Peter Loscocco,
Amy Herzog, Jonathan Millen, Brian O’Hanlon,
John Ramsdell, Ariel Segall, Justin Sheehy and
Brian Sniffenm, “Principles of Remote
Attestation”, International Journal of Information
Security, Volume 10, Number 2, 63-81, DOI:
10.1007/s10207-011-0124-7, from the issue
entitled "Special Issue:10th International
Conference on Information and Communications
Security (ICICS)"

[8] Alec Yasinsac, “Identification: Remote Attes-
tation”, Chapter 11 in Wireless Sensor Network
Security, Cryptology & Information Security

Independent Computations for Safe Remote Electronic Voting

-8-

Series (CIS), IOS Press, November, 2007, ISBN:
978-1-58603-813-7

[9] Arvind Seshadri, Mark Luk, Adrian Perrig,
Leendert van Doorn, Pradeep Khoslak, “SCUBA:
Secure Code Update By Attestation in Sensor
Networks,” ACM Workshop on Wireless Security,
September 29, 2006, Los Angeles, California,
USA, pp. 85-94

[10] E. Shi, A. Perrig, and L. van Doorn, “Bind: A
fine-grained attestation service for secure
distributed systems” In IEEE Symposium on
Security and Privacy, 2005

[11] Alec Yasinsac and Matt Bishop, “The Dynamics
of Counting and Recounting Votes”, IEEE
Security and Privacy Magazine, May-June 2008,
Volume: 6, Issue: 3, pp. 22-29

[12] Bruck, S., Jefferson, D., Rivest, R., "A Modular
Voting Architecture (Frog Voting)" in Towards
Trustworthy Elections, Chaum, D., Jakobsson, M.,
Rivest, R., Ryan, P., Benaloh, J., Kutylowski, M.,
Adida, B. (Eds)., Lecture Notes in Computer
Science (LNCS 6000), Springer, 2010

[13] Erin Pettis, Naquita Hunter, Mengchu Lin, and
Son Le, “Military Remote Electronic Voting
Protocol”, Senior Project, School of Computing,
University of South Alabama, Dec 6, 2012

[14] Stephanie Delaune, Steve Kremer, and Mark

Ryan, “Coercion-resistance and receipt-freeness in
electronic voting,” In Proc. of IEEE Computer
Security Foundations Workshop, pp. 28–42, July
2006

[15] Martin Hirt and Kazue Sako, “Efficient receipt-
free voting based on homomorphic encryption,” In
Proc. of International Conference on the Theory
and Applications of Cryptographic Techniques
(EUROCRYPT), pp. 539–556, May 2000

[16] A. Juels, D. Catalano, and M. Jakobsson,
“Coercion-resistant electronic elections,” In WPES
’05, pages 61–70, 2005

[17] Michael R. Clarkson, Stephen Chong, and Andrew
C. Myers “Civitas: Toward a Secure Voting
System”, In Proc. IEEE Symposium on Security
and Privacy, pages 354-368, May 2008

[18] R. Küsters and T. Truderung, ”An Epistemic
Approach to Coercion-Resistance for Electronic
Voting Protocols,” In 2009 IEEE Symposium on
Security and Privacy (S&P 2009), pp. 251–266,
IEEE Computer Society, 2009

