
  

1. Introduction 

In a world where a high percentage of citizens carry a 
smart phone or iPod and most households have one or 
more computers, it is difficult to understand why we 
have not been able to leverage powerful personal 
computing devices to allow citizens to cast their ballots 
electronically. The argument turns on security 
weakness in all kinds of network computing and on 
theoretical limits on the ability to protect critical 
applications.  
Though there are several voting system vendors that 
provide Remote Electronic Voting (REV) services, the 
SERVE Report [1] and its subsequently published 
version [2] continue to define REV security 
discussions. One of the most serious security concerns 
with REV is the danger of malware on the voter's client 
machine. Malware can easily be designed to prevent 
the voter from successfully voting, or to violate the 
voter's privacy by sending a copy of the ballot to a third 
party, or even to surreptitiously modify the voter's 
choices before the ballot is encrypted for transmission 
so that the wrong votes transmitted and counted 
without anyone knowing.  While we have no solution 
to the first two kinds of malware threats, in this paper 
we present an all-electronic protocol that greatly 
reduces the likelihood that malware can modify a ballot 
without detection. To date, we have not seen an 
Internet voting solution proposed for real elections 
whose design effectively addresses ballot integrity on a 
computer that is malware infected. 
In this paper, we propose a verifiable, paperless 
Remote Electronic Voting protocol that leverages 
independent computations, one for voting and one for 
verification, to prevent acceptance of any ballot on 
which malware on the voting client has altered the 
voter’s selections. Our solution reduces the likelihood 
that malicious software on the voting client or assistive 
device can alter REV voter selections. While our 
approach requires device properties that are not 
widespread in the general population, we contend that 
these protocols are well suited for use by U.S. military 
members and federal service employees serving 
overseas. 
The rest of this paper is organized as follows. In the 
next section, we give an overview of Internet Voting 
architectures and follow with a description of our 
protocols, the prerequisites of the voting environment, 
and provide details of the system’s properties, 

specifically including things that the protocol does not 
do. We close with summary and concluding remarks. 

2. Internet Voting Architectures 

Voting integrity is commonly considered in terms of 
the voter’s ability to have justified confidence in three 
serial steps, i.e. that their selections are: 

a. Cast as Intended 
b. Recorded as Cast 
c. Tallied as Recorded 

These steps form the core of the five Voter Integrity 
Phases (VI Phases) shown in Table I.  

CaI involves ensuring that the voter is able to find their 
preferred candidates/choices on the ballot and that they 
are able to unambiguously indicate their selections. 
This is usually managed through user interface 
activities such as ballot design, analysis and testing for 
paper ballots and electronic ballot engineering for 
electronic voting devices.  
The latter two self-descriptive VI Phases are beyond 
the capabilities of current election practice. That is, 
with existing voting technology (e.g. Precinct Count 
Optical Scan and touch screen Direct Recording 
Electronic devices) the voter has a limited ability to 
prove that their ballot is either recorded as cast or that 
it is properly included in the final tally.  
Cryptographic voting systems leverage mathematical 
formula in order to attempt to provide voters the full 
spectrum “Tallied as Intended” (TaI) proof. Computer 
scientists have been developing cryptographic voting 
protocols that can have provable security and accuracy 
properties for years, e.g. [3, 4, 5]. The key to many 
cryptographic voting systems is that they leverage a 
voter a feedback channel. That is, at the time of voting, 
each voter receives, or generates, something that they 
can use after results are reported to ensure the accuracy 
of the voting process. Of course this information is 
most useful if it also allows them to make corrections if 
they detect an error or malicious entry. 
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The following three phrases are often used 
synonymously: Cryptographic voting systems, End-to-
End voting systems, and Universally Verifiable voting 
systems. The latter two are subsets of the former; that 
is, end-to-end voting systems and universally verifiable 
voting systems are distinct subsets of cryptographic 
voting systems. Differences in the two include the 
number of voters, the type of feedback channel, and the 
VI Phase that is involved. 
Universal Verification (UV) provides strong voter 
integrity, giving the voter procedures that can provide 
strong confidence that ALL published votes were 
legally cast and accurately counted. Voting systems 
that provide UV [4, 6] rely on a public broadcast 
medium, e.g. a public bulletin board, to broadcast all 
the voting information necessary to confirm the 
election results. Usually, that includes the voter rolls 
and some form of each voted ballot that is 
cryptographically manipulated to both ensure election 
integrity and to preserve voter anonymity. 
End to End (E2E) voting systems provide voters 
information that is sufficient to allow them to have a 
high level of confidence that their own votes are 
Recorded as Intended (RaI)1. This is a weaker standard 
because voters in E2E systems are not necessarily able 
to verify all ballots because their proof of inclusion is 
at the recording, rather than tallying, level. 
The E2E feedback channel may be in the form of a text 
message, e-mail, or some other type of serial 
communication between the elections office and the 
voter. Like UV systems, E2E voter feedback may also 
take the form of a public broadcast medium, such as 
posting on a bulletin board or webpage, but the 
broadcast is not necessary to meet the E2E feedback 
requirement.  
Voting client malware is the one of the greatest threats 
to Internet elections, so being able to ensure that the 
voting client is not infected can dramatically increase 
the security of an Internet voting system that leverages 
remote attestation. One approach to improving 
confidence in networked applications systems is for 
nodes to rigorously assess one another to determine 
whether or not either node is malware infected using is 
a technique known as remote attestation. There is 
substantial research in literature that details the 
approaches and technologies that can enable remote 
attestation with a high level of competence [7, 8, 9, 
10]. Once these solutions are fully mature, voting 

