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ABSTRACT: Internet traffic pricing is necessary for the vitality of electronic com-
merce because uncontrolled congestion creates a detrimental effect on quality of the
Internet services. Pricing approaches based on negative externality have potential to
address the issue of congestion. However, most externality-based pricing approaches
require the knowledge of consumers’ private demand characteristics, and this require-
ment is often pointed out as the single most important shortcoming of these mecha-
nisms. The fact that the Internet is a “public good” presents challenging information
extraction problems for network managers in implementing any pricing mechanism.
Ideally, we seek an incentive-compatible mechanism—a means of extracting the re-
quired information that provides no incentives for users to alter their behavior in an
attempt to manipulate the information extraction and price setting processes. We present
a solution based on a new nonparametric statistical technique that was developed for
this purpose. While the results in this paper are presented in the context of our prior
research on pricing, the approach presented here applies to information extraction
and implementation in other resource pricing approaches.
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DESPITE THE PHENOMENAL GROWTH in both the technology and applications spheres
and the feverish pitch of excitement fueling electronic commerce (EC), there is a very
real possibility that only a tiny fraction of the potential benefits of these innovations
will be realized. Early Internet applications usually required low bandwidth usage
and worked well with the best-effort service provided by Internet protocols. How-
ever, network applications have drastically changed in the last few years, with a tre-
mendous increase in traffic volume and a growth in demand for higher-quality service.
Also, the usage patterns have shifted significantly, with an average user spending
much more time on the network. Consequently, the traditional fixed-fee charges, which
provided unlimited access, have been struggling with overloads, resulting in poor
data transmission rates.

The electronic commerce (EC) environment requires different quality of service
(QoS) for different applications. For example, at the application level e-mail does not
require any specific data transmission rate or variance in the data transmission rate
and can be put in the lowest-priority class. On the other hand, real-time audio requires
that the packet stream constituting the voice signal receive short and uniform delay
with minimal variance. Additionally, the packets should arrive at the receiver’s end in
correct order. As the complexity of multimedia applications grows, the issues of
interoperability also play a key role, such as the synchronization of audio and video
streams for a movie.

The intention of providing and implementing multiple-priority classes with IPv6
(Internet Protocol version 6; see Deering and Hinden [3] for details) is to facilitate
different QoS by channeling traffic through different priority classes. However, sev-
eral challenges will be faced in implementing a protocol such as IPv6. First, an
application-level QoS assignment does not account for users’ need for a higher-
priority for applications that may not require higher QoS from the point of view of
application performance. For example, e-mail could be used in an Electronic Data
Interchange (EDI) application where the timely receipt of the message is imperative
and thus requires a higher-priority. Furthermore, current fixed fee Internet access
approaches would be woefully inadequate in maintaining the intended use structure
of priority classes. For example, users may send an e-mail in higher-priority by en-
veloping the packets in a higher-priority application. Even a higher access fee will
not solve the issue. Instead, it will perhaps restrict the misuse to the users who sub-
scribe to a higher class.

Further, even the projected growth of bandwidth will not manage to completely
satisfy the growing information intensiveness (the amount of bandwidth required)
and required degree of rapid and predictable performance for network applications
(see [10] for a detailed discussion on these issues). Lack of adequate performance
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may lead to a severely crippled set of network applications that are incapable of
providing value-added services to consumers. Specifically, applications whose per-
formance is most critically dependent on the data transmission rate are bound to
languish in a congested network.

Academics in information systems, economics, and, recently, computer science have
begun to consider pricing as a means of ensuring the proper allocation of Internet
infrastructure. Gupta, Stahl, and Whinston [5, 7, 8], Choi, Stahl, and Whinston [2],
MacKie-Mason and Varian [13], and Wang, Peha, and Sirbu [21] are only a few of the
many researchers that have argued that the goal of providing an adequate level of
performance and customer satisfaction lies beyond technology—in the realm of re-
source allocation mechanisms based on economic theory. This trend is not surprising
given the current popularity of deregulation. Markets seem to solve most of our re-
source allocation problems in the business world, so it is not unreasonable to think
that markets with prices can solve the Internet resource allocation problem.

The fundamental idea of pricing is to find a price that clears the market, or in other
words, to find a price such that all the demand at that price level is met. However,
there is a fundamental difference in the problem environment presented here. When
the demand is a stochastic flow (such as the demand for Internet services), “market
clearing” can be obtained at infinitely many prices because congestion delays will
adjust the throughput.

