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Abstract. We develop efficient computational strategies for the inventory liquidation
problem, which is characterized by a retailer disposing of a fixed amount of inventory over
a period of time. Liquidating end-of-cycle products optimally represents a challenging
problem owing to its inherent stochasticity. The growing scale of liquidation problems
further increases the need for solutions that are revenue- and time-efficient. We propose to
address the inventory liquidation problem by deriving deterministic representations of
stochastic demand, which provides significant theoretical and practical benefits as well as
an intuitive understanding of the problem and the proposed solution. First, this paper
develops a dynamic programming approach and a greedy heuristic approach to find the
optimal liquidation strategy under deterministic demand representation. Importantly, we
show that our heuristic approach is optimal under realistic conditions and is computa-
tionally less complex than dynamic programming. Second, we explore the relationships
between liquidation revenue and several key elements of the liquidation problem via both
computational experiments and theoretical analyses. We derive multiple managerial im-
plications and demonstrate how the proposed heuristic approach can serve as an efficient
decision support tool for inventorymanagers. Third, under stochastic demand, we conduct
a comprehensive set of simulation experiments to benchmark the performance of our
proposed heuristic approachwith alternatives, including other simple approaches (e.g., the
fixed-price strategy) as well as advanced stochastic approaches (e.g., stochastic dynamic
programming). In particular, we consider a strategy that uses the proposed greedy
heuristic to determine prices iteratively throughout the liquidation period. Computational
experiments demonstrate that such iterative strategy stably produces higher total revenue
than other alternatives and produces near-optimal total revenue in expectation while
maintaining significant computational efficiency, comparedwith advanced techniques that
solve the liquidation problem directly under stochastic demand. Our work advances the
computational design for inventory liquidation and provides practical insights.
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1. Introduction
Management of excess inventory is a common concern
of retailers. Theneed to liquidate inventorymayoccur for
a number of reasons. For instance, products may be
seasonal in nature, newer versions of products may be
forthcoming or have been recently released, or a retailer
may no longer wish to carry a product line. The rapid
release cycle of electronic devices represents one typical
scenario in which inventory liquidation frequently
happens. Apple, for example, releases a new generation
of iPhone almost every year, at which point customer
valuations for the previous generation products usually
decline rapidly over time. Therefore, retailers have a
strong motivation to liquidate inventory in a time-
sensitive and revenue-efficient manner.

The area of inventory liquidation of consumer prod-
ucts has been revolutionized by retailers adopting direct-
to-consumer approaches via the e-commerce stores and
online auction sites (Bapna et al. 2009) enabled by ad-
vanced information technologies. For example, retailers
such as Best Buy have liquidation stores on eBay, and
sites such as uBid.com often liquidate previous gen-
eration electronics products. One of the key advan-
tages of online platforms is the ability to consolidate
inventories across stores and sell them to a wider
consumer base that may not be accessible through
traditional channels. The challenge of liquidating a
large amount of consolidated inventory is in design
of liquidation strategies (e.g., over what period of time
the inventory should be liquidated and how prices
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should be adjusted throughout that period) given the
stochasticity of demand. Computational approaches
constitute a promising avenue toward either auto-
mating or providing support for managerial decision
making in inventory liquidation settings. Further-
more, some of the emerging online B2C platforms (e.g.,
liquidation.com) need to deal with large-scale liqui-
dation problems in real time. For them, utilizing highly
scalable liquidation strategies is crucial for surviving
in the growing market.

In this paper, we design highly computationally
efficient strategies to liquidate a given inventory of
identical items over a predetermined time horizon via
periodic pricing. A retailer can set an item price for
each time period on the basis of his or her knowledge
about customer demand, to maximize total revenue
from liquidation. We adopt the design science ap-
proach of Hevner et al. (2004) and establish the
foundations of an inventory liquidation support system,
with the goal of providing insights about the per-
formance and implications of different computa-
tional inventory liquidation strategies and enabling
retailers to dispose inventory in a revenue-efficient
manner under a variety of settings. The inventory
liquidation problem that we seek to address has
strong relevance for business operations. Our pro-
posed computational strategies are technology-based
design artifacts, which provide viable solutions to the
liquidation problem—especially in large-scale set-
tings, where the business requires significant time
efficiency (i.e., scalability) inmanaging inventory and
doing so in an automated or semiautomated manner.
In particular, our proposed approach represents a highly
computationally efficient search process for finding the
best inventory liquidation decisions in the vast space of
potential liquidation actions. We provide a rigorous, in-
depth performance evaluation of our approach with
respect to anumberof alternatives andbenchmarks.As a
result, we contribute to the knowledge and practice of
inventory management and communicate our research
findings both to the technology-oriented audience (by
presenting theoretical, algorithmic, and simulation re-
sults) and to the management-oriented audience (by
discussingmanagerial insights obtained fromsimulation
experiments). Thus, our approach is closely alignedwith
a number of canonical design-science guidelines for
information systems research, such as the design as
an artifact, problem relevance, design evaluation, research
contributions, research rigor, design as a search process,
and communication of research guidelines (Hevner et al.
2004, p. 83).

Specifically, we first establish a theoretical model
that describes the key elements and processes of an
inventory liquidation problem. We consider sto-
chastic demand and assume that the seller has high-
level distributional knowledge about the demand,

which is a standard assumption in the inventory
management literature (e.g., Gallego and Van Ryzin
1994, Bitran and Mondschein 1997). However, dif-
ferently from prior work, we propose to address the
problem by first deriving deterministic representa-
tions of the stochastic customer demand (i.e., by
calculating expected arrivals and expected valua-
tions; details in Section 3.1). Taking advantage of
these deterministic representations, we first discuss
two simple and commonly used liquidation strate-
gies: (1) setting a fixed per-item price for the entire
inventory over the duration of the liquidation period;
and (2) setting different prices from day to day
(typically decreasing), which is designed to achieve a
certain fixed daily sales quantity over the entire liq-
uidation period. Given the retailer’s goal to maximize
revenue from liquidation, we point out that both
strategies are, not surprisingly, suboptimal. Thus, it is
imperative to utilize more sophisticated, dynamic
pricing mechanisms to yield the highest revenue.
Second, we propose (i) a dynamic programming
approach that is generally optimal (i.e., achieves the
maximum revenue for the retailer) under deter-
ministic representation of stochastic demand; and
(ii) a specialized greedy heuristic approach, which is
much faster but can still solve the inventory liquidation
problemoptimally under deterministic representation of
stochastic demand for a variety of commonly observed
realistic customer valuation distributions. Third, we
provide both theoretical and computational results
regarding how the changes in the inventory liquida-
tion problem configurations, such as initial level of
inventory, length of liquidation period, and customer
demand characteristics, affect the resulting optimal
liquidation strategy and revenue. Our results have
direct managerial implications that can inform the in-
ventory management decisions. Finally, we conduct
comprehensive simulations to evaluate the performance
of our proposed heuristic in realistic settings (i.e., under
a number of diverse instances of stochastic demand)
by comparing it with a variety of benchmarks. We
demonstrate that, under stochastic demand, liquida-
tion strategies generated by the heuristic consistently
produce near-optimal revenues with highly superior
computational efficiency.
In summary, using a design science approach, we

contribute to the information systems literature by
proposing a computational approach with a greedy
heuristic that can solve large-scale inventory liqui-
dation problems with remarkable computational ef-
ficiency and revenue performance under a wide
variety of realistic conditions. We also contribute to
the dynamic pricing literature by highlighting an
advantageous way to solve complex, stochastic in-
ventory problem—the derived deterministic repre-
sentations turn out to be appropriate and useful
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approximations of stochastic demand. Besides theo-
retical contributions, our work also offers rich mana-
gerial insights on the relationships between key
liquidation decisions and the resulting optimal liqui-
dation revenues and strategies.

2. Literature Review
The design science approach in information systems
research seeks solutions to business problems by
producing design artifacts (Hevner et al. 2004). Al-
though this paper is rooted in such a research para-
digm, it is also closely related to, and informed by, the
broad literature on dynamic pricing and inventory
management.

Dynamic pricing with inventory considerations is
an important topic both for management science re-
searchers and for practitioners. Previous literature
on dynamic pricing and inventory management has
focused on two broad categories of pricing mecha-
nisms: posted-price mechanisms and price-discovery
mechanisms (Elmaghraby and Keskinocak 2003).
Under posted-price mechanisms, the retailer makes
pricing decisions. Customers view the price as given
and make purchasing decisions based on their will-
ingness to pay. Under price-discovery mechanisms,
however, prices are determined via auctions (McAfee
and McMillan 1987). In this paper, we consider
posted-price mechanisms for inventory liquidation,
although auction-based price-discovery mechanisms
may also be applied to inventory management (e.g.,
Wood et al. 2005), and our approaches can readily be
adapted for multiunit auctions (Bapna et al. 2003,
2005). For example, by using the derived prices as
marginal valuations of customers on a given day, an
auctioneer can decide how many units to sell on that
day and parameterize the multiunit auctions according
to theapproachpresented inBapna et al. (2003). A seller
can increase their revenue by using discriminatory
price versions of the auction (e.g., Yankee auctions) to
extract more consumer surplus.