                                                           
1 Many equate E2E systems with those that offer universal 

verification. In this paper E2E has a slightly different 
meaning, reflecting transmission from the voter to the 
elections official but without universal verification. 

applications may leverage remote attestation to 
mitigate voting client malware risks. 

3. Voting Protocols with Independent Computations 

We propose to protect integrity for Remote Electronic 
Voting by requiring voters to create a signed, electronic 
version of their ballot that is independent of the voting 
client. The security of this approach turns on the 
voter’s ability to safely enter the signed ballot into the 
voting client.  
If the voter can generate the signed ballot without the 
help of a computer, then malware alterations can 
always be detected. Unfortunately generating a digital 
signature is a complicated operation that requires 
automated assistance.  
Two of our protocols rely on the voter using two 
cooperating devices [11, 12]. In our case, the devices 
are a voting client and an assistive device to compute 
digital signatures. If the voting client and assistive 
device are strongly independent, then a voting client 
malware attack must independently infect both the 
voting client and the assistive device in order to 
undetectably alter a voter’s ballot, making the attack 
much more difficult. 

3.1. Preliminaries 

Before voting, voters must generate a public/private 
key pair and register the public key with a Certification 
Authority from which election officials can retrieve a 
certificate for the voter's public key. 
For the protocols that use two computing devices, the 
voter must have a smart assistive device with a 
camera/scanner, proper computational ability, and an 
appropriate voting application. The assistive device 
holds the voter’s private key which must not be 
accessible to the voting client. 
Connectivity is not required on the assistive device to 
prevent ballot manipulation2. The primary computation 
on the assistive device during voting is to decode a 
barcode and to compute a hash and signature. 

3.2. Device Independence 

The phrase “device independence” can have many 
connotations. We are concerned about device 
relationships relative to malware infection, as given in 
the following definition. 

Definition #1. Two electronic computing devices 
are malware independent if and only if, in the 
threat environment they are both embedded in, 

                                                           
2 Connectivity on the assistive device may help defend 

against denial of service attacks 
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the probability that the two devices will be 
infected by a pair of cooperating malware 

modules at the time of voting is the product of 
the probabilities that either of them will be 
infected by one of the malware modules 
separately. 

The significance of this independence property is that 
the protocols that we describe can only be defeated 
when both devices are infected by a pair of malware 
modules that were designed to cooperate to subvert the 
voting process. If, for example, there is a (10-2) 
probability that one device is infected with one of a 
pair of malware modules that can undermine our 
protocol and a 10-3 probability that the other device is 
infected with another malware module that can 
cooperate with the first one, then we want to be able to 
say that there is only a 10-5 probability that they are 
both infected with a cooperating malware pair, and if 
that is true, then the devices are malware independent.  
Of course there are circumstances that can undermine 
device independence. If the devices communicate 
directly with each other before the election and one of 
them is infected, the malware might be able to pass a 
cooperating malware infection to the other device, in 
which case the probability that both are infected can be 
almost as high as the probability that the first one is 
infected. If the two devices communicate indirectly 
with each other, or both communicate with the same 
third device or server, they are also less malware 
independent. 
Other factors affecting malware independence include 
the hardware and software architectures of the two 
devices. Sharing the same processor, motherboard, or 
disk drive model reduces independence, as does 
running the same operating system, device drivers, or 
other software because it makes it easier for the same 
malware module [with similar proliferation strategies] 
to infect both machines. 
It is common for smart phone users to connect their 
phone directly to a laptop, e.g. to synchronize files or 
download mobile applications. Some smart phones 
tether to the laptop to provide remote connectivity. 