For example, consider a simple M/D/1 system (a Poisson arrival process into a
queue for a single server with deterministic service time), and assume that the arrival
rate depends inversely on the queue waiting time, so as waiting times become very
large the arrival rate falls to zero. Then, with no pricing, the “stochastic equilibrium”
will be characterized by a steady-state queue waiting time, which induces a steady-
state arrival rate into the system that is achieved through self-perpetuating rationing.
In other words, if the waiting time is any higher, then the arrival rates will tend to go
down because of excessive waiting time, and if the waiting time is any lower then the
arrival rates will tend to increase. On the other hand, if the arrival process is also
influenced by prices, then imposing prices will result in another stochastic equilib-
rium (i.e., steady-state arrival rate and waiting time). Note that extremely high wait-
ing times result in high losses to the economic system in the form of opportunity cost
due to delay, and extremely high prices result in economic losses due to under-
utilization. Therefore, to achieve the goal of maximal system-wide steady-state ben-
efits, one must impose not just any price, but the correct (optimal) price.

How can a system manager know what the correct prices are in such a dynamic
stochastic environment? In regular markets, excess supply signals that the price should
be decreased and excess demand signals that the price should be increased. Thus, by
simply watching these readily observable signals, a manager can steer the price to-
ward a market equilibrium. However, in an M/D/1 system, there must always be “ex-
cess supply” in the steady state (or else the queues would become infinitely long).
Hence, the apparent “signal” suggests always cutting prices, but that is not the opti-
mal solution. The optimal solution is to set the price of a job equal to the aggregated
cost of additional delay, imposed by this job, on all other jobs (see [7, 12, 13, 14] for
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some representative samples of externality pricing). To determine this optimal price,
a system manager must have knowledge of the value of time of its users (customers).
This requirement is analogous to requiring knowledge of potential buyers’ private
values for, say, antiques.

How can this knowledge be obtained? In general, it would be naive to simply ask
the user to reveal this private information, especially if the respondent knows that the
answer will be used to set the price. [Buyer: “How much is that Chippendale table?”
Seller: “How much is it worth to you?”] The respondent has no incentive to reveal this
information truthfully, and has a definite incentive to provide misinformation when
the price can be so affected. Economists call this the “incentive compatibility” prob-
lem. William Vickrey [20] provided one celebrated solution: the second-price auc-
tion. Recently, MacKie-Mason and Varian [13] suggested using second price auctions
for Internet traffic pricing. Unfortunately, this and related auction mechanisms will
not solve the problem in a dynamic stochastic environment (see Stahl [19]). Auction
mechanisms such as the one presented by MacKie-Mason and Varian also have sev-
eral other problems, such as the problem of packet valuation (consumers have value
for a service, not for individual packets) and the problem of dividing the total bid in
sub-bids at multiple hops during a transmission. Shenker et al. [18] and Gupta et al.
[6] provide a critique of various suggested pricing mechanisms.

Naor [16], Mendelson [14], Mendelson and Whang [15], Westland [22], Lode and
Lee [12], and Lederer and Lode [11] have proposed that levying congestion based
tolls can result in optimal allocation of resources. However, none of these research-
ers discuss computational aspects of these pricing mechanisms. In our prior research
[7], we developed a model for network resource pricing based on congestion pricing
and showed that it is feasible to compute prices in real-time. All these studies assume
that consumers’ demand characteristics (in terms of their delay costs) are known.
However, Shenker et al. [18] criticize these approaches and claim that the consum-
ers’ delay costs are fundamentally unknowable,  and even though, theoretically, these
pricing mechanisms are incentive-compatible the consumers will not provide their
delay costs.

In this paper, we address the issue of estimating these (fundamentally unknowable)
delay costs based on users’ choices. The results presented in this paper are presented
in the context of our prior research to readily demonstrate the viability and validity of
our approach. However, the approach presented here has application for virtually any
externality pricing scheme. Our solution is along the lines of classical microeconomic
theory. First, note that we usually do not worry about incentive compatibility issues
for markets of ordinary commodities, because we assume that there are so many
participants that one person’s actions will have a negligible effect on the market price.
If we did not make this assumption, then the optimality of competitive market equi-
libria would fail to hold, and the foundations of our free market society would crumble.
Therefore, we feel comfortable and justified in using this same assumption of many
participants, which means that our network users will not attempt to change their
market behavior in an effort to manipulate network prices. Our problem is then re-
duced to designing a statistical method of uncovering the critical information (users’
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values of time) from their observed market behavior. If we can solve this statistical
inference problem, then we can use that information to set optimal prices, and we will
have no incentive-compatibility problem at all.