Depending on market characteristics, dynamic
pricing problems under posted-price mechanisms
often involve three key dimensions: replenishment
versus no replenishment of inventory, dependent ver-
sus independent demand over time, and myopic ver-
sus strategic customers (Elmaghraby and Keskinocak
2003). The first dimension represents whether in-
ventory replenishment is allowed during the time
horizon under consideration. The second dimension
concerns with whether demand is time-dependent.
Although demand for durable goods is typically time-
dependent because of rare repeat purchases, demand
for nondurable goods or necessity products is mostly
time-independent (Elmaghraby andKeskinocak 2003).
The third dimension describes customer behavior.
Myopic customers will always buy the product when

the posted price is not above their willingness to pay,
whereas strategic customers may choose to postpone
purchases and wait for the price to further decrease.
A large body of literature has focused on different

variations of dynamic pricing problems for inventory
liquidation, which is typically characterized with no
replenishment of inventory, because the retailer’s
goal is to sell out a given inventory. For example,
Gallego and Van Ryzin (1994) modeled the liquida-
tion of a fixed amount of inventory over a finite time
horizon as a continuous pricing problem, where de-
mand followed a time-invariant Poisson process and
was dependent on prices. They established relation-
ships between prices and two key parameters: in-
ventory size and liquidation period length. They also
showed that a simple heuristic, such as a fixed-price
strategy, can be asymptotically optimal. Bitran and
Mondschein (1997) examined a model for pricing
seasonal goods within a fixed sales window. They
relaxed the assumption of time-invariant demand in
Gallego and Van Ryzin (1994) and assumed that
customer arrival followed a time-variant Poisson
process that was independent of prices. The distri-
bution of customer valuations was assumed to be
known by the seller and was also allowed to vary
over time. They considered both continuous pricing
(i.e., setting prices continuously throughout the sales
window) and periodic pricing (e.g., revising prices
everyweek). They solved the periodic pricing problems
using a stochastic dynamic programming approach.
Zhao and Zheng (2000) built upon the work of
Gallego and Van Ryzin (1994). Similar to Bitran and
Mondschein (1997), they also assumed time-variant
demand (i.e., both customer arrival and valuations
distribution were allowed to vary over time) and
developed sufficient conditions under which the
findings of Gallego and Van Ryzin (1994) would be
valid for such nonhomogenous demand patterns.
Other variations of the dynamic pricing problems
extended the aforementioned work to incorporate
more complicated factors. For example, Smith and
Achabal (1998) considered end-of-season liquidation
pricing and further took into account the fact that
customer demand was dependent not only on time
but also on the level of remaining inventory. Bitran
et al. (1998) proposed a pricing policy for coordi-
nating clearance sales in retail chains consisting of
multiple stores. Craig and Raman (2015) included
inventory transfers (i.e., move inventory from one
store to another) and the timing of store closings as
additional decision variables into the inventory liq-
uidation problem. Finally, Su (2007) and Aviv and
Pazgal (2008) considered strategic, forward-looking
customers.
More recently, researchers have investigated the

problem of inventory liquidation with demand
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learning, in which the seller has limited information on
demand and learns about demand over time according
to sales data. For example, several papers have adopted
a Bayesian framework to model demand learning,
where the seller begins with a certain prior belief on
arrival process (e.g., a Poisson process with uncertain
rate) and revises the belief as actual sales are observed
(Aviv and Pazgal 2002, Araman and Caldentey 2009,
Farias and Van Roy 2010). Because the dynamic
pricing problem under demand uncertainty generally
cannot be solved analytically, these papers have
proposed several heuristic pricing policies.

The inventory liquidation problem we address in
this paper deals with no replenishment of inventory
and myopic customers. First, because we specifically
consider the problem of liquidating a fixed amount of
remaining inventory toward the end of a selling
season, replenishment of inventory is not relevant.
Second, customers that arrive during a specific pric-
ing period are behavingmyopically. In particular, they
will purchase the product as long as its price for that
period is equal to or below their willingness to pay,
and they will not strategically wait until later periods.
The myopic behavior of customers represents a realis-
tic aspect of the inventory liquidation problem because,
in many settings, consumers have no knowledge of
remaining (and changing every day) inventory levels
and, therefore, waiting is risky because items might
be sold out before the customers come back to make
purchases. Regarding time dependency of demand, our
proposed solutions can deal with both time-variant and
time-invariant demand. Finally, we focus on periodic
pricing strategies, where the seller sets one price for a
given time period and can adjust the prices across
periods. This sets us apart from research on contin-
uous pricing strategies (e.g., Araman and Caldentey
2009, Farias and Van Roy 2010). Compared with
continuous pricing, periodic pricing is considered
to be more practical in reality and incurs less co-
ordination cost (Bitran and Mondschein 1997). Im-
portantly, our proposed approach is flexible in that it
can enable periodic pricing for various time granu-
larities, ranging from very short time periods to rel-
atively long periods, owing to its high computational
efficiency.

Compared with previous research, our work is
different in a number of noteworthy ways. First, in-
stead of trying to solve the liquidation problem di-
rectly under stochastic demand (e.g., Bitran and
Mondschein 1997, Zhao and Zheng 2000), we pro-
pose to first derive a deterministic representation of
stochastic demand and then compute the liquidation
strategies. Specifically, given knowledge on customer
arrival processes and valuation distributions, we de-
rive a set of deterministic representations, whereby (a)

customer arrival in each period equals expected ar-
rival, and (b) customer valuations are expected order
statistics of the underlying valuation distribution (as
will be discussed in more detail in Section 3.1). Such
deterministic representation significantly reduces an-
alytical complexity of the problem. More importantly,
as will be shown in the paper, it retains a significant
level of fidelity in the results; that is, under stochastic
demand, the resulting liquidation strategies produce
revenues that are very close to the ones obtained by
the much more advanced (and much less scalable)
algorithms.
Second, even though a dynamic programming

formulation has been used in the literature to address
similar problems (Bitran andMondschein 1997, Bitran
and Caldentey 2003), our paper moves from a sto-
chastic dynamic programming approach to a much
more scalable deterministic version of dynamic
programming, by recasting the inventory liquidation
problem using deterministic representations of sto-
chastic demand. In addition, we further exploit the
problem structure and propose a greedy heuristic
approach that is guaranteed to find the optimal
liquidation strategy for the deterministic demand
representation under reasonable conditions. In the
realistic scenarios of stochastic demand, the liquida-
tion strategy produced by our heuristic approach has
desirable computational efficiency and revenue per-
formance. Compared with advanced methods, in-
cluding stochastic dynamic programming (Bitran
and Mondschein 1997) and approximate dynamic
programming (Farias and Van Roy 2003), our ap-
proach ismuchmore scalable and produces very close
revenue in expectation. Meanwhile, compared with
other simple heuristic pricing strategies (e.g., setting a
fixed price or fixed daily sales), our approach con-
sistently generates higher liquidation revenue on
average. Moreover, we design a liquidation strategy
that iteratively uses the greedy heuristic to revise
liquidation prices after each period. Compared with
using heuristic once to set all liquidation prices in
advance, such dynamic strategy performs even better
under stochastic demand. Besides its advantages in
computational scalability, the proposed heuristic is
applicable under various problem settings. When
additional factors, such as inventory holding cost
or time-dependent arrival (e.g., differing consumer
arrival rates for weekdays versus weekends) are
taken into consideration, the heuristic approach can
be easily adapted. Both the scalability and the flex-
ibility make the greedy heuristic a viable and useful
tool to support the decision making of inventory
managers.
Overall, following the design science research

paradigm, we conduct comprehensive evaluations
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of our proposed heuristic approach with multiple
benchmarks (detailed in Section 6) and demonstrate
how it can be used as a decision support tool for
inventory management purposes.

3. Theoretical Model of the Inventory
Liquidation Problem

In this section, we formally introduce our approach
to addressing the inventory liquidation problem.
Throughout this paper, we make the following as-
sumptions regarding what is known about the sto-
chastic demand in our liquidation problem setup.

These assumptions represent a realistic liquidation
scenario for two reasons. First, the seller’s knowledge
of arrival process, valuation distribution, and decay
rates can be obtained by analyzing historical trans-
action data.1 Second, these assumptions are common
in the literature. The first assumption states that
customers arrive to the store stochastically, according
to a known process. We follow the literature in as-
suming that arrival is independent of inventory status
and liquidation strategy, because arrival process is
typically determined by customers’ regular shopping
behaviors (Gallego and Van Ryzin 1994, Bitran and
Mondschein 1997, Zhao and Zheng 2000, Aviv and
Pazgal 2008, Farias and Van Roy 2010). We allow the
arrival process to be time-variant, consistent with
prior work such as Bitran andMondschein (1997) and
Zhao and Zheng (2000). In later sections on simula-
tion experiments, for simplicity, we operationalize
the arrival process with the most common choice in
research literature (e.g., Aviv and Pazgal 2008, Farias
and Van Roy 2010), a time-independent Poisson
process of rate λ, that is, Lt � Poisson(λ). The second
assumption states that customer valuations follow a
distribution known by the seller. This, again, is a

standard assumption in the literature (e.g., Bitran and
Mondschein 1997, Aviv and Pazgal 2008, Farias and
Van Roy 2010). The third assumption states that, over
time, customers that arrive in later days generally
have lower valuations than thosewho arrive in earlier
days, because inventory liquidation typically deals
with perishable products or products under the
pressure of impending obsolescence. A similar as-
sumption is made in Aviv and Pazgal (2008). The
declining valuation also marks the key difference
between inventory liquidation problem and other
dynamic pricing problems (e.g., for airline seats,
where the demand characteristics often create up-
ward price pressure over time; McGill and Van Ryzin
1999). In later simulation sections, we typically con-
sider a constant decay rate (i.e., αt ≡ α) for numerical
and expositional simplicity, though our solution
approach is presented in the general case where
decay rates may vary across different days.

3.1. Deterministic Representation of
Stochastic Demand

Suppose a seller wants to liquidate N identical items
over a period ofD days.2 The seller sets a price for the
items on each day, and arriving customers whose
valuations are higher than or equal to the price will
purchase the items at the stated price. Because the
number of items sold on each day does not depend on
the order in which customers arrive, for notational
convenience we can sort the customers on a specific
day according to their valuations in descending order
and subsequently label the valuation of the bth cus-
tomer on the dth day as Vbd. This specific labeling of
customers implies that Vb+1 d ≤Vbd.
In this paper, we propose a novel approach to

overcome the significant analytical and computational
complexities that arise when modeling customer
demand stochastically, by deriving a deterministic
representation of the stochastic demand. The de-
terministic representation of stochastic demand is
derived in three steps. First, we transform the stochastic
arrival process into a constant number of average ar-
rivals; that is, we consider B customers come to the
store every day (∀d ∈ {1, . . . ,D},B � E(Ld)).3 Second,
we transform stochastic valuations of the B arriving
customers into the B expected order statistics of the
valuation distribution.Although individual customer
valuations are random draws from the known dis-
tribution, the expected values of those valuations are
equal to the expected order statistics of that distri-
bution. That is, the expected value of the ith highest
valuation among B customers drawn from the same
distribution is the ith expected order statistic
(in descending order) of that distribution, or more
formally, Vid � E(Xid), where Xid is the ith highest

Problem Setup:

1. Customer arrival follows a known stochastic
process, denoted by Lt for time period t.
Specifically, the number of customers who will
visit the store during time period t follows
distribution Lt. Customer arrival process is
independent of the liquidation strategy and
inventory level.
2. Customer valuations follow a known probability
distribution,withCumulativeDistribution Function
CDF Ft for time period t.
3. Customer valuations decline over time, according
to known decay rates αt ∈ (0, 1). That is, the CDFs of
valuations for time t + 1 and time t satisfy: ∀v,
Ft+1(αtv) � Ft(v).
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order statistic. Expected order statistics provide a
precise characterization of the average, representa-
tive customer valuations from a known distribution.
This also establishes a convenient relationship be-
tween price and sales such that, if the price on a
specific day is set to the ith highest expected or-
der statistic, then there would naturally be i sales
under deterministic demand representation. Third,
because of the first two steps, customer valuations
across days are characterized fully by the known
decay rates αd, that is, Vbd+1 � αdVbd, whereαd ∈ (0, 1).
These three transformational steps allow us to recast
the stochastic inventory liquidation problem in a
deterministic, tractable form and facilitate the devel-
opment and presentation of our computational solu-
tions. The designed liquidation strategies can then
be applied and evaluated under realistic, stochastic
demand.