Devices that are directly connected are never malware 
independent.  

Any connection, wired or wireless, can allow a 
sophisticated intruder to install cooperating 
malware on the connected devices. So, in order to 
maintain the strongest malware independence, 
one of the two devices would never be network 
connected. In our protocols, only one message is 
sent to the assistive device and this as its last 
protocol action. This minimizes the amount of 
connectivity, and optimizes the devices’ malware 
independence. 

3.3.  Digitizing the Ballot 

Our protocols leverage properties of a ballot’s binary 
representation and there are many ways to digitize a 
ballot. For our purposes, it is beneficial to have a 
representation that minimizes the ballot size and that 
the voters can compute themselves. 
In the sample ballot shown in Figure 1, the fourth row 
represents a voter’s selections reflecting the traditional 
‘x’ in the box. The fifth row is the translation of the 
votes into their binary representation. Of course binary 
representation is not intuitive, or convenient, for voters. 
By partitioning the digital ballot into six-bit groups, we 
can translate the selections into an alphanumeric form a 
base-64 representation using digits 1-0, letters a-z and 
A-Z, and special symbols ‘@’ and ‘*’ to reflect the 
base-64 values. In Figure 1, the character string “kAo” 
represents selection of Hunt, Arthur, Snow, Went, 
Beck, and Good and no others.  
 We do not suggest this as a regular, general election 
voting approach. However, we argue that it is not 
unreasonable for certain constituencies, such as the U. 
S. military and federal service employees serving 
overseas, to be able to enter their votes using a ballot 
constructed as shown in Figure 1 and a conversion 
table as shown in Figure 2 to cast their ballot in base-
64 format. 

000000 0 001000 8 010000 g 011000 o 100000 w 101000 E 110000 M 111000 U 

000001 1 001001 9 010001 h 011001 p 100001 x 101001 F 110001 N 111001 V 

000010 2 001010 a 010010 i 011010 q 100010 y 101010 G 110010 O 111010 W 

000011 3 001011 b 010011 j 011011 r 100011 z 101011 H 110011 P 111011 X 

000100 4 001100 c 010100 k 011100 s 100100 A 101100 I 110100 Q 111100 Y 

000101 5 001101 d 010101 l 011101 t 100101 B 101101 J 110101 R 111101 Z 

000110 6 001110 e 010110 m 011110 u 100110 C 101110 K 110110 S 111110 * 

000111 7 001111 f 010111 n 011111 v 100111 D 101111 L 110111 T 111111 @ 

Figure 2. Binary to Base 64 Conversion Table 

Federal Contests State Contests 
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Figure 1. Sample Digital Ballot 
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3.4. Quick Response (QR) Code Technology 

In simplified terms, a QR Code™ is a high capacity 
barcode definition3. QR codes store data in images that 
can be captured via a camera or scanner and translated 
with image-interpreting software.  
Reading a QR Code from the screen of one device 
through the camera of another device offers several 
positive security properties. The communication is 
short range, with no repeaters, amplifiers, switches, 
routers, or other devices, and no software required 
between sender and receiver. Unlike electronic 
communications media, the “sender” is passive; it is 
the “receiver” that performs the active role. No 
network is necessary, no MAC address, IP address, 
phone number, or Bluetooth addresses are needed. The 
receiving device need not be discoverable or detectable 
other than to the intended sender.   