Econometricians are accustomed to inferring demand characteristics from market
observations. However, it turns out that in this dynamic stochastic environment many
of the standard techniques, such as maximum likelihood estimates, fail to yield statis-
tically consistent results [4, 9]. The reason for this failure has to do with the network
traffic characteristics. The network traffic characteristics are found to be fractal [1],
that is, the short-term demand pattern has much larger variation and mean than the
long-term time-averaged demand pattern. This means that while there may be periods
of no demand there will be periods when demand will be extremely high. Since dy-
namic prices have to reflect the changing status of network nodes, only short-term
observable demand should be used for estimating any parameter. However, because
of fractal demand the traditional parameterized econometric methodology does an
extremely poor job of estimation. Therefore, we had to invent and test a new tech-
nique tailored to network data characteristics. This paper presents this new nonpara-
metric statistical technique and the results obtained from applying it to a price
computation mechanism that was tested via a simulation study.

The main purpose of this paper is to demonstrate the consistency and robustness of
this technique. Our testbed is a simulation platform that was developed to test dy-
namic-priority pricing (see Gupta, Stahl, and Whinston [7, 8]). When using our tech-
nique to estimate values of time and to set prices in real time, we find that the
system-wide efficiency loss (compared to having perfect information) is minimal.
Thus, we have succeeded in designing an incentive-compatible mechanism for pric-
ing Internet traffic that only requires the knowledge of observable user actions.

This paper is organized as follows. Section 2 presents a brief description of the
priority pricing used in Gupta, Stahl, and Whinston [7] and the associated computa-
tional incentive-compatibility problem.1 Section 3 describes our approach for esti-
mating the delay cost parameter from the observable choices made by users. Section
4 presents results from the simulation study, which evaluates the effectiveness of our
estimation technique by comparing the system performance with estimation to the
performance with correct information. Finally, conclusions are presented in section 5
with directions of future research.

Network Externality Pricing and Incentive Compatibility

IN THIS SECTION WE REVIEW THE THEORETICAL AND SIMULATION MODEL proposed
in Gupta, et al. [7] and present the incentive-compatibility problem associated with
computing these prices. Figure 1 depicts the schematic representation of the priority
pricing approach presented in [7]. In this model each service can be delivered using
several different schemes. Each scheme involves potential processing at several serv-
ers.2 Each of the servers is associated with a priority queuing mechanism having a
predetermined number of priority classes. Associated with each priority class is an
expected waiting time and a posted price.3 Thus, the total number of options a user
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has for a given service request is the product of the total number of schemes for that
service and the total number of priority classes.

As shown in Figure 1, the user4 demand process is modeled as a stochastic process.
Each user, i, and service, j, is randomly assigned an instantaneous value and a rate of
decay for this instantaneous value—delay cost factor ( d ij). The instantaneous value
represents the increase in net worth of a user by obtaining the service if there were no
delay and if the user were not charged anything for the service. Each available scheme5

for a service request is then evaluated, in all available priority classes, for the total
cost, which includes the total price and the total delay cost.6 A user will choose an
option (a scheme in a particular priority class) with minimum total cost, since it maxi-
mizes her net utility for the service. Note that for identical services the minimum total
cost for different users will be different. For example, a user with a delay cost factor
of zero will choose the server and the priority class with minimum price regardless of
the actual delay while, a user with a high delay cost factor will perhaps choose a
server and a priority class that has smaller delays.

The optimal prices in this model are computed to maximize the nonpecuniary ben-
efits (i.e., total of instantaneous benefits—total delay costs). Gupta et al. [7] prove
that these prices ensure that the economic system achieves stochastic equilibrium
where: (1) expected delays are correct ex-post average delays, that is, users’ expecta-
tions are met on average, and (2) realized flow in the system is such that users’ utility
is maximized given the prices and expected delays.

The price at a particular server for a particular priority class is characterized by the
following system of equations in [7]:

pmk(q) = S l[ ¶ W  l /¶ c mkq] S i S j d ij xijlm (1)

where: pmk(q) is the price of a job of size q at server m for priority class k
c mkq is the arrival rate of jobs of size q at machine m in priority class k
W  1 is the expected waiting time in priority class l at machine m
d ij is the delay cost parameter of consumer i for service j
xijlm is the flow rate of service j for consumer i with priority l at server m

The first term on the right side ( ¶ W  l / ¶ c mkq) is the derivative of waiting time with
respect to the arrival rate of jobs sized q. Since the waiting time is a strictly increasing
function of this arrival rate, an increase in the arrival rate of a certain priority class
increases the prices for that priority class. The second term ( S i S j d ij xijlm) can be
interpreted as the aggregated delay cost of the system. An increase in this cost in-
creases the price. Since the jobs in the highest-priority class impose delays on the
jobs in all other priority classes, whereas the jobs in the lowest-priority classes im-
pose very little delay on the jobs in other priority classes, the prices for higher-prior-
ity classes are higher than those of lower-priority classes.