With the goal ofmaximizing total sales revenue, the
seller sets the sales price of the item for each day.
Thus, the resulting liquidation strategy can be rep-
resented as a vector of daily prices (p1, p2, . . . , pD).
Given any daily price, the number of items sold on that
day is equal to the number of customers whose valu-
ations are equal to or greater than the price. Therefore,
under deterministic representation of customer valua-
tions, an equivalent notation of liquidation strategy is
a vector of daily sales quantities (S1, S2, . . . , SD), where
Sd is the number of items sold on the dth day, Sd �∑B

b�1 I(Vbd ≥ pd) for any d, and
∑D

d�1 Sd ≤N. The daily
revenue R(Sd, d) obtained by selling Sd items on the
dth day is R(Sd, d) � Sdpd. The seller’s total revenue is,
therefore,

∑D
d�1 R(Sd, d).

Please note that we assume zero salvage value for
any unsold items by the end of the liquidation period,
because the case with positive salvage value can be
straightforwardly transformed to the case with zero
salvage value by shifting the customer valuation dis-
tribution leftward with an amount equal to the unit
salvage value. Such transformation technique has
been used in prior work (e.g., Gallego and Van Ryzin
1994, p. 1004). Therefore, although the presence of
positive salvage value, as compared with the case of
no salvage value, may result in different optimal
total revenue and liquidation strategy, it has only
minimal impact on how we solve the liquidation
problem.

3.2. Fixed-Price and Fixed-Quantity Strategies for
Inventory Liquidation

Two very simple, commonly used liquidation strat-
egies are the fixed-price strategy and fixed-quantity
strategy. In a fixed-price strategy, the seller sets a
single price, p*, for the item throughout the entire
liquidation period (i.e., ∀d, pd � p*). Note that, if the

seller sets a price that equals the Nth valuation of all
arriving customers throughout the liquidation period
of D days, the strategy achieves allocative efficiency,
because customers with top N valuations end up
purchasing the items. Fixed-price strategy has been
widely adopted in the past, mainly because it incurs
very low menu cost (there is no price change) and
because companies did not have enough accurate
information about customer valuations (Elmaghraby
and Keskinocak 2003). However, the fixed-price strat-
egy is seldom optimal. Suppose the corresponding
sales quantities vector for allocatively efficient fixed-
price strategy is (S1, S2, . . . ,SD); then, by setting dis-
criminant prices every day (i.e., pd � VSd d), the seller
can already acquire higher revenue than by using
fixed-price strategy while still selling to the same
exact customers with top N valuations. Importantly,
even setting the aforementioned discriminant prices
every day can be suboptimal, because the optimal
strategy may not be selling to customers with the top
N valuations at all. We illustrate this point using a
numeric example. As shown in Table 1, suppose the
seller is trying to liquidate four items over a period of
four days, and where customer valuations decay by
5% from day to day. There are four customers coming
to the store on each day (i.e., 16 customers in total over
four days), whose valuations are summarized in the
table. Because the four highest valuations are 100, 96,
95, and 92, a fixed-price strategy would set the liq-
uidation price to be 92. The resulting revenue is,
therefore, 368. Alternatively, if the seller sets dis-
criminant prices on each day while still selling to the
top four customers, the daily prices would be 92 and
95 for the first two days. The resulting revenue is 371.
However, the optimal strategy in this case is actually
to sell two items on the first day (at price of 96), one
item on the second day (at price 95), and one on the
third day (at price 90.25). The optimal strategy results
in the total revenue of 377.25.
Under a fixed-quantity strategy, the seller liqui-

dates the same number of items every day. A seller
could use this strategy when there is a fixed capacity
to store or transport the items. Note that fixed-
quantity strategy is equivalent to a periodic pricing

Table 1. Numeric Example Showing the Suboptimality of
Fixed-Price and Fixed-Quantity Strategies for Inventory
Liquidation

Vbd Day d � 1 Day d � 2 Day d � 3 Day d � 4

V1d 100 95 90.25 85.74
V2d 96 91.2 86.64 82.31
V3d 92 87.4 83.03 78.88
V4d 88 83.6 79.42 75.45

Note. Vbd represents the valuation of bth customer on dth day.
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strategy with fixed discount, as described by Bitran
and Mondschein (1997), if the initial price is associ-
ated with sales of the fixed quantity on the first day
and the fixed discount is equal to a constant valuation
decay rate. The fixed-quantity strategy is also sub-
optimal in general because, in liquidation scenarios,
customer valuations are decreasing over time, and it is
advantageous to sell more items earlier in the liqui-
dation period rather than later. Again, this can be
easily observed from the same example in Table 1. If
the seller instead adopts a fixed-quantity strategy to
sell four items over four days, then one item will be
sold to the buyer with highest valuation on each of the
four days, resulting in a total revenue of 370.99, which
is less than the optimal total revenue of 377.25.

3.3. A Dynamic Programming Approach
Because of the specifics of the problem structure, an
optimal solution to the revenue-maximizing liquida-
tion problem can be readily found computation-
ally, using a dynamic programming approach. Let
MAXREV(n, d) represent an intermediate problem
(i.e., calculating the maximum revenue that a retailer
can obtain from selling n items starting on dth day of
the liquidation period). The recurrence equation of
this problem is

MAXREV(n, d) � max
0≤j≤min(B,n)

{ j×Vjd +MAXREV(n − j, d + 1)},

where the calculation of MAXREV(n, d) is decom-
posed into the possible revenue of selling exactly j
items on day d (represented by j×Vjd, where Vjd is the
jth highest valuation on day d, equal to the price at
which the seller would choose to sell the j items) and
the rest of the items later, starting on the next day
d + 1 (represented by MAXREV(n − j, d + 1)). Subse-
quently, MAXREV(n, d) is determined by finding the
maximum intermediate revenue, subject to the con-
straint that number of items sold on day d cannot be
larger than the number of daily arriving customers B
or the number of remaining items n to be sold (rep-
resented by 0≤ j≤min(B,n)). To constrain the liqui-
dation within the desired period ofD days, items that
are not sold by the last day will have no value to the
retailer; that is, ∀n,MAXREV(n,D + 1) � 0. The maxi-
mum revenue of the original inventory liquidation
problem can, therefore, be found by computing
MAXREV(N, 1), and the optimal liquidation strategy
can be efficiently found by solving all the interme-
diate dynamic programming subproblems backward.
The worst-case computational complexity of this ap-
proach is O(DNB), because there are at most DN in-
termediate subproblems in total, each of which takes
O(B) to solve, assuming B to be smaller than N in
large-scale liquidation scenarios.

4. A Greedy Heuristic Approach
In this section, we propose a greedy heuristic ap-
proach to solve the inventory liquidation problem
under deterministic demand representation, which
is computationally faster than the dynamic program-
ming approach. We also prove that, under a broad set
of realistic conditions (i.e., deterministic representa-
tions of commonly used valuation distributions), the
heuristic always finds the optimal solution.

4.1. Description of the Greedy Heuristic
In the previous section, we described the seller’s de-
cision problem as setting price (or, equivalently,
quantity) of items to be liquidated every day, to
maximize total revenue given the known information
about customer valuations. An alternative way to
think about the liquidation problem is to view it as a
stepwise assignment problem. The seller can in-
crementally (i.e., in a greedy fashion) assign each
item to be liquidated on a specific day, so that the
total revenue is maximized. More specifically, for the
first item to be liquidated, the seller could poten-
tially assign it to be sold on any one of the D possi-
ble days, setting the sales price for that day to be
the highest valuation on that day. To maximize rev-
enue, the seller will assign it to be sold on the first
day, because V11 is the highest valuation overall.4 For
the second item, the seller can again assign it to be
sold on the first day (by setting the sales price for
this day to be the second-highest valuation on that
day) or on any other day. Again, because of the val-
uation decay, to maximize revenue the seller will
choose between selling two items on the first day and
selling one item on each of the first two days by
comparing the corresponding revenues, 2V21 versus
(V11 + V12). The same process can be used until all
items are assigned. It is a greedy heuristic approach
because the seller only considers how to assign the
next item to a specific day (i.e., not changing any of the
previous assignments) and greedily tries to maxi-
mize total revenue at each assignment step. In fact,
greedily maximizing total revenue at each assign-
ment step is equivalent to maximizing the marginal
revenue brought by the item under consideration. For
example, when assigning the second item, comparing
the total revenue 2V21 versus (V11 + V12) is equiva-
lent to comparing the marginal revenue 2V21 − V11

versus (V11 + V12) − V11, where V11 is the total reve-
nue after assigning the first item. Therefore, it is
useful to introduce the concept of daily marginal
revenue (henceforth referred to as DMR). DMR is
defined as the change in daily revenue by assigning
one more item to be sold on a specific day (without
changing any previous assignments). The high-level
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pseudocode of this heuristic approach is presented in
Algorithm 1.

The straightforward implementation of Algorithm 1
has computational complexity of O(DN), because
there are N items in total, each of which can poten-
tially be assigned to D days, and the DMR for each
possible assignment only needs to be precomputed
once, with O(DB) complexity.5 In practice, this im-
plementation can be further improved. For example,
the process of finding BestMarginalRevenue to de-
termine the assignment for each item can be improved
by using a priority queue data structure. The elements
of the queue are indexes representing days, and
the priority associated with each element is the DMR
that would be obtained if the item under consider-
ation is assigned to the corresponding day. Using
typical implementation of priority queue (e.g., heap
implementation), the computational complexity of
the greedy heuristic can be reduced to O(Nlog(D)).
Compared with the dynamic programming approach,
which has computational complexity of O(DNB), the
greedy heuristic can facilitate significant computa-
tional speed-up. Such speed-up can be crucial, es-
pecially in real-time liquidation scenarios (e.g., when
the minimum time unit of pricing is as short as a
minute, instead of a day).