4. Voting-Client-Malware Safe Voting Protocols 

4.1.  A Two-Pass Protocol 

The de facto standard remote electronic voting 
configuration is for the voting client to reside on a 
classic networked workstation, such as a desktop or 
laptop computer, which provides a full suite of user 
interface tools. Most importantly, the workstation 
model provides a full screen display to allow the voter 
to effectively understand their options and accurately 
capture their intended selections. We refer to this 
workstation as the “voting client”.  
For our protocols, the voter selects a second, 
independent device as described above, to generate a 
computation that cannot be spoofed by the voting 
client. An obvious selection would be for the voter to 
use their smartphone or personal digital assistant for 
that purpose. We call this the assistive device. 
Once the voting client and assistive device software 
and the other prerequisites are met, the voter attains a 
blank electronic ballot. The blank ballot may be 
delivered via electronic network or out of band as long 
as the ballot is delivered safely and does not 
compromise the cooperative voting devices’ malware 
independence. 
With the proper blank ballot loaded the voting protocol 
proceeds as follows: 
1 The voter enters his or her selections on the voting 

client. 

                                                           
3www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnum

ber=30789 

2 The voting client translates those selections into a 
digital ballot representation and presents it on its 
display screen as a QR code to the voter. 

3 The voter scans the QR code, containing the voted 
ballot, with the assistive device. 

4 The assistive device presents the voter’s choices on 
its display for verification. 

5 On voter approval, the assistive device generates a 
hash of the ballot representation, signed with the 
voter’s private key. 

6 The voter scans the signed hash into the voting 
client via QR code generated by the assistive 
device. 

7 The voting client returns the signed hash along with 
the voter’s ballot to the voting server. 

8 The voting server calculates the hash of the ballot 
and compares it to the hash that it received. 

9 If the hashes match, the voting server sends a 
success message to the voter on both devices, 
confirming his or her selections. 

10 If the hashes do not match, the voting server refuses 
the ballot and sends a failure message notifying the 
voter of the problem.  

The concept is straightforward, with the voter entering 
their selections into the voting client, transferring them 
to the assistive device via QR code signing the ballot 
on the assistive device, and then transferring the 
signature back to the voting client. The voting client 
then submits the digital envelope, containing ballot and 
signature, to the voting server where the signature is 
verified. When the votes are transferred between the 
assistive devices, they are presented to the voter for 
verification. 
This protocol defends against the following three 
possible malware attacks: 
a. Ballot manipulation on an infected voting client. 

Since the voting client does not have access to the 
voter’s private key, the voting server will detect any 
ballot manipulation through malware on the voting 
client, reject the ballot, and notify the voter.  

b. Ballot manipulation on an infected assistive device. 
The voting client submits the original ballot that the 
voter entered into the voting client. The assistive 
device has no access to, thus cannot manipulate, the 
ballot.  The most that a malware-infected assistive 
device can do is to generate a false signature, which 
would be detected by the voting server and reported 
to the voter. 

c. Denial of Service. The voter can detect a denial of 
service attack by either the voting client or the 
assistive device by noticing that the success notice 
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does not arrive on both devices (specifically, it will 
not arrive on the uninfected device).  

4.2. A One-Pass Protocol 

In electronic communications protocols, every message 
transmission introduces vulnerability. If voters are 
willing and capable of making their selections on their 
assistive device, they may reduce the number of 
communications between the cooperative voting 
devices using the following steps. 
1 The voter enters his or her selections on their 

assistive device. 
2 The assistive device translates the voter’s selections 

into a binary ballot representation, generates a hash 
of the ballot signed with the voter’s private key, 
and presents it on its display screen as a QR code to 
the voter. 

3 The voter scans the QR code containing the digital 
envelope containing the voted ballot and signature 
into the voting client, which decodes the ballot and 
presents the ballot choices to the voter.  

4 The voter verifies his or her selections on the voting 
client and authorizes the voting client to return the 
signed hash with the voter’s ballot to the voting 
server. 

5 The voting server generates the same hash, decrypts 
the voter-provided hash using the voter's public 
key, and compares the two. 

6 If the hashes match, the voting server sends a 
success message to the voter on both devices, 
confirming his or her selections. 

7 If the hashes do not match, the voting server refuses 
the ballot and sends a failure message to the voter, 
notifying them of the problem.  

The security properties of this protocol are similar to 
the previous protocol, except that in this protocol, there 
is only one electronic message between the cooperative 
voting devices. 