Another important thing to note here is that prices on each machine depend only on
the measurable parameters at that machine and no network-wide information is re-
quired. Therefore, the size of the network does not increase the complexity of price
computation.
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The problem of incentive compatibility arises here because of the delay cost factor
d ij, which is the users’ private information and is unobservable. The prices are based
on the values of d ij. However, this information is not directly available to the network
manager. If directly asked, users have no incentive to truthfully report their d ij. More-
over, some large users may believe that they can affect the prices and hence network
traffic characteristics by misreporting their delay cost factor. Theoretically, in the
design of incentive-compatible mechanisms, it is assumed that even though the users’
private information is unobservable, this private information comes from a known
distribution. In our case, if we know the distribution of d ij and the waiting times can
be predicted exactly, the derived prices will be incentive-compatible since a rational
user will suffer higher costs if they do not choose the minimum cost option. However,
the problem we face in a real-world implementation of pricing arises from the viola-
tion of the assumption of known distribution for private demand characteristics.

In the Internet environment the demand characteristics change rapidly with respect
to time, and long-term demand patterns are of little use. These demand patterns shift
drastically during the day and from day to day. In such an environment, a dynamic
and real-time price-computing mechanism is needed. Associated with such a price-
computing mechanism is the problem of computational incentive compatibility, that
is, How do we set prices to provide an incentive-compatible mechanism without known
distribution for users’ delay cost characteristics? We will address this problem in “Es-
timation of Delay Cost Factors.”

Even if delay cost factors are known, there are still significant challenges in com-
puting prices in a dynamic environment where predictions based on long-term de-
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Figure 1. Schematic Representation of the Network Priority Pricing Model
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mand patterns are of little use. A real-time mechanism, which computes prices on an
ongoing basis and changes them periodically, is a necessity if multiple service classes
with predictable performance classes have to be maintained. We developed and tested
real-time computation of priority prices via simulation based on the system of equa-
tions presented earlier. The parameter estimates in our simulation are based on the
system feedback (for example, information obtained from a Topology Management
Application’s7 time-based polling). However, since these prices are not estimated at
the equilibrium conditions, they are approximate at any given time. Supposing (t,
t+1) is the time interval between successive estimations, the following iterative equa-
tion can be used to update the prices at any given time (t+1):

pmk(t+1) = a pmk(t+1) + (1– a ) pmk(t) (2)

where: a  is a number between (0,1)
pmk(t+1) is the estimated new price for time (t+1) using Equation 1
pmk(t) is the implemented price during the time (t, t+1)

Updating the prices this way provides a shield against local fluctuations in demand
and in the stochastic nature of the process. In other words, if short-term stochastic
demand is higher (or lower) than long-term demand, it should not affect the prices
inordinately. Only if the relatively higher (or lower) demand is observed on a sus-
tained basis should the prices be changed in the appropriate direction. Essentially, a
defines how close the implemented prices are to computed prices in the current time
period. A lower value of the parameter indicates that the price adjustment will be
gradual in time, whereas a higher value will result in potentially large changes in the
prices from period to period. However, computation of pmk(t+1) requires the knowl-
edge of delay cost factors and thus can be manipulated by users by providing incor-
rect information. In the next section we describe an approach for delay cost estimation
that ensures an incentive-compatible mechanism by avoiding the necessity of asking
users for their delay cost factors.

Estimation of Delay Cost Factors

WE DEVELOPED SEVERAL SIMULATION MODELS to evaluate the performance of the
dynamic price computation method using Equation 2. The simulation model relevant
for this study has 50 servers and 100 distinct services. A server can provide up to 25
distinct services. In earlier studies, we evaluated the performance and stability of our
pricing mechanism against different pricing policies, such as fixed charges (or zero
pricing) and time-based (or flat rate) pricing. The comparative evaluation was based
on the net benefits and consumer surplus accumulated in the system under different
pricing policies.8 These results indicated that priority pricing produces significantly
higher net benefits and consumer surplus as compared to other pricing policies. The
complete description of the simulation model and results are presented in [8].

The user decision process in this model is depicted in Figure 2. Vij is the instanta-
neous value of service j to user i. In the simulation models we assume a distribution
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for users’ instantaneous value (Vij) for a service and their delay cost factors (d ij).
Services are available among a variety of “schemes” (e.g., different servers, schedul-
ing, priorities), and each scheme generates a cost consisting of the monetary cost
(based on prices pjmk) and delay cost proportional to the delay cost factor d ij and the
throughput time wjmk. The minimum cost is denoted by:

c*
ij = minm,k [ d ijwjmk + pjmk] (3)

As discussed earlier, users may have incentives to misreport their d ij for several reasons.
However, a rational user will still choose a minimum-cost scheme according to their true
d ij. Thus, user choices potentially reveal information about the distribution of d ij.

As an example, consider the case where a particular service can be provided by
three servers, each with a certain price and estimated throughput times. Each of these
three servers could be the optimal choice for users with a certain range of delay cost
factors, since the total cost is a combination of price charged and delay cost. Figure 3
graphically illustrates this example. Users with delay cost factors between 0 and 3
will choose server 1, users with delay cost factors between 3 and 6.34 will choose
server 2, and users with delay cost factors of more than 6.34 will choose server 3.
Thus, the user’s choice reveals information about her d ij, which can be used to learn
about the underlying distribution of d ij.

Assuming that the d ij are independent and identically distributed (as in our simula-
tion), let F( d ij) be the underlying distribution, with finite support. For each update
period, given the prices and waiting times at each server, we partition the support of F
into intervals corresponding to the piece-wise linear cost functions (as in Figure 3)
and then using this partition we can estimate the d  by measuring the arrivals corre-
sponding to each partition. During each period we can represent the data collected at
each server by a tuple (psm, wsm, nsm), where psm is the price for service s at server m,
wsm is the estimate of throughput time for service s at server m, and nsm is the number
of requests submitted for service s at server m.9 For a given service s, we will have the
data from several servers, which can be used to compute the underlying delay cost

Potential
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V > c*?
Exit

No

Yes

Vij, ij

Compute minimum
 cost (c*) and identify
scheme s, priority k

Submit request
with scheme s
and priority k

Figure 2. User Decision Process
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distribution. The following two propositions form the basis of our computational
scheme, which computes a current period histogram for the underlying distribution
of d  for a particular service s.

Proposition 1: If there are two servers, m ¢  and m ² , such that psm¢  < psm ² , and both m ¢
and m ²  received requests for service s during a given period, then wsm¢  > wsm² .

Proof: It is straightforward to see that if wsm ¢  £  wsm ² , then "  d , the optimal cost, c*(s)
= minm (psm + d  wsm), will be at server m ¢  and hence no user will choose server m ² .

Proposition 2: If there are two servers, m ¢  and m ² , such that psm¢  < psm ²  and wsm¢  >
wsm ² , then any user having a d  £  (psm²  – psm ¢ )/(wsm¢  – wsm² ) will choose server m ¢  for
their service.

Proof: A user will choose m ¢  if

psm¢  + d  wsm¢  £  psm ²  + d  wsm ² (P2.1)

Þ           d  £  (psm²  – psm¢ )/(wsm¢  – wsm ² ) (P2.2)

Using Propositions 1 and 2, we can easily design a computational algorithm where
for a given service s, we can sort the data record (psm, wsm, nsm) in ascending order of
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psm. Then, starting from a d  value of 0 we can compute the intervals corresponding to
each partition by computing (psm ²  – psm ¢ )/(wsm ¢  – wsm ² ), iteratively. Let |s| denote the
number of services provided by the network. Then, in each period we compute |s|
histograms, which correspond to underlying delay cost distributions for each service.

The data collected in each period could be affected by the stochastic nature of the
process and, for example, may be concentrated too high or too low as compared to the
true population characteristics. To adjust for such “local disturbances” we need to
refine the estimates generated by current-period histograms . The refinement is done
over time by merging data from subsequent periods in Bayesian fashion, that is, by
merging the information from each current-period histogram into an existing cumu-
lative histogram. That is, we use a historical distribution to further refine the current
distribution, which is estimated by observing user choices, and then incorporate this
information into historical information.

For instance, suppose an interval (d l, d u) has a frequency of n, in a current-period
histogram. Suppose in the historical data we have some subintervals of ( d l, d u), say
( d l, d b) and ( d b, d u). Now, the distribution in these subintervals can be used to further
refine the current period histogram. For example, if there are twice as many users in
the historical histogram in the interval ( d b, d u) as compared to ( d l, d b), then we can
allocate (n/3) users from the current histogram to the subinterval (d l, d b) and (2n/3)
users to subinterval ( d b, d u). In most instances, however, we will not find an exact
match on the upper and lower bounds for the different intervals. In such cases further
numerical extrapolation is used to allocate the appropriate number of users in each
subinterval. The accumulated data for all the services creates a new knowledge base
at the end of each period, which in turn is used for the Bayesian update during the
next period.

The process of merging the current-period histogram into the cumulative histo-
gram, with predefined intervals with a large upper bound on d ij, can be described in
the following six steps:

(i) Let the cumulative histogram have a fixed interval width of d F with the maxi-
mum bound d m. Further, let the current period histogram, developed using
Proposition 2, have the interval boundaries 0, d 1, d 2, ..., d m, where (0, d 1) de-
fines the first interval, ( d 1, d 2) defines the second interval, and so forth. To
update the cumulative histogram in a Bayesian manner we create a temporary
set of subintervals by joining the intervals from the cumulative histogram and
the current-period histogram. For example, suppose d 1 < d F < 2 d F < d 2, then
the temporary subintervals are going to be (0, d 1), ( d 1, d F), ( d F, 2 d F), (2 d F, d 2),
and so on.