4.2. Sufficient Condition for the Optimality of
Greedy Heuristic

In addition to the computational scalability benefit,
the greedy heuristic approach is guaranteed to find

the optimal solution to the deterministic represen-
tation of the liquidation problem under certain con-
ditions. To demonstrate this, denote r(S, d) as the
DMR of assigning one more item to the dth day, given
that S items are already assigned to be sold on that

day, that is, r(S, d) �def R(S + 1, d) − R(S, d).
Proposition 1. For all d ∈ {1, 2, . . . ,D}, if r(S, d) is a non-
increasing function with respect to S (henceforth referred to
as the property of nonincreasing daily marginal revenue, or
NDMR property), then the greedy heuristic approach is
guaranteed to find the optimal liquidation strategy.

Proof of Proposition 1 is included in Appendix 1 in
the online supplement. Note that NDMR is a suffi-
cient but not necessary condition for the optimality
of the heuristic approach. The following numeric
example in Table 2(a) shows that, even if NDMR is
violated, the heuristic may still be able to find the
optimal solution in some cases. Consider a simple liq-
uidation problem, in which a seller is trying to liqui-
date three items over three days. Three customers come
to the store on each day, and their valuations decay
by 10% from day to day. This setup is summarized in
Table 2(a). In this case, selling one item on day 1 yields
revenue of 100, selling two items yields revenue of
120 (i.e., 2× 60), and selling three items yields reve-
nue of 150 (i.e., 3× 50). Therefore, NDMR is violated
for day 1 (150 − 120> 120 − 100). Similarly, it is easy
to see that, in this example, NDMR is violated for
days 2 and 3 as well. Nonetheless, the heuristic in
this casewould stillfind the optimal strategy,which is

Algorithm 1 (Pseudocode Sketch for Greedy Heuristic)

CurrentTotalRevenue = 0 // initializing: nothing sold so far
Sales[1..D] = 0 // initializing: array with the number of items sold on each day
for items from 1 to N: // assigning each individual item

AssignmentFound = FALSE // initializing: an indicator of whether assignment is successful
BestMarginalRevenue = 0 // initializing: best marginal revenue from selling this item
for AssignDay from 1 to D: // try every possible day

if Sales[AssignDay] < B: // it is feasible to sell this item on AssignDay
assign one more item to AssignDay // assign this item temporarily to specific day
calculate DMR // check marginal revenue of selling this item on AssignDay
if (DMR > BestMarginalRevenue): // if marginal revenue is best so far
BestDay = AssignDay // record best day to assign
BestMarginalRevenue = DMR // record best marginal revenue
AssignmentFound = TRUE // set assignment indicator to be successful

if AssignmentFound == TRUE:
Sales[BestDay] += 1 // assign new item permanently to best day
CurrentTotalRevenue += BestMarginalRevenue // add best marginal revenue to total revenue

else:
break // no assignment increases revenue, terminate

return Sales[1..D], CurrentTotalRevenue // return sales on each day (i.e., sales strategy) and total revenue
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to sell one item to the first customer on each of the
three days. It is worth noting that the heuristic does
not always find optimal liquidation strategy. The
numeric example in Table 2(b) provides an illustra-
tion. Three customers come to the store on each day,
and their valuations decay by 90% from day to day. In
this case, the heuristic would find a strategy to sell one
item on each of the three days, at prices 80, 8, and 0.8,
respectively, resulting in revenue of 88.8. However, the
optimal strategy is actually to sell all three items on
the first day, at price 30, which yields optimal revenue
of 90.

Next, we give the necessary and sufficient condi-
tion for customer valuations to satisfy the NDMR
property. Let Δ(b, d) denote the difference between
the valuations of the bth and (b+1)th customers on
day d, that is, Δ(b, d) � Vbd − Vb+1 d.

Proposition 2. The NDMR property is satisfied if and
only if Δ(b, d)

Δ(b+1, d) ≤ b+2
b for all b∈ {1, . . . ,B − 2} and for all

d ∈ {1, . . . ,D}.
Proof of Proposition 2 is included in Online Appen-
dix 1. An important benefit of this proposition is
that we can directly evaluate whether the NDMR
property is satisfied for the deterministic represen-
tation of any given customer valuation distribution,
either analytically or numerically. In the following
Corollary 1, we show that the NDMR property is sat-
isfied if Vbd follows a uniform distribution, an expo-
nential distribution, or aWeibull distributionwith shape
parameter larger than 1. These distributions are com-
monly used to model customer valuations in prior
work. For example, uniform distribution was used in
Aviv and Pazgal (2002) and Araman and Caldentey
(2009); exponential distribution was used in Gallego
and Van Ryzin (1994), Smith and Achabal (1998),
Araman and Caldentey (2009), and Farias and Van
Roy (2010); Weibull distribution was used in Bitran and
Mondschein (1997) and Bitran and Caldentey (2003).

Corollary 1. The NDMR property is satisfied if the un-
derlying valuation distribution is uniform, exponential, or
Weibull (with shape parameter larger than 1).

Proof of Corollary 1 is included in Online Appendix 1
of the online supplement. More generally, Pearson
(1902) shows that, for a random variable X that follows
a known distribution with cumulative distribution
function F(x), the expected gap between two con-
secutive order statistics can be calculated as

E(X(k) − X(k+1))

� (n!)/((n − k)!k!)
∫ +∞

−∞
F(x)n−k[1 − F(x)]kdx.

Therefore, for any distribution, one can determine
whether it satisfies the condition in Proposition 1, as
long as the above integral can be evaluated.

4.3. Incorporating Inventory Holding Cost
Another advantage of the greedy heuristic approach
is that it is still effective in finding the optimal solution
when taking into account inventory holding cost.
Suppose holding one unit of item for one day incurs a
cost of h; then each item sold on the dth day has been
held in the inventory for (d − 1) days, incurring the
cost of h(d − 1). Therefore, as compared with the sit-
uation of no holding cost, the daily revenue with
holding cost can be expressed as R(S, d, h) � R(S, d) −
h(d − 1)S and the daily marginal revenue as r(S,d,
h)� r(S,d)−h(d−1). Because of this relationship, if the
original customer valuation distribution (without hold-
ing cost) satisfies NDMR property (such as the case of
uniform distribution of valuations), the revenue struc-
ture after we incorporate holding cost will also auto-
matically satisfy NDMR, which guarantees the optimality
of the heuristic approach.

4.4. Accounting for Time-Variant Arrival Process
Many real-world inventory liquidation scenarios are
characterized with time-variant arrival processes. For
example, in some liquidation settings, there may be
more customer arrivals on weekends than on week-
days. Although we present our theoretical results with
time-invariant arrival for notational simplicity, our
heuristic approach can be readily extended to the case
of time-variant arrival. As an illustration, suppose daily
arrival on a weekday follows Lweekday � Poisson(λ1),
and daily arrival on a weekend follows Lweekend �
Poisson(λ2), and that λ1 ≠λ2. Following our solution
strategy of deriving a deterministic representation of
stochastic demand, we can transform the stochastic,
time-variant arrival process into its simpler, determin-
istic representation, such that B1 customers arrive on
each weekday and B2 customers arrive on each week-
end, where B1�E(Lweekday)�λ1 and B2�E(Lweekend) �λ2.
Accordingly, the deterministic representations of

Table 2. Numeric Example (a) Showing NDMR Is Not a
Necessary Condition for Heuristic Optimality and (b)
Where Heuristic Does Not Find Optimal Liquidation
Strategy

Day d � 1 Day d � 2 Day d � 3

Panel (a)
V1d 100 90 81
V2d 60 54 48.6
V3d 50 45 40.5
Panel (b)
V1d 80 8 0.8
V2d 40 4 0.4
V3d 30 3 0.3

Note. Vbd represents the valuation of bth customer on dth day.
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customer valuations on a weekday (weekend) are
the B1 (B2) expected order statistics of the underly-
ing customer valuation distributions. As long as the
valuation distribution satisfies the NDMR prop-
erty, our proposed heuristic will be able to find
the optimal liquidation strategy, regardless of dif-
fering numbers of daily arrivals. In other words,
our heuristic approach is flexible and can deal
with both time-invariant and time-variant arrival
processes.

5. Properties of Optimal Liquidation
Strategy Under Deterministic
Demand Representation

In this section, we take a deeper look into the optimal
liquidation strategy under the deterministic repre-
sentation of stochastic demand. Besides the under-
lying demand features, the inventory liquidation
problem is typically characterized by several distinct
factors, including the following: size of inventory (N),
length of liquidation period (D), number of daily
arriving customers (B), valuation decay rate (α), and
the potential presence of inventory holding cost (h).
In our theoretical models, we take these factors as
given and fixed. In reality, however, an inventory
liquidation manager often may need to make de-
cisions that are related to these factors. For example,
given a fixed amount of inventory to be liquidated,
a manager may need to determine the best length
of liquidation period and whether to conduct mar-
keting promotions or advertising, which could in-
directly affect the number of daily arriving customers
and the valuation decay rates.6 To make informed
decisions, it is therefore beneficial to understand the
relationships between these key factors and the resulting
optimal revenue as well as the liquidation strategy. In
this section, we first conduct a series of simulation ex-
periments to demonstrate how insights on such rela-
tionships can be obtained conveniently and efficiently by
solving the liquidation problem using the proposed

heuristic. We also discuss the managerial implications
for retailers that can be derived from each set of simu-
lations. Then we point out that the same insights about
optimal liquidation strategy and revenue under deter-
ministic representation of demand, which we obtain
using simulations, can in fact be proven theoretically.

5.1. Simulation Experiments
We run multiple sets of simulations to demonstrate
how different configurations of the liquidation fac-
tors lead to different optimal liquidation strategies
and total revenues under deterministic demand re-
presentation. For illustration purposes, we present
simulation results based on the following basic config-
uration of inventory liquidation problem. Suppose the
seller is liquidating 100 items (N � 100) over a period of
10 days (D � 10). There are 100 customers coming to
the store every day (B � 100), whose valuations for the
item are expected order statistics of a uniform distri-
bution. On the first day, valuations are B expected order
statistics of the standard uniform U(0, 1). Addition-
ally, we choose a constant valuation decay rate (α) of
0.99 (i.e., ∀b, d, Vbd+1 � 0.99Vbd). In other words, for
the items that need to be liquidated, valuations keep
decreasing by 1% as comparedwith the previous day.
Applying the heuristic approach on this basic con-
figuration, which is guaranteed to find the optimal
liquidation strategy because uniformly distributed
valuations satisfy the NDMR property, the optimal
revenue from liquidation is 86.27.
We conduct five sets of simulations, each of which

varies a particular liquidation factor, while holding the
other configurations the same as in the aforementioned
basic setup. In each set of simulations, we use the heu-
ristic approach to find the optimal liquidation strategies
(represented as the number of items to be sold on each
day) as well as the optimal revenues under deterministic
representation of the demand. These liquidation strat-
egies and revenues are depicted in Figures 1–5. Below,

Figure 1. Optimal Strategies for Three Levels of Inventory Under Deterministic Representation of Stochastic Demand (a) and
Optimal Revenues for All Levels of Inventory Under Deterministic Representation of Stochastic Demand (b)
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we describe each set of simulations and the corre-
sponding results in detail.