4.3. Independent Computation With No Device-to-
Device Communication 

Two vulnerable components of the protocol given in 
Section 4.2 are: (1) The image processing software in 
the voting client (as described above in Section 3.4) 
and (2) The scanning device itself, which contains 
sensitive components. In addition, the PC-connected 
scanners that are needed to collect barcode messages at 
the voting client are in declining demand.  
In the following protocol, the voter casts their ballot on 
the assistive device, but there is no “transmission” to 
the voting client. Rather, the voter enters an 
alphanumeric string that represents their encrypted 
ballot directly into the voting client. 

An additional prerequisite to this protocol is for the 
voting client to hold a valid public key certificate for 
the voter.  
1. The voter enters his or her selections on their 

assistive device. 
2. The assistive device: 

a. Translates the voter selections into a binary 
ballot representation 

b. Generates a hash of the binary ballot signed 
with the voter’s private key 

c. Appends the signed hash to the binary ballot 
to form the digital vote envelope. 

d. Translates the digital vote envelope into a 
base-64 format and  

e. Presents the vote envelope on its screen to the 
voter as a base-64, alphanumeric string. 

3. The voter enters the base-64 digital vote envelope 
into the voting client via the voting client keypad. 

4. The voting client verifies the hash using the 
voter’s Public Key and displays the voter’s 
selections on its display screen. 

5. The voter verifies their selections and authorizes 
the voting client to deliver the digital vote 
envelope to the voting server. 

6. The voting server generates the same hash, 
decrypts the voter-provided hash using the voter's 
public key, and compares the two. 

7. If the hashes match, the voting server sends a 
success message to the voter on both devices, 
confirming their selections. 

8. If the hashes do not match, the voting server 
refuses the ballot and sends a failure message to 
the voter, notifying them of the problem.  

The security properties of this protocol are similar to 
the previous protocols, however, in this protocol, there 
are no electronic messages between the cooperative 
voting devices. The user enters their choices on the 
assistive device and manually transfers the ballot and 
signature to the voting client, where the voter verifies 
their votes. 

5. Experimental Results 

A team implemented the two-pass protocol in a system 
that included necessary elements of the voting server, 
voting client, and assistive device [13]. The project 
demonstrated the efficacy of the protocol that captured 
voter selections, exercised hashing and public 
cryptography to protect ballot integrity, passive 
communication capabilities to transfer data between 
the devices, and return messaging to allow voter 
verification. 
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QR Code software is openly available and the system 
effectively encoded, transferred, and delivered the 
ballots using QR Codes to communicate between the 
voting client and the assistive device. The implemented 
system meets the design functionality and 
demonstrated that the protocol is practical in prototype.  

6. Security Review 

We simplified these protocols to focus on the power of 
independent computations to protect against voting 
client malware. We do not claim that these protocols 
provide comprehensive security. 
In this section, we discuss our protocols security 
strengths and weaknesses. We also describe the 
security properties that these protocols alone do not 
improve over existing remote voting methods. 

6.1. Voting Client Malware 

The goal of these protocols is to protect the integrity of 
cast ballots against voting client malware attacks. 
Independent computations in each protocol accomplish 
strengthened malware protection by isolating the 
voter’s private key to protect it from compromise. In 
the second and third protocols the assistive device 
application does not receive any data other than 
through the keypad. 
Consider the probability that any arbitrary Voting 
Client ‘a’ (vca) is infected with a specific Voting 
Malware version ‘b’ (vmb). If that probability is non-
absolute then: 

0 <= P(vca, vmb) <= 1 
This probability is difficult to assess, but is certainly 
dependent on the protective measures taken by the 
device and network administrators. If the probability is 
low, it complicates the attacker’s job and reduces the 
possible impact that an attacker could have. 

6.2. Computation Independence Attacks 

As we noted above, in order for protocols 4.1 and 4.2 
to conclusively prevent malware attacks on the voting 
client, the two computers used to conduct computations 
must be independent. Network-based software 
applications offer opportunity for sophisticated 
intruders to corrupt different devices with cooperating 
malware that could defeat our protocols. However, our 
protocol complicates the attacker’s job in several ways. 
First, the attacker must have cooperating malware 
versions that match the voting client and the assistive 
device that the targeted voter uses. Second, if the 
voting client and assistive devices are never connected, 
the attacker must infect the two devices independently, 
in which case, using the notation above, the Probability 
of a Successful Attack is:  

 PSA = P(vca, vmb) * P(ada’, vmb’)  
Where ada’ is the assistive device that matches voting 
client ‘a’ and vmb’ is voting malware that can 
collaborate with vmb and is able to attack assistive 
device b.  
On the other hand, like any other data transfer protocol, 
barcodes offer an avenue for intruders to introduce 
malware. That is, if there are software flaws in the 
barcode interpreter, an intruder might be able to 
construct a barcode that can inject malware into the 
interpreting device. Protocols 4.1 and 4.2 may be 
susceptible to barcode malware attacks.  

6.3. Voting Server Malware 

The protocols that we present are designed to prevent 
malware attacks on the voting client, but they are not 
intended to prevent attacks that install malware on the 
voting server. Our protection can ensure that the 
voter’s ballot is cast to the voting client as intended and 
that an honest voting server can identify and refuse to 
accept a manipulated ballot.  
Our protocols provide only “Recorded as Intended”, 
not “Tallied as Intended”, confidence. An infected 
voting server controls the interactions with the voter so 
could interact inappropriately with the voter (i.e. 
provide the results as the voter expects), but could 
tabulate maliciously without the voter being able to 
detect the changes. 
REV systems that utilize our protocols must implement 
other protections against voting server malware attacks. 

6.4. Cryptographic Key Protection Vulnerabilities 

Like most schemes that depend on cryptography, key 
management is critical to our protocol’s success. If the 
voter’s secret key  is divulged to a malicious intruder, 
that malicious intruder could masquerade as the voter.  

6.5. Receipt-Freeness 

Our protocols are receipt free-neutral. That is, none of 
the three protocols that we present address the issue of 
receipt-freeness or coercion resistance [14]. Because 
the voter is unsupervised, similarly to vote-by-mail, 
voters could demonstrate to a third party how they 
vote.  
On the other hand, our protocols are simply designed 
for delivering verifiable results from the voter to the 
voting server and are in no way inconsistent with 
methods for preventing vote buying and voter coercion. 
So, coercion resistance could be handled via other 
mechanisms, many of which are in the literature, see 
e.g. [15, 16, 17, 18]. 
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6.6. Voter Privacy 

Similar to vote-by-mail, our protocols do not protect 
voter privacy. The voting application would need to 
incorporate standard network encryption to prevent 
transmission eavesdropping and elections officials 
would need to incorporate rigorous application 
operation procedures to ensure that voter privacy is not 
compromised.  
Additionally, if the voting client is infected with 
malware, that malware can send a copy of the voted 
ballot, with voter identification, to a third party. Again, 
receipt-freeness and coercion resistance techniques 
could mitigate this effect. 

6.7. Denial of Service.  

As we noted above, the protocols can detect denial of 
service through a feedback loop. If notification is sent 
to both devices, neither can be used to independently 
accomplish undetectable denial of service. 

7. Conclusions and Future Work 

Malware on the voting client is one of the most 
challenging problems to overcome in remote electronic 
voting. Cryptographic voting protocols have attempted 
to provide systems that can overcome malware attacks 
by allowing voters to verify that their votes were 
Tallied as Intended independent of the voting platform.  
Our approach provides Recorded as Intended 
confidence even in the face of malware infection. We 
offer three voting protocols that leverage independent 
computations to prevent acceptance of any ballot on 
which malware on the voting client has altered the 
voter’s selections. These protocols are simple in design 
and rely on voters using two independent devices to 
cast their ballot.  
By leveraging malware independence we ensure that 
the difficulty of malware infestation is factored across 
the two platforms. We also leverage the positive 
security properties of barcode transmission to reduce 
the likelihood of malware transfer between the voting 
devices and offer one protocol in which no electronic 
communication between the devices is necessary. 
Because of the properties of our protocols, specifically 
the properties of the voting devices, this protocol may 
be best suited to military voters, where both of the 
voting devices may be government issued and 
professionally maintained.  
In order to move these protocols to the general voting 
public, it may be necessary to incorporate a third 
voting device that is never network connected, but that 
only communicates via keyboard and QR codes. This 
research is ongoing. 

In this paper, we introduced the concepts of 
independent computations and malware independence 
and leverage the positive security properties of QR 
Codes™ for safe device-to-device communication. We 
propose three protocols that reduce the prospective 
impact that a malware attack on either the voting client 
or the assistive device can have. 
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