(ii) Next, the total cumulative arrivals are redistributed into the new temporary
intervals. Let the cumulative histogram have N1 users in interval (0, d F), N2

users in interval ( d F, 2 d F), N3 users in interval (2 d F, 3 d F). . . . Then the redistri-
bution is done as follows:
� If a temporary interval is the same as an interval in the cumulative histo-

gram, then the number of arrivals in that interval is not modified. For ex-
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ample, in the temporary interval ( d F, 2 d F) constructed in (i) the number of
users remains N2.

� If a temporary interval is a subdivision of an interval in the cumulative histo-
gram, then the number of arrivals is apportioned to the temporary interval in
the proportion of its relevant length to the total length of the interval in the
cumulative histogram. For example, in the temporary interval (0, d 1) we
apportion N1*[( d F – 0)/ d F] users and in the temporary interval ( d 1, d F) we
apportion N1*[( d F – d F)/ d F] users.

(iii) The new arrivals entailed in the current-period histogram are added to the
temporary intervals using the same approach as described in step (ii). For ex-
ample, let the current-period histogram have n1 users in interval (0, d 1), n2 in
interval ( d 1, d 2), n3 in interval ( d 2, d 3). . . . Now, for the example presented in
(i), the redistribution in the temporary histogram is done as follows:
� In the subinterval (0, d 1), n1 users are added to N1*[( d 1 – 0)/ d F] users from

step (ii)
� In the subinterval ( d 1, d F), n2*[( d F – d 1)/( d 2 – d 1)] additional users are appor-

tioned; in the subinterval ( d F, 2d F), n2*[ d F/(d 2 – d 1)] additional users are
apportioned; and in the subinterval ( d 2F, d 2) n2*[( d 2 – 2d F)/( d 2 – d 1)] addi-
tional users are apportioned.

(iv) Finally, the temporary intervals are merged into the original fixed intervals of
the cumulative histogram by adding the subintervals. For instance, for the ex-
ample in (i), the temporary subintervals (0, d 1) and ( d 1, d F) are merged to
recreate (0, d F) with a total number of users (N1 + n1 + n2*[( d F – d 1)/( d 2 – d 1)]).

Illustrative Example

Let us illustrate the approach with the help of a simple example. Suppose a current-
period histogram is as represented in Figure 4 with 300 submissions for a particular
service s, with 50 of them having a d  in the range of 0–10 and the rest having a d  in the
range of 10–20. Let the existing cumulative histogram, based on historical data so far,
have a distribution as shown in Figure 5, with 20% of the submissions in the d  range
of 0–5, 30% in the d  range of 5–10, 30% in the d  range of 10–15, and 20% in the d
range of 15–20. Now we redistribute the current-period histogram such that 40% (or
20) of the submissions in the d  range of 0–10 are apportioned to the subrange 0–5.
This is done because if we look at the cumulative histogram, 40% (200) of the total
500 observations in the d  range of 0–10 are in the subrange of 0–5. Using similar
principles, 60% (or 30) of the submissions of the current period in the d  range of 0–10
are apportioned to the subrange 5–10; 60% (or 150) of the submissions in the d  range
of 10–20 are apportioned to the subrange 10–15; and 40% (or 100) of the submis-
sions in the d  range of 10–20 are apportioned to the subrange 15–20. The resulting
new cumulative histogram will be as shown in Figure 6, with 20.37% submissions in
the d  range of 0–5, 30.56% in the d  range of 5–10, 41.67% in the d  range of 10–15,
and 27.77% in the d  range of 15–20.
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Figure 4. A Crude Histogram for Service s

Delay Cost Ranges

N
u

m
b

er
 o

f 
S

u
b

m
is

si
o

n
s

Figure 5. Existing Refined Histogram

After a new cumulative histogram is created, it is used to compute the mean value
of d , which is then used for the purpose of computing new prices. In the next section
we provide some computational results, which indicate that the estimation procedure
performs with minimal loss in efficiency with respect to system-wide benefits.

Computational Results

THE FIRST STEP IN THE DEVELOPMENT  OF THE ESTIMATION PROCEDURE was to check
the robustness of the price-computation mechanism with respect to delay cost factors.
Specifically, we wanted to know what levels of estimation errors might be tolerable
and not affect the system performance with respect to system-wide benefits. To ex-
plore this we added random noise, in our simulations, in the delay cost factors used to
compute prices to simulate the misinformation that network managers might have.
However, since users do know their true delay costs, the simulated users made their
submission decisions using actual delay cost factors. We then compared the net ben-
efits generated in the simulation runs with random noise to those where actual delay
costs were used to compute prices. Figure 7 presents results from simulation runs
where the actual delay costs were generated from a N(4,1) distribution and the error
factor was generated from a N(0,0.3) distribution. The horizontal axis on this figure
represents the exogenous arrival rate (demand) and the vertical axis represents the net
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benefits per second. As the figure shows, there is minimal loss in efficiency. In fact, in
2-priority cases the benefits are virtually indistinguishable.