Figure 1, (a) and (b), shows how optimal liquida-
tion strategy and revenue change with respect to in-
ventory level (N). We vary the size of inventory from
50 units to 200 units with an increment of 10 units and
report liquidation strategies for three particular in-
ventory levels: 50, 100, and 150.According to Figure 1(a),
as the size of inventory becomes larger, the daily sales
in optimal strategy shift upward almost proportionally.
However, the optimal revenue has a concave relation-
shipwith inventory size, asdemonstrated inFigure 1(b).
In other words, given a fixed time window for liqui-
dation, having more items to be sold means that the
seller has to price the item cheaper on average.

Figure 2, (a) and (b), shows how optimal liquida-
tion strategy and revenue change with respect to the
length of liquidation period (D). We vary the liqui-
dation period from 5 days to 25 days with an in-
crement of 1 day and report liquidation strategies for
three particular liquidation periods: 5, 10, and 15.
Intuitively, the manager tends to sell more items on
each day as the liquidation period becomes shorter,
consistent with Figure 2(a). However, a shorter liq-
uidation period is also associated with a lower optimal

revenue, as compared with a longer liquidation pe-
riod. On the other hand, having a longer liquidation
period does not always produce higher total revenue.
As shown in Figure 2(b), in our experiment settings,
liquidation periods that are longer than 20 days are all
associated with the same amount of total revenue,
because customers arriving in the last few days have
such decayed valuations that make them not as
profitable as customers arriving in earlier days. This
set of simulation indicates that, given a fixed size of
inventory, there exists an optimal liquidation win-
dow (in this case, the optimal window is 20 days).
Although faster liquidation may harm the total rev-
enue, slower liquidation will not further increase the
revenue.
Figure 3, (a) and (b), shows howoptimal liquidation

strategy and revenue change with respect to number
of daily arriving customers (B). We vary the number
of daily arriving customers from 50 to 150 with an
increment of 10 and report liquidation strategies for
three particular numbers of daily customers: 50, 100,
and 150. As shown in the figures, the seller tends to
sell more items earlier rather than later when there
are more daily arriving customers, and the total revenue
is also higher. This is because higher store traffic is

Figure 2. Optimal Strategies for Three Liquidation Periods Under Deterministic Representation of Stochastic Demand (a) and
Optimal Revenues for All Lengths of Liquidation Periods Under Deterministic Representation of Stochastic Demand (b)

Figure 3. Optimal Strategies for Three Levels of Daily Arrivals Under Deterministic Representation of Stochastic Demand (a)
and Optimal Revenues for All Levels of Daily Arrivals Under Deterministic Representation of Stochastic Demand (b)
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associated with more customers with higher valuations.
By selling to these high-valuation customers, the seller is
able togetmore revenue than in the casewith lower store
traffic.Notably, as Figure 3(b) indicates, the increase in
optimal total revenue tends to taper off as the number
of daily arriving customers keeps increasing. This
nonlinear relationship has a clear managerial impli-
cation to liquidation managers. Although it is pos-
sible to attract more customers into the store by
conducting marketing promotions, the seller needs to
balance the growth in liquidation revenue (due to
increased traffic) with the potential costs ofmarketing
promotions.

Figure 4, (a) and (b), shows howoptimal liquidation
strategy and revenue change with respect to valuation
decay rate (α). We vary the decay rate from 0.90 to 1.00
with an increment of 0.005 and report liquidation
strategies for three particular decay rates: 0.90, 0.95,
and 0.99. We can see from Figure 4(a) that, as valu-
ation decay becomes faster (i.e., with a smaller decay
rate α), the manager tends to sell more items in earlier
days in this example setting. Accordingly, optimal
revenue is lower for greater valuation decay than
for smaller decay. Interestingly, Figure 4(b) shows a

convex relationship between optimal total revenue
and decay rate. As decay rate becomes larger (i.e., less
rapid valuation decay), total revenue grows at an
increasing speed. For liquidation managers, if they
can (indirectly) affect valuation decay rates effec-
tively through marketing activities, then there will
be considerable revenue margin available for miti-
gating the valuation decay.
Figure 5, (a) and (b), shows how optimal liquida-

tion strategy and revenue change with respect to unit
holding cost (h) associated with holding one item in
the inventory for one day. We vary the unit holding
cost from 0 to 0.2 with an increment of 0.02 and report
liquidations strategies for three particular levels of
holding cost: 0, 0.1, and 0.2. Introducing the holding
cost changes the optimal liquidation strategy because
the sellerwill be inclined to sellmore items in earlier days
to avoid holding them in inventory for a longer time, as
shown in Figure 5(a). According to Figure 5(b), as the
unit holding cost becomes higher, the optimal total
revenue follows a convex decline. This can be un-
derstood intuitively, because a higher holding cost
pushes the seller to liquidate more items in earlier
days and consequently leads to a significant revenue

Figure 4. Optimal Strategies for Three Levels of Decay Rates Under Deterministic Representation of Stochastic Demand (a)
and Optimal Revenues for All Levels of Decay Rates Under Deterministic Representation of Stochastic Demand (b)

Figure 5. Optimal Strategies for Three Levels of Unit HoldingCost UnderDeterministic Representation of Stochastic Demand (a)
and Optimal Revenues for All Levels of Unit Holding Cost Under Deterministic Representation of Stochastic Demand (b)
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drop not only due to holding cost, but also because of
the NDMR property of customer valuations.

In summary, the set of simulation experiments
presented in this section delineate the relationships
between key factors of the inventory liquidation
problem and the resultant optimal revenue and op-
timal liquidation strategies under deterministic de-
mand representation. The proposed greedy heuristic,
because of its computational efficiency, makes for a
flexible and informative decision support tool that a
liquidation manager can use to understand the im-
plications of awide variety of decisions in their specific
settings.

5.2. Theoretical Properties of Optimal Liquidation
Strategy and Revenue

We are able to theoretically prove the relationships
between the liquidation factors and optimal liqui-
dation revenue under deterministic demand repre-
sentation, which we obtained using simulations in
the previous section. The following Proposition 3
summarizes the monotonicity- and concavity-related
properties of total revenue with respect to different
liquidation factors.

Proposition 3. Under deterministic representation of sto-
chastic demand, if NDMR property is satisfied, then the total
revenue obtained by optimal liquidation strategy has the
following properties:

1. total revenue increases concavely as inventory size
(N) increases;

2. total revenue increases concavely as the length of
liquidation period (D) increases, and stops increasing
beyond a certain length;

3. total revenue increases as number of daily arrivals (B)
increases;

4. total revenue increases convexly as daily decay rate
(α) increases;

5. total revenue decreases convexly as unit holding cost
(h) increases.

Proof of Proposition 3 is included in Online Ap-
pendix 1. The first two properties are consistent with
Gallego and Van Ryzin (1994), which found similar
patterns in a different liquidation problem context.
The concavity relationship between optimal revenue
and the number of daily arrivals (B) is affected by how
values of expected order statistics changewith respect
to B and, therefore, is likely to be dependent on val-
uation distributions. Although we have empirically ob-
served that total revenue increases concavely as number
of daily arrivals increases for uniform, exponential,
and Weibull valuation distributions, the general the-
oretical result regarding concavity is not available.
Finally, note that all of these theoretical results have
been adequately captured in our previous simulations.
In other words, liquidation managers can obtain a

diverse set of insights regarding their specific liquidation
problems empirically, using the proposed heuristic
approach as an efficient decision support tool.

6. Comprehensive Performance
Evaluation Under Stochastic Demand

In this section we evaluate the performance of the
proposed heuristic approach under the realistic con-
ditions of stochastic customer valuations and arrival.
In other words, throughout this section, customer val-
uations and daily arrivals are random draws from
known underlying distributions—a standard assump-
tion in inventory liquidation literature (e.g., Bitran
and Mondschein 1997, Elmaghraby and Keskinocak
2003). We compare the revenue performance of the
heuristic approach against two sets of benchmarks,
including (1) several simple and computationally ef-
ficient liquidation strategies, such as the fixed-price
strategy and the fixed-quantity strategy as well as
their variations, all of which are based on the solution
strategy using deterministic demand representation;
and (2) advanced algorithms that attempt to solve
for optimal liquidation strategies directly under
stochastic demand, including stochastic dynamic
programming (Bitran and Mondschein 1997) and
approximate dynamic programming (Farias and
Van Roy 2003).

6.1. Performance Relative to Other Scalable
Liquidation Strategies

As discussed in Section 3.2, two common examples of
simple and computationally efficient liquidation strat-
egies are the fixed-price strategy and fixed-quantity
strategy. Under deterministic representation of sto-
chastic demand, we have shown that fixed-price/-
quantity strategies are not guaranteed to be optimal.
In this section, we compare the performance of our
proposed greedy heuristic against these two strate-
gies and their variations, directly under stochastic
demand.
In reality, when faced with stochastic demand, the

seller has potentially two ways of designing liqui-
dation strategies. As one option, the seller can choose
to ignore the randomness in actual demand and still
design the liquidation strategy for the entire liqui-
dation period ahead of time. Once the strategy is
determined, the retailer keeps the daily item prices
as planned throughout the entire liquidation period
and sells the items to actual arriving customers whose
valuations are equal to or above the daily prices. For
thefixed-price strategy (FP), the seller can set thefixed
price to be the Nth expected order statistic across the
entire liquidation horizon. For the fixed-quantity
strategy (FQ), the seller can set the price on day d to
be the Qth expected order statistics on that day,
where Q � �N/D� is the fixed quantity to be sold on
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each day. Similarly, the seller can apply the proposed
greedy heuristic on the basis of the expected daily
customer arrivals and the expected order statistics of
the valuation distribution and obtain the liquidation
price for each day. We refer to this strategy as the plan
ahead strategy (PAS).

Alternatively, the seller can dynamically adjust the
prices from day to day and thereby account for some
degree of demand stochasticity. More specifically, we
discuss three such strategies. First, we consider a
dynamic-price strategy (DP), a variation of the fixed-
price strategy. The seller sets price on day d to be the
Mdth expected order statistic across the remaining
liquidation horizon, where Md is the amount of re-
maining inventory at the beginning of day d. Second,
we consider a dynamic-quantity strategy (DQ), a
variation of the fixed-quantity strategy. The seller sets
price on day d to be the Qdth expected order statistic
on day d, where Qd � �Md/(D − d + 1)� is the average
daily quantity that needs to be sold (i.e., the total remaining
quantity divided by the number of remaining days).7

Third, we consider a similar “dynamic” variation of the
proposed greedy heuristic. At the beginning of each day
d, the seller can use the same greedy heuristic to solve
a new liquidation problem where Md is the number
of remaining items and D − d + 1 is the number of
remainingdays.The solution to thisproblemgives the item
price for the current day. This strategy is referred to as the
plan dynamically strategy (PDS).

We run two sets of comprehensive simulation ex-
periments to benchmark the performances of PAS
against FP and FQ, and PDS against DP and DQ.
Whereas PAS, FP, and FQ represent strategies without
adjustable daily prices, PDS, DP, and DQ represent
strategies with adjustable daily prices. In the first set of
simulations, the daily number of arrivals is randomly

drawn from Poisson(300). Customer valuations on the
first day are randomly drawn a uniform distribution
U[0, 1], an exponential distribution Exp(1), or a
Weibull distribution with scale parameter λ � 1 and
shape parameter ρ � 4 (similar to the configuration in
Bitran and Mondschein 1997).8 Accordingly, customer
valuations on later days are independently drawn from
the same distributions, then multiplied by the decay
rates (similar to the practice in Aviv and Pazgal 2008).
We also vary several key configurations, across dif-
ferent simulations. Specifically, for each valuation
distribution, we simulate a basic configuration with
(N � 5000,D � 100, α � 0.99) and then vary inventory
size, liquidation period length, and decay rate, re-
spectively, in three separate simulations: (1) hold-
ing D � 100, α � 0.99, and varying N ∈ {2,500, 3,000,
3,500, 4,000, 4,500, 5,000}; (2) holding N � 5,000,
α � 0.99, and varyingD ∈ {50, 60, 70, 80, 90, 100}; and
(3) holding N � 5,000, D � 100, and varying α∈{0.99,
0.98,0.96,0.94,0.92,0.9}. Note that, because of the com-
putational efficiency of these liquidation strategies, we
are able to simulate relatively large liquidation problems.
Across all problem configurations presented here, solving
for each liquidation strategy takes less than 1 second.
For each problem configuration, we randomly

generated 1,000 demand instances (i.e., 1,000 sets of
daily arrivals and customer valuations). Under each
demand instance, we applied each of the aforemen-
tioned strategies to calculate the corresponding rev-
enue. All simulations are implemented in Python and
performed on a 3.6-GHz Intel Core i7 computer with
8GB RAM. Because of space restrictions, we report a
representative subset of results in Table 3. We include
the complete set of simulation results in the online
supplement (Appendix 4) in both table and figure
formats.

Table 3. Performance Benchmarking with Other Scalable Liquidation Strategies (Poisson Arrival)

N D α

Without adjustable daily prices With adjustable daily prices

PAS FP FQ PDS DP DQ

Valuations ~ U[0, 1] 5,000 100 0.99 2,800.25 (26.57) 2,637.69 (14.42) 2,630.51 (30.89) 2,812.14 (11.96) 2,647.35 (8.33) 2,639.87 (15.55)
2,500 100 0.99 1,657.11 (25.12) 1,603.32 (20.03) 1,438.79 (21.91) 1,675.51 (7.75) 1,617.01 (5.63) 1,448.65 (10.19)
5,000 50 0.99 2,631.71 (23.22) 2,567.49 (16.86) 2,625.96 (24.68) 2,640.24 (17.40) 2,577.40 (12.07) 2,633.30 (19.02)
5,000 100 0.9 733.42 (13.64) 356.75 (3.13) 416.99 (13.85) 733.86 (13.31) 357.95 (5.68) 417.03 (13.37)

Valuations ~ Exp(1) 5,000 100 0.99 5,743.37 (64.94) 5,611.81 (41.24) 5,666.91 (66.20) 5,770.37 (48.11) 5,643.51 (39.41) 5,684.55 (51.23)
2,500 100 0.99 4,022.99 (73.04) 3,986.54 (49.84) 3,884.11 (76.46) 4,073.75 (35.65) 4,017.35 (28.41) 3,923.21 (47.01)
5,000 50 0.99 4,323.40 (45.28) 4,276.76 (35.28) 4,322.50 (45.47) 4,331.72 (53.16) 4,292.21 (46.48) 4,329.84 (54.48)
5,000 100 0.9 1,099.19 (23.64) 566.19 (5.13) 892.81 (28.84) 1,099.43 (23.50) 568.95 (9.54) 893.08 (28.12)

Valuations ~
Weibull(4)

5,000 100 0.99 4,122.02 (46.13) 4,024.73 (33.46) 3,642.98 (49.74) 4,149.38 (15.11) 4,045.31 (10.37) 3,662.86 (22.59)
2,500 100 0.99 2,338.21 (39.89) 2,325.25 (25.64) 1,952.21 (36.74) 2,371.58 (8.71) 2,343.87 (6.99) 1,979.06 (14.63)
5,000 50 0.99 4,079.55 (41.62) 4,003.16 (32.94) 4,018.34 (45.78) 4,105.31 (16.44) 4,024.50 (10.80) 4,039.63 (20.82)
5,000 100 0.9 1,507.63 (22.44) 776.49 (8.11) 578.16 (18.01) 1,510.16 (20.39) 778.34 (6.98) 578.30 (17.09)

Notes. Standard deviation of liquidation revenue is included in parentheses. The highest revenue in each set of simulations is shown in bold. See
complete results in the online supplement (Appendix 4).
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We make several important observations based
on results in Table 3. First, among strategies with
and without adjustable daily prices, respectively,
heuristic-based strategies (i.e., PAS and PDS) con-
sistently outperform the alternative price-based or
quantity-based strategies. According to the complete
results in Online Appendix 4, across all configura-
tions, PAS is associated with 0.6%–106% higher av-
erage revenue than FP and 0.02%–161% higher average
revenue than FQ; PDS is associated with 0.9%–105%
higher average revenue than DP and 0.04%–161%
higher average revenue than DQ. Notably, PAS/PDS
seem to be especially advantageous when the valu-
ations decay faster (i.e., when α is smaller). This is a
valuable advantage, because many real-world liquida-
tion settings are characterized by moderately fast valu-
ation decay.9 Therefore, PAS and PDS are likely to
outperform price-based and quantity-based strate-
gies by a significant margin in practical scenarios.
Second, strategies that adjust daily prices generally
perform better than strategies that set all prices ahead
of time. For example, PDS is associated with higher
revenue than PAS in every simulation configuration.
This is intuitive because strategies with adjustable
prices can take into account the realized sales in
previous days when setting next-day prices. PDS
generally also has smaller standard deviation of
revenue than PAS, indicating better stability. In
addition, we also observe via these simulations that
all strategies are able to sell more than 99% of in-
ventory on average and that strategies with adjust-
able daily prices are able to sell even more items on
average than strategies without adjustable daily
prices.

In the second set of simulations, the daily number
of arrivals is randomly drawn from a uniform dis-
tribution, U[150, 450]. Compared with the Poisson
arrival used in the first set of simulations, this arrival
setup has the same mean (i.e., average arrival is still
300) but substantially higher variance and therefore
simulates the scenario of highly volatile demand. Other
configurations are the sameasbefore. Similarly,we report
a representative subset of results in Table 4 and include
the complete set of results in the online supplement
(Appendix 5) in both table and figure formats.
According to Table 4, we can see that, despite

significant demand stochasticity, we still observe
largely the same relationships among different liq-
uidation strategies. In particular, heuristic strate-
gies consistently outperform corresponding price-/
quantity-based strategies, and strategies that adjust
daily prices generally perform better than strate-
gies that set all prices ahead of time. As expected, the
standard deviations of revenue are generally higher
than in the case of Poisson arrival, indicating more
variation due to high demand volatility.
These simulations highlight the unique advantage

of the proposed heuristic approach over other com-
putationally efficient approaches. PAS and PDS are
able to consistently produce higher average revenue
than FP/FQ and DP/DQ strategies. Allowing daily
price adjustments further enhances the performance of
heuristic. Specifically, PDS generates significantly higher
average revenue than PAS, while also having smaller
revenue standard deviation (i.e., providing more stable
output). Overall, PDS represents a practical, effec-
tive, and highly efficient way of applying the pro-
posed heuristic approach under stochastic demand.

Table 4. Performance Benchmarking with Other Scalable Liquidation Strategies (Uniform Arrival)

N D α

Without adjustable daily prices With adjustable daily prices

PAS FP FQ PDS DP DQ

Valuations ~
U[0, 1]

5,000 100 0.99 2,783.14 (76.55) 2,608.70 (67.75) 2,623.90 (66.63) 2,810.01 (35.84) 2,644.23 (27.40) 2,639.27 (36.91)
2,500 100 0.99 1,654.30 (47.63) 1,594.08 (38.80) 1,436.87 (43.92) 1,678.12 (17.59) 1,618.42 (13.59) 1,450.27 (19.27)
5,000 50 0.99 2,597.89 (76.53) 2,527.93 (68.75) 2,593.65 (76.66) 2,623.14 (63.20) 2,566.28 (48.00) 2,614.88 (65.88)
5,000 100 0.9 735.74 (51.73) 338.14 (19.23) 419.37 (32.20) 737.06 (51.09) 343.13 (14.38) 419.52 (29.89)

Valuations ~
Exp(1)

5,000 100 0.99 5,691.37 (147.00) 5,556.96 (123.79) 5,623.47 (141.42) 5,743.35 (113.13) 5,621.30 (97.55) 5,659.44 (117.48)
2,500 100 0.99 3,996.89 (133.49) 3,952.18 (102.07) 3,876.12 (124.08) 4,066.79 (72.74) 4,012.61 (61.01) 3,920.14 (81.00)
5,000 50 0.99 4,299.23 (127.63) 4,233.73 (101.39) 4,297.08 (128.47) 4,337.76 (175.60) 4,299.86 (156.16) 4,337.46 (176.03)
5,000 100 0.9 1,095.19 (70.99) 545.27 (34.29) 890.19 (59.91) 1,095.66 (70.89) 551.32 (18.97) 890.86 (57.80)

Valuations ~
Weibull(4)

5,000 100 0.99 4,091.99 (113.05) 3,986.06 (93.62) 3,623.63 (96.34) 4,151.82 (42.05) 4,048.61 (34.55) 3,659.31 (44.00)
2,500 100 0.99 2,331.60 (75.91) 2,307.68 (66.61) 1,960.28 (61.76) 2,374.69 (21.71) 2,345.76 (18.04) 1,984.26 (26.32)
5,000 50 0.99 4,032.48 (118.40) 3,942.44 (109.88) 3,975.18 (120.09) 4,093.77 (50.09) 4,017.10 (39.98) 4,020.78 (57.07)
5,000 100 0.9 1,489.86 (96.94) 706.75 (34.97) 576.67 (45.28) 1,498.47 (91.68) 716.31 (34.95) 576.70 (41.75)

Notes. Standard deviation of liquidation revenue is included in parentheses. The highest revenue in each set of simulations is shown in bold. See
complete results in the online supplement (Appendix 5).
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This also indicates that using deterministic repre-
sentations of stochastic demand is an advantageous
way of designing efficient liquidation strategies in
general.

6.2. Performance Relative to Stochastic Dynamic
Programming and Approximate
Dynamic Programming

In this section, we benchmark our proposed heuristic
approach with two advanced variations of dynamic
programming approach, both of which solve for
optimal liquidation strategy directly under stochastic
demand. The first approach, namely stochastic dy-
namic programming (SDP), was used by Bitran and
Mondschein (1997) to solve the liquidation problem
with periodic pricing under stochastic demand. Their
liquidation problem setup is very similar to ours. The
second approach is based on approximate dynamic pro-
gramming (ADP, discussed in Farias and Van Roy
2003), which is similar to the standard formulation
we have discussed in Section 3.3 but uses linear func-
tions to approximate the revenue function. Impor-
tantly, because the SDP approach directly solves for
the optimal liquidation strategy under stochastic de-
mand and does not rely on any approximation (unlike
ADP), the revenue produced by SDP represents the
optimal expected revenue under stochastic demand.
As will be discussed in greater detail later, both SDP
andADP can naturally accommodate adjustable daily
prices, making them good benchmarks to evaluate the
performance bound of our proposed PDS (which also
allows for adjustable daily prices). Below we first lay
out the theoretical formulation of both SDP and ADP
and then present the simulation results.

6.2.1. SDP Formulation. Let REV(n, d) denote the
maximum expected revenue from selling n items
starting on day d of the liquidation period. Suppose
price on day d is set to be pd, then for an arriving
customer, the probability of buying is 1 − Fd (pd),
where Fd(.) is the valuation distribution CDF of cus-
tomers arriving on day d. Take arrival process to be
Poisson (consistent with Bitran and Mondschein 1997)
withrateλ; then the arrival rate for buying customers is
λd � λ(1 − Fd (pd)). In otherwords, the probability that
j buying customers arrive on day d is Pr( j) � e−λd ·
λ
j
d/j!. The recurrence equation of this SDP problem is

REV(n, d) � max
pd

{∑∞
j�0

Pr( j) · [min( j,n) · pd

+REV(n −min ( j, n), d + 1)]
}
.

After some algebraic manipulations (see Bitran and
Mondschein 1997), the above equation can be written as

REV(n, d) � max
pd

{
n · pd +

∑n
j�0

e−λd ·λ
j
d/j! ·

[( j − n) · pd

+ REV(n − j, d + 1)]}.
The boundary conditions are ∀d, REV(0, d) � 0 and
∀n, REV(n,D + 1) � 0. The problem is solved back-
ward to find REV(N, 1). Each intermediate problem is
a nonlinear univariate (pd) optimization task, and
we solve it using the Scipy implementation of the
L-BFGS-B algorithm (Zhu et al. 1997), because it can
find the optimal pd more efficiently than alterna-
tives (including brute force grid search) in the Scipy
library.
Once the SDP is solved, it is straightforward to

find the optimal price that should be set for each
day. Specifically, suppose there are Md remaining
items starting on day d; then pd should be set by
looking up the price value that maximizes REV(Md, d),
which has already been computed as part of the SDP
calculations. Because solving SDP once is sufficient
to access the optimal price on a given day for any
starting inventory levels, it is natural to use SDP
with adjustable daily prices, rather than setting all
daily prices in advance. In other words, SDP is
straightforwardly suitable to the dynamic price
adjustments based on realized sales without in-
curring any additional computational overhead.
Although it is possible to derive all daily prices at
once from SDP results and set those prices in ad-
vance, doing so will only disadvantage SDP’s reve-
nue performance, because it forfeits SDP’s natural
capability to adjust prices in reaction to stochastic
demand.

6.2.2. ADP Formulation. Next, we turn to the second
algorithm based on the approximate dynamic pro-
gramming approach. Our ADP formulation is sim-
ilar to that of Topaloglu and Kunnumkal (2006),
which approximates the value function with linear
basis functions and converts the optimization prob-
lem into a linear program (see Farias and Van Roy
2003 for a discussion of this method). Let state
space5 �{0, 1, . . . ,N} represent all possible inventory
levels, and let Md be the state variable on day d. Let
REVd(Md) be the value function that represents the
optimal revenue that can be obtained from selling Md
items starting on day d. To generate the constraints
needed to solve the ADP using linear programming,
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we consider a finite set3d of candidate prices on day d.
Suppose pd ∈ 3d is the price set on day d; then, de-
note Sd � E(Sales|pd,Md) as the expected sales on day d.
The dynamic programming formulation of the problem
has the following recurrence equation: REVd(Md) �
maxpd{pd ·Sd +REVd+1(Md −Sd)}. We approximate the
value function by a linear function: ∀d∈{1, . . . ,D},
REVd(Md) �θd + γdMd, where {θd,γd},d∈{1, . . . ,D} are
parameters to be fitted (2D parameters in total).
Accordingly, solving thisADP problem is equivalent
to solving the following linear programming problem
(Topaloglu and Kunnumkal 2006):

min(θ1 + γ1N),
s.t. θd + γdMd ≥ pd ·Sd + θd+1 + γd+1(Md − Sd),

∀pd ∈3d,Md ∈5, and d≠D

θD + γDMD ≥ pD · SD,∀pD ∈3D,MD ∈5.

The objective function to be optimized is the ap-
proximation of REV1(N) (i.e., the expected revenue of
the entire liquidation problem.) Note that it is for-
mulated as a minimization problem, rather than a
maximization problem, simply because of the direc-
tions of linear constraints (the same formulation was
used in Topaloglu and Kunnumkal 2006). On day d,
the candidate price set, 3d, consists of 100 expected
order statistics of the underlying valuation distribution,
because these candidate prices naturally correspond
to different expected sale levels. Further simulations
show that having more granular 3d increased com-
putation time considerably without significant im-
provements in revenue. In total, there are |3d | ·N ·D
constraints. We solved the linear programming using
the “CVXOPT” package in Python, a commonly used
library for optimization tasks.

Once the linear programming problem is solved,
the optimal liquidation strategy (i.e., daily prices) can
be computed as ∀d≠D,Md ∈5, pd � argmaxp{p×
Sd + θd+1 + γd+1(Md − Sd)}, and pD � argmaxp{p× SD}
(Farias and Van Roy 2003). Similar to SDP, optimal
prices for all possible days and inventory levels are
obtained by solving ADP once. Therefore, ADP also
supports adjustable daily prices naturally, without
incurring any additional computational cost.

6.2.3. Simulation Experiments Comparing PDS with
SDP and ADP. We set up the illustrative benchmark-
ing simulations as follows. Daily arrival follows
Poisson(100), and customer valuations on the first day
follow either a uniform U[0, 1], an exponential Exp(1),
or a Weibull distribution with several different shape
parameters. A constant decay factor α determines
valuation decay, such that customer valuations on
day d follow either U[0,αd−1], Exp(1/αd−1), or Weibull
distribution with scale parameter αd−1. Because both

SDP and ADP are much more computationally ex-
pensive to solve, we simulate much smaller liquida-
tion problems compared with the configurations in the
previous section. Specifically, for each valuation dis-
tribution, we simulate a basic configuration with (N �
100,D � 10,α � 0.99) and then vary inventory size,
liquidation period length, and decay rate respec-
tively in three separate simulations:(1) holding
D� 10, α� 0.99, and varying N∈{50,60,70,80,90,100};
(2) holding N�100, α�0.99, and varying D∈{10,12,
14,16,18,20}; and (3) holding N�100, D�10, and
varying α∈{0.99,0.98,0.96,0.94,0.92,0.9}. In addition,
we also include a set of simulations whereby we
vary the shape parameter of Weibull valuations, that
is, ρ∈{2.0,2.5,3.0,3.5,4.0,4.5,5.0} under the basic con-
figuration (N�100,D�10,α� 0.99). For each config-
uration, we generate 10,000 demand instances (i.e.,
10,000 sets of customer arrivals and valuations) to cal-
culate the average revenue obtained by PDS, SDP,
and ADP, respectively. We report the average revenue
and running time comparisons among PDS, SDP, and
ADP. Because of space restrictions, we report a repre-
sentative subset of results in Table 5 and include the
complete set of simulation results in the online supple-
ment (Appendix 6) in both table and figure formats.
According to Table 5, PDS is able to produce av-

erage total revenues that are very close to SDP, while
maintaining a very significant computational effi-
ciency advantage. According to the complete results
in Online Appendix 6, across all problem configu-
rations, PDS incurs only 0.03%–1.12% revenue loss
but is 3,000–86,000 times faster, compared with SDP.
Notably, when customer valuations followWeibull(4)
(similar to the setup of Bitran and Mondschein 1997),
PDS is 25,500–86,000 times faster than SDP. We ob-
serve that the speed advantage of PDS over SDP in-
creases as decay becomes faster (i.e., as α becomes
smaller) as well as with larger inventory sizes.
Compared with ADP, PDS is associated with slightly

higher or equal average revenue in themajority of cases
or slightly lower revenue (0.01%–0.02%) in a few cases,
while being 14,500–55,000 times faster (calculated on
the basis of complete results in Online Appendix 6).
Notably, PDS can result in higher revenue on average
than ADP in many cases, because the performance of
ADP hinges on the quality of revenue function approxi-
mations (Farias and Van Roy 2003). It is likely that our
linear basis function does not approximate expected
revenue well enough. However, having more compli-
cated approximation functions would further increase
the already lengthy running time of ADP, because there
will be generally many more parameters to optimize for.
Because SDP optimizes expected liquidation rev-

enue directly under stochastic revenue and without
any approximation (unlike ADP), the above simula-
tions demonstrate that PDS is capable of producing
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near-optimal revenue on average, while being much
more scalable than SDP. To further demonstrate
the scalability of PDS, we calculate the maximum
liquidation problem sizes that PDS and SDP can ac-
commodate within specific timeframes. We simulate
liquidation problems in which valuations follow
Weibull(4), arrival follows Poisson(100), and α � 0.99.
We then vary N and D and report the largest problem
size that PDS and SDP can handle, respectivelywithin
one second, one minute, one hour, and one day. For
simplicity, we set N � 30D for each choice of D. The
results are summarized in Table 6. Clearly, within any
given timeframe, PDS is able to handle a much larger
liquidation problem than SDP, that is, a 1,000 times
(37.5 × 37.5) larger-sized problem for one-second time-
frame, and the difference is even more significant for
larger timeframes. In reality, if the size of the liquida-
tion problem is relatively small and there is sufficient
lead time to make pricing decisions, then one should
clearly use SDP, because it produces optimal liquidation

strategies under stochastic demand. However, when
decisions need to be made within shorter timeframes or
for relatively large-scale inventory problems, PDS offers
very substantial computational scalability advantages
while still achieving near-optimal revenue levels.
Finally, consider the largest liquidation problem for

SDP in Table 6, where valuations follow Weibull(4),
arrival follows Poisson(100), N � 1800, D� 60, and α�
0.99. Whereas SDP took 1 day to solve the problem,
PDS took 0.3 seconds to run and was associated with
only 0.45% revenue loss. On a scale of problems that
we have simulated in Section 6.1, SDP would take days
to solve, whereas PDS still takes less than 1 second.

6.3. Additional Simulation Experiments
Besides the above benchmarking analyses, we con-
duct two additional sets of simulations. First, we
simulate an inventory liquidation problem with time-
variant arrival, as discussed in Section 4.4, to illustrate
the applicability and performance of our proposed
approach in such scenario. Specifically, we consider
liquidating 100 items over a seven-day period, in
which the first five days are weekdays and the last
two days represent the weekend. Whereas customer
arrivals on each weekday are drawn from Poisson(80),
we assume that the arrival on aweekend is likely to be
more intense and, hence, is drawn from Poisson(100).
We use this set of simulations to compare the reve-
nue performance of greedy heuristic with SDP under
time-variant arrival. Consistently with our previous
simulation experiments, we keep a constant valuation
decay rate of 0.99 and simulate three types of customer

Table 6. Maximum Liquidation Problem Sizes Under SDP
and PDS Within Different Time Frames

Time frame SDP PDS

One second N � 60, D � 2 N � 2,250 (37.5×), D � 75 (37.5×)
One minute N � 150, D � 5 N � 10,500 (70×), D � 350 (70×)
One hour N � 540, D � 18 N � 42,000 (77.8×), D� 1,400 (77.8×)
One day N�1,800, D�60 N � 140,000 (80×), D � 4,800 (80×)

Notes. Valuations follow Weibull(4), arrival follows Poisson(100), and
α � 0.99. Numbers in parentheses represent the difference between
PDS and SDP regarding problem size for each dimension.

Table 5. Total Revenue and Running Time Comparisons among PDS, SDP, and ADP

N D α

Total revenue Running time (seconds)

PDS SDP ADP PDS SDP ADP

Valuations ~ U[0, 1] 100 10 0.99 84.99 85.58 (+0.69%) 84.89 (−0.12%) 0.0021 9.75 (4,642×) 66.80 (31,809×)
100 20 0.99 87.37 87.61 (+0.27%) 86.59 (−0.90%) 0.0046 19.37 (4,210×) 136.70 (29,717×)
50 10 0.99 44.90 45.37 (+1.04%) 44.91 (+0.02%) 0.0010 3.04 (3,040×) 17.30 (17,300×)
100 10 0.9 66.54 66.56 (+0.03%) 66.29 (−0.38%) 0.0013 10.69 (8,223×) 65.38 (50,292×)

Valuations ~ Exp(1) 100 10 0.99 216.08 216.39 (+0.14%) 214.64 (−0.67%) 0.0021 17.02 (8,104×) 60.35 (28,738×)
100 20 0.99 269.06 270.01 (+0.35%) 266.89 (−0.81%) 0.0056 35.42 (6,325×) 126.42 (22,575×)
50 10 0.99 139.10 139.95 (+0.61%) 138.45 (−0.47%) 0.0011 5.00 (4,545×) 15.95 (14,499×)
100 10 0.9 152.76 153.07 (+0.20%) 151.88 (−0.58%) 0.0019 17.11 (9,005×) 60.21 (31,689×)

Valuations ~ Weibull(4) 100 10 0.99 116.32 117.32 (+0.85%) 116.30 (−0.02%) 0.0020 94.40 (47,200×) 60.30 (30,149×)
100 20 0.99 120.24 120.38 (+0.12%) 119.56 (−0.57%) 0.0047 221.99 (47,231×) 127.32 (27,089×)
50 10 0.99 61.77 62.47 (+1.12%) 61.49 (−0.46%) 0.0011 28.06 (25,509×) 16.02 (14,563×)
100 10 0.9 94.98 95.10 (+0.13%) 94.44 (−0.57%) 0.0011 94.76 (86,145×) 60.00 (54,545×)

Valuations ~ Weibull(2) 100 10 0.99 142.79 142.83 (+0.03%) 142.09 (−0.49%) 0.0021 94.21 (44,861×) 60.16 (28,647×)

Valuations ~ Weibull(3) 100 10 0.99 124.45 125.37 (+0.73%) 124.18 (−0.22%) 0.0021 93.26 (44,409×) 60.15 (28,642×)

Valuations ~ Weibull(5) 100 10 0.99 111.77 112.74 (+0.86%) 111.78 (+0.01%) 0.0020 96.02 (48,010×) 60.50 (30,250×)

Notes. Numbers in parentheses represent the differences in revenue or running speed between PDS and SDP or ADP. See complete results in the
online supplement (Appendix 6).
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valuation distributions: uniform, exponential, and Wei-
bull. The simulation results are summarized in Table 7.
Again, compared with SDP, our heuristic-based PDS
approach is able to produce very close-to-optimal
total revenue, while already demonstrating a signif-
icantly faster computational performance even in
such a small inventory liquidation problem setting.

Second, we simulate an inventory liquidation
problem in which customer valuations are drawn
from a distribution that does not satisfy the NDMR
property (which is atypical in the liquidation litera-
ture that commonly uses NDMR-compliant uniform,
exponential, or Weibull distributions to model cus-
tomer valuations). For the sake of experimental com-
pleteness, we use this set of simulations to illustrate
the revenue performance of greedy heuristic under
not only demand stochasticity but also NDMR viola-
tion. The simulation results are included in the online
supplement (Appendix 2).

7. Discussions and Conclusion
In this paper, we examine the inventory liquidation
problem, in which a retailer liquidates a fixed number
of identical items over a time period by strategically
setting prices periodically (e.g., every day) on the
basis of the high-level, distributional knowledge
about stochastic consumer demand. We propose to
solve the liquidation problem by deriving a deter-
ministic representation of stochastic demand. As-
suming that customer arrival and valuations follow
known statistical distributions (e.g., which can be
readily estimated from past transaction data), the
expected arrivals and expected order statistics of
valuation distributions represent informative and
advantageous approximations of customer demand.
Under the deterministic representation of demand,
we develop two computational approaches for finding
the optimal liquidation strategy that result inmaximum
total revenue. The dynamic programming approach is
a general-purpose approach that is robust with respect
to any customer valuation characteristics. The other
approach, based on a greedy heuristic, is considerably
less computationally complex and still provides opti-
mal solutions under deterministic demand represen-
tation when customer valuation distributions satisfy

the NDMR property, which is indeed satisfied by a
number of statistical distributions typically used to
represent customer valuations, such as uniform, ex-
ponential, and Weibull distributions. In summary, one
of the key contributions of this paper is the identifica-
tion and exploration of a general underlying property
(i.e.,NDMR) that is applicable to abroad set of valuation
distributions representative of a variety of real-world
inventory liquidation phenomena and under which our
proposed highly scalable approach has strong revenue
performance guarantees.
We conduct a comprehensive set of simulation ex-

periments to evaluate the performance of our heu-
ristic approach under stochastic demand. First, we
compare our proposed heuristic approach with two
other heuristic strategies, namely the fixed-price strat-
egy and the fixed-quantity strategy, and their varia-
tions that allow daily adjustable prices. We demonstrate
that, across different valuation distributions and both
with andwithout daily adjustable prices, our heuristic
approach is consistently better than the alternative
strategies. The heuristic approach (including PAS and
PDS) is especially advantageous when the valuation
decay is relatively fast. Second, we compare PDS with
a stochastic dynamic programming approach (Bitran
and Mondschein 1997), which can obtain optimal
expected revenue, as well as an approximate dynamic
programming approach (Topaloglu and Kunnumkal
2006). Although SDP and ADP can solve the liquidation
problem directly under stochastic demand and can nat-
urally accommodate adjustable daily prices, they are
much slower than PDS, and only SDP yields marginally
higher revenue. Overall, deriving deterministic repre-
sentation of stochastic demand and using our proposed
heuristic approach can generate near-optimal liquida-
tion strategies with superior computational efficiency.
Our work has significant managerial implications.

In particular, we confirm that two simple, commonly
used liquidation strategies, the fixed-price strategy
and thefixed-quantity strategy, generally do not yield
optimal revenue. As a result, managers instead need
to consider adopting more sophisticated dynamic
pricing mechanisms, such as the method proposed
in the paper. Through simulation experiments, we
also demonstrate the use of proposed computational

Table 7. Total Revenue and Running Time Comparisons Between PDS and SDP Under a
Time-Variant Arrival Process

Problem configuration

Total revenue Running time (seconds)

SDP PDS SDP PDS

U[0, 1] 79.60 79.09 (−0.64%) 9.66 (4,830×) 0.002
Exp(1) 169.90 169.58 (−0.19%) 13.35 (6,675×) 0.002
Weibull(4) 111.87 109.96 (−0.82%) 27.89 (13,950×) 0.002

Note. Values in parentheses represent the difference between PDS with SDP.
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techniques to understand changes in optimal strate-
gies and revenues with respect to several important
parameters of the liquidation problem. This would
allow a retailer to make informed decisions with re-
spect to various strategic tradeoffs. For example,
having a shorter liquidationwindow can save time for
the retailer at the cost of losing some revenue, but
having a longer window does not bring additional
revenue after some point when customer valuations
become too low. At the same time, if appropriate
marketing activities can effectively influence the
magnitude of decay rates of customer valuations,
such activities can be very profitable. Our compre-
hensive simulation experiments in Section 6 further
demonstrate that the proposed heuristic approach is
capable of obtaