
How Memory Usage Patterns Can Derail Real-time

Performance

29 Aug 2024 by Bert Schiettecatte

In this article, we will learn how memory usage patterns can a�ect the real-time performance of an

embedded application, drawing from a recent experience tracing an audio DSP application running on

an embedded Linux platform. First, I will introduce the product in question and the real-time audio

so�ware I developed for it. Then, Iʼll describe the issues I encountered with audio callbacks and the

strategy I followed to determine the cause of the issues, ending with my solution and lessons learned.

Like Interrupt? Subscribe to get our latest posts straight to your inbox.

Table of Contents

Background

Audio Issue Diagnosis

Solution

Conclusion

Interrupt

by Memfault

RSS Subscribe Contribute Tags Slack Jobs Events

7/26/25, 4:14 PM How Memory Usage Patterns Can Derail Real-time Performance | Interrupt

https://interrupt.memfault.com/blog/memory-debugging 1/7

https://interrupt.memfault.com/authors/bertschiettecatte
https://go.memfault.com/interrupt-subscribe
https://interrupt.memfault.com/
https://memfault.com/
https://interrupt.memfault.com/feed.xml
https://go.memfault.com/interrupt-subscribe
https://interrupt.memfault.com/contributing
https://interrupt.memfault.com/tags
https://interrupt-slack.herokuapp.com/
https://interrupt.memfault.com/jobs
https://interrupt.memfault.com/events

Background

As the founder of Percussa, I have led the so�ware and hardware engineering of our pro-audio

consumer electronics products for nearly 20 years. The first product I developed was the AudioCubes, a

human-computer interface, consisting of multiple smart wireless objects capable of detecting each

otherʼs location, orientation, and distance. The AudioCubes are a bare metal DSP platform and do not

run an o�-the-shelf operating system.

Subsequently, I developed the Percussa Super Signal Processor (SSP), a multichannel audio DSP

platform, which was funded via Kickstarter for 314%. The SSP is used by professional studio musicians

and sound designers worldwide and is a eurorack module (eurorack is a modular synthesizer standard).

It is installed into end usersʼ synthesizer racks or in recording studios. It o�ers a library of DSP building

blocks that can be chained together to create various signal-processing chains for synthesizing new

sounds or processing existing sounds.

The SSP is a Linux-based platform based on a Rockchip SoC. In addition to developing the hardware and

bringing up the platform, I also developed the real-time audio DSP so�ware for the SSP. To deliver a

great customer experience, it was important to get consistent audio DSP performance from the

platform, avoiding the clicks and pops in the audio that can be caused by not consistently meeting

audio processing deadlines (i.e. completing audio callbacks in time). Additionally, to fully benefit from

the processing power of the platform, DSP processing needs to be parallelized over multiple CPU cores

(the SoC in the SSP is a quad-core processor).

7/26/25, 4:14 PM How Memory Usage Patterns Can Derail Real-time Performance | Interrupt

https://interrupt.memfault.com/blog/memory-debugging 2/7

https://www.percussa.com/what-are-audiocubes/
https://www.percussa.com/super-signal-processor/

The audio DSP so�ware I developed originally ran on Windows and Mac OSX platforms using a popular

C++ application framework for audio applications. My strategy was to port the so�ware to the new

audio-embedded Linux platform (the SSP).

This went fairly well, with most of my time spent designing and implementing user interface code, menu

systems, and code to parallelize DSP code across CPU cores. My goal on my embedded Linux platform

was to use the mainline kernel tree to reduce maintenance costs.

Audio Issue Diagnosis

As I started testing and debugging my application, I kept running into issues where the audio output was

regularly interrupted, resulting in an audible click. What could possibly be wrong with my code that

might cause this? I started thinking about the reasons my audio callback could take too long to return,

the locks in my code, and whether the audio callback could be pre-empted by the operating system,

causing it to return too late and miss its real-time “deadline.”

Eventually, I decided to use a profiler to figure out what was going on and turned to the excellent Tracy

Profiler, which is open source and free. Tracy is easy to integrate with your code, allowing you to define

di�erent zones for tracing and profiling. The Tracy profiling GUI application can connect over the

network with your embedded platform and receive trace information in real time. This helps speed up

development and debugging. Tracy also comes with a command-line capture tool you can use to

capture the trace directly to disk instead of sending it over the network to your workstation.

I typically do not enable Tracy in release builds shipped to customers and only use it when Iʼm trying to

find a problem with the real-time behavior of my so�ware. I use compiler switches (-D) to enable Tracy,

as described in the Tracy manual (PDF warning), which also describes how to control the amount of data

collected. This is important, as you do not want to generate so much tracing data that it starts to get in

the way of determining the real problem at hand.

With the help of Tracy, I discovered that my audio callback was occasionally taking too long to return.

This happened o�en enough that it was a real problem.

7/26/25, 4:14 PM How Memory Usage Patterns Can Derail Real-time Performance | Interrupt

https://interrupt.memfault.com/blog/memory-debugging 3/7

https://github.com/wolfpld/tracy
https://github.com/wolfpld/tracy
https://github.com/wolfpld/tracy/releases/latest/download/tracy.pdf

At the top of the screen in Tracy, you can see which CPU cores the threads are being scheduled on (note

the four “lanes” in the above screenshot, since the so�ware is running on a quad-core CPU). At the

bottom of the screen, you can see the di�erent nested zones that I defined in my source code, with Tracy

measuring the time spent in each. The zones allow you to understand which areas of your code are the

most problematic and need review.

You can see in the above screenshot an instance when the ALSA callback takes much longer than

normal. What was interesting was that the issue always seemed to be connected to a memory-related

function call. Right above the zones at the bottom, you can see a series of blue dots. When hovering over

them, these dots showed the same memory-related function repeatedly, indicating that the CPU was

spending an unusually long time in this function. Additionally, the yellow graph at the bottom shows

memory usage constantly increasing or decreasing, resulting in the zig-zag pattern being plotted.

However, I had paid close attention to the code in my audio callback and DSP worker threads and I was

fairly confident I was not doing any kind of dynamic memory allocation in my audio or DSP threads.

As I dug deeper, I noticed that my audio thread was being pre-empted by kernel threads.

7/26/25, 4:14 PM How Memory Usage Patterns Can Derail Real-time Performance | Interrupt

https://interrupt.memfault.com/blog/memory-debugging 4/7

While I donʼt have an exact copy of the pre-emption from this instance, I have an example screenshot

above which is very similar. In this case, you can see that the ALSA thread is being pre-empted with a

memory-related function call appearing at the bottom of the screen shortly before the scheduling of

kernel threads.

Note: Tracy can sample Linux kernel call stacks in addition to your application call stacks

to give an even deeper look at what the kernel is doing. Refer to the Tracy manual to

understand the requirements for this.

Eventually, I started examining the memory usage behavior of my application and discovered that the

third-party application framework I was using had its own memory management classes. Under the

hood, malloc() was being called to allocate blocks of very small sizes – some as small as 4 bytes!

These classes were used all over the code base in the framework – and thus in my application, which

was based on the framework. I had unwittingly invited dynamic memory allocation in places due to the

way the framework was architected.

Because of the frequency with which these calls happened, it resulted in memory fragmentation, which

explained why some memory-related function calls took so long to return. Fragmentation can result in

7/26/25, 4:14 PM How Memory Usage Patterns Can Derail Real-time Performance | Interrupt

https://interrupt.memfault.com/blog/memory-debugging 5/7

memory-related function calls taking much longer than normal and/or the Linux kernel pre-empting

your thread(s) while it performs its cleanup.

By analyzing the call stacks, combined with callbacks taking unusually long to return, excessive time

spent in memory-related functions, and the scheduling of kernel threads, you can get an idea of whether

your applicationʼs memory usage patterns might be causing issues.

In my particular case, my applicationʼs memory usage patterns caused my callbacks and other code to

take too long to return, resulting in missed real-time deadlines and audio clicks.

Solution

To solve this problem, I implemented my own memory allocator and re-implemented malloc() and

friends to use my allocator. At a high level, my allocator pre-allocates one large block of memory using

mmap() on startup and manages free/used lists of smaller blocks. Calls to malloc() and friends then

result in allocations/deallocations using my allocator. This approach addresses the above fragmentation

issues and prevents memory-related function calls from taking too long or varying unpredictably.

I considered using o�-the-shelf allocators, but this experience made me a bit paranoid. I decided that

implementing one myself was a good exercise anyway so I could be aware of its behavior under the

hood. By implementing my own allocator and overriding malloc() and friends to use my allocator, I

was able to collect and display allocation statistics and understand how my application uses memory as

I was debugging and testing it.

I also reviewed my code and re-architected parts of it to pre-allocate pools of objects on startup, which

are then re-used as much as possible.

While continuing my e�orts with profiling and tracing using Tracy, I also learned the importance of being

aware of the memory allocation behavior of the tracing code (and third-party framework code!) that you

integrate into your application. Tracy has its own allocator, which is great, but one needs to be mindful

of the tracing features enabled and the volume of data being collected to avoid a�ecting the real-time

behavior of the application being traced.

7/26/25, 4:14 PM How Memory Usage Patterns Can Derail Real-time Performance | Interrupt

https://interrupt.memfault.com/blog/memory-debugging 6/7

Conclusion

If you are working on a real-time application – whether it is an audio processing application, a low-

latency proprietary trading application, or anything else that needs to have real-time or low-latency

behavior, profile your application in various ways and be aware of the memory usage patterns of your

application. And donʼt forget to examine the behavior under the hood of ALL third-party libraries in your

application (including tracing or profiling code or libraries). 🤓

Like Interrupt? Subscribe to get our latest posts straight to your inbox.

See anything you'd like to change? Submit a pull request or open an issue on our GitHub

Links

GitHub | Tracy Profiler

Tracy Profiler Manual (PDF warning)

Professional Website | Bert Schiettecatte

Noisetron LLC

Percussa

Bert Schiettecatte is the founder of Noisetron LLC, a so�ware & hardware engineering and

expert witness consulting practice, and the founder of Percussa, a pro-audio consumer

electronics company.

Start Discussion 0 replies

RSS Slack Subscribe Contribute Community Memfault.com

© 2025 - Memfault, Inc.

7/26/25, 4:14 PM How Memory Usage Patterns Can Derail Real-time Performance | Interrupt

https://interrupt.memfault.com/blog/memory-debugging 7/7

https://go.memfault.com/interrupt-subscribe
https://github.com/memfault/interrupt
https://github.com/wolfpld/tracy
https://github.com/wolfpld/tracy/releases/latest/download/tracy.pdf
http://www.bertschiettecatte.com/
http://www.noisetron.com/
http://www.percussa.com/
https://interrupt.memfault.com/authors/bertschiettecatte
http://www.noisetron.com/
http://www.percussa.com/
https://www.linkedin.com/in/bertschiettecatte/
https://www.linkedin.com/in/bertschiettecatte/
https://community.memfault.com/t/how-memory-usage-patterns-can-derail-real-time-performance-interrupt/875
https://interrupt.memfault.com/feed.xml
https://interrupt.memfault.com/feed.xml
https://interrupt-slack.herokuapp.com/
https://interrupt-slack.herokuapp.com/
https://go.memfault.com/interrupt-subscribe
https://interrupt.memfault.com/contributing
https://community.memfault.com/
https://memfault.com/