Next, we used our simulation model to assess the robustness of the estimation pro-
cedure described earlier by comparing the actual delay cost factors to estimated delay
cost factors. Table 1 presents the mean relative absolute deviation10 of the estimated
delay cost factor values for the six cases presented below. The largest deviation is
10.48%. It also appears that if the underlying distribution has a larger standard devia-
tion, the estimates have a larger absolute deviation.

The results of Figure 7 and Table 1 suggest that our estimation procedure is likely
to work well. However, there are two additional issues. First, the estimates shown in
Table 1 were computed using simulation data where prices were computed based on
actual d ij. However, it is conceivable that prices based on an estimated aggregate d ,
using the approach described in this paper, could distort the data, resulting in a dete-
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Figure 6. New Refined Histogram
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rioration in the accuracy of the estimates of d . Secondly, the robustness of benefits
shown in Figure 7 is based upon unbiased independent and identically distributed
noise added to d ij. It is conceivable that the error characteristics of our estimate might
introduce intertemporal distortions that affect prices, the data, and the estimates.

To address these issues, we integrated the delay cost estimation procedure into our
simulation code. We estimated the mean of d ij on the fly,11 used this estimate to set
prices, and then used the resulting user-choice data to update the estimates of d . In
this approach we start with a uniformly distributed cumulative histogram and update
this histogram, as described in “Estimation of Delay Cost Factors,” over the subse-
quent update periods. However, in an ongoing environment the effect of new arriv-
als on the cumulative distribution will be minimal (after a certain short period of
time) and any underlying time-varying changes in delay cost distributions will not
be detected for a long time. For example, if the historical histogram has arrivals of
the order of millions and the new arrivals during a period are of the order of hun-
dreds, then the effect of new arrivals on the cumulative histogram would be mini-
mal. Therefore, in order to permit adaptation to time-varying changes in delay cost
distribution, the cumulative histogram is scaled to a factor equal to the total number
of new arrivals. For example, if the cumulative histogram has a total of 10,000 ob-
servations and the current-period histogram has 1,000 new observations, then the
cumulative histogram is rescaled (in appropriate proportions) to have 1,000 obser-
vations for the Bayesian update. In other words, we provide equal weights to the
frequency distributions in the current-period histograms and in the cumulative his-
tograms before merging them.

Table 2 presents the mean absolute relative deviation of the estimated delay cost
factor values from the integrated procedure. As the table shows, the difference be-
tween the deviations of estimates obtained by the integrated approach and those from
Table 1 are of the same order. The results of Table 2 lead to the conclusion that the
prices and delay cost estimates are not distorted significantly by using the integrated
on-the-fly delay cost estimations.

In order to investigate the robustness of benefits while using estimated d  in comput-
ing prices, we compared the system-wide benefits between two sets of simulation
runs: (1) when the customers’ delay cost factors are known exactly, with the delay
cost factor for a particular job drawn from a particular distribution, as shown in Table
2; and (2) when the average delay cost factors are estimated based on users’ observed
choices using the Bayesian approach and used for computation of prices. Figure 8

Table 1. Mean Relative Deviations of d  Estimates

Load Underlying Distribution Relative Deviation (%)

50 N(4, 1) 5.07
100 N(4, 1) 2.56
200 N(4, 1) 2.22
100 N(10, 3) 2.83
100 U(1, 7) 10.48
100 U(0, 20) 9.36
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presents the results of this comparison where the true delay cost factors are generated
from a N(4,1) distribution, and the demand is 200 requests per second. The results in
Figure 8 show that the two systems behave almost identically.

We tested the effectiveness of our approach using other distributions as well. Table
3 summarizes these results using loss of efficiency as a metric to test the effectiveness
of our estimation technique. The loss of efficiency is defined as:

Loss in Efficiency

Benefits with Exact Information Benefits with Estimated Information

Benefits with Exact Information.

  

        

   

=

(4)

As discussed in “Network Externality Pricing and Incentive Compatibility,” the
objective of this research is to develop a computationally incentive-compatible pricing
mechanism that can support multiple-priority classes. In case of multiple-priority
classes, users with different ranges of delay cost factors partition themselves, ap-
propriately, into the priority class that is best for them. This partition is achieved by
setting appropriate prices such that consumers with different delay costs choose the
priority class that is optimal for them. For example, in Figure 9 consumers with low

Table 2. Mean Absolute Relative Deviations of d  Estimates Generated On the Fly

Load Underlying Distribution Relative Deviation (%)

50 N(4, 1) 2.70
100 N(4, 1) 0.54
200 N(4, 1) 1.20
100 N(10, 3) 2.94
100 U(1, 7) 9.31
100 U(0, 20) 6.97
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delay cost factors choose lower-priority since their costs are lower in that priority
class. However, consumers that have higher delay cost factors face a higher cost in
the lower-priority class because of higher delay and, thus, higher total delay costs.

The estimation technique has to replicate the partition to maintain the effective-
ness and benefits of multiple priorities. Note that, in terms of estimation, each prior-
ity class at a server just requires maintenance of histograms for that priority class. If
the delay characteristics of customers in different priority classes are different, then
different histogram values and thus different means would be computed for these
customers. Figure 9 shows that such a partition is effectively achieved while using
true delay cost factors with two priority classes during a simulation run with an
arrival rate of 100 and the partition achieved while using the estimation technique.
As the figure shows, the estimation technique provides effective partition by follow-
ing the true delay cost parameters when on-the-fly estimations are used. The effi-
ciency loss due to these estimates, with respect to net benefits, is less than 1%. These
results give us confidence that computationally incentive-compatible mechanisms
can be developed and implemented for Internet pricing and other distributed and
client-server applications.

Table 3. Loss in Efficiency for the Test Cases

Load Underlying Distribution Loss in Efficiency (%)

50 N(4, 1) 0.58
100 N(4, 1) 0.26
200 N(4, 1) 0.10
100 N(10, 3) 0.33
100 U(1, 7) 0.85
100 U(0, 20) 2.85
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Conclusions

MOST OF THE CURRENT RESEARCH IN INTERNET PRICING MECHANISMS assumes that
the service providers know users’ demand characteristics. This is not a realistic as-
sumption because in stochastic environments it is not incentive-compatible for the
users to state their preferences directly. The only observable factor in a real network
is users’ choice behavior. In this paper, we investigated whether demand characteris-
tics could be estimated from observing the users’ choice behavior, and whether such
estimates could be used in pricing without much loss in efficiency. Indeed, demand
estimation is vital to any pricing mechanism design intended to manage network
traffic, and delay cost is but one attribute among several of the consumer demand.

The estimation of delay cost factors is the first step in demonstrating that a set of
demand traits, such as the value for quality and timeliness of digital products, can be
estimated feasibly by monitoring user choices. This step is crucial for corporate
intranets as well, in that an optimal allocation of network resources to achieve organi-
zational objectives would require the knowledge of comparative value of the resources
for each individual entity in the organization.

In this paper, we tested a unique nonparametric estimation technique for estimating
the delay costs, that ensures that the estimates are independent of the type of the
underlying distribution. In future research, we will enhance our simulation models to
compute several d  values in each period for different types of services, since it is
likely that users of different services have different delay characteristics. However,
the results presented in this paper are very encouraging and indicate that our estima-
tion technique performs well, with minimal loss in efficiency with respect to system
benefits. The results also indicate that the estimation technique provides necessary
separation in delay cost factors associated with different priorities. This is an impor-
tant characteristic, which is required to maintain appropriate incentives for users to
choose the correct priority for their requirements.

NOTES

1. As discussed earlier, such problems exist in all externality pricing mechanisms. However,
for clear exposition we concentrate on one model.

2. A server could be a router, information server, or information synthesizer.
3. We assume a FIFO queuing discipline with nonpreemptive priorities. Nonpreemptive

priorities indicate that a job in service is finished first even if a higher-priority job arrives in the
queue.

4. We do not apply the term “user” to every individual who uses the network, but to rela-
tively homogeneous groups of individuals connected to the network backbone through an
access point: a business, educational institution, government office, group of residential users
through their access provider, etc., where each group creates a continuous flow of requests.

5. These schemes may be statically available for well-defined services or may be con-
structed by a software agent when the need arises.

6. Total delay cost is computed by multiplying d  by the expected time it takes to deliver a
service.

7. Such as HP’s OpenView Ô  or IBM’s NetView Ô .
8. Net Benefits = Cumulative Instantaneous Value – Delay Costs, and Consumer Surplus =

Net Benefits – Price Paid.
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9. For expositional simplicity we have dropped the priority class index here. However, the
analysis can easily be extended to priority classes.

10. Relative absolute deviation = absolute(actual – estimated)/actual.
11. Estimation on the fly means that the delay cost estimates used to compute prices are

generated using the Bayesian procedure described in “Estimation of Delay Cost Factors” during
a particular simulation run. Traditionally, the performance of an estimation procedure is conducted
by running a simulation to collect data and estimate the parameters, and then another simulation is
performed using the estimated parameters.
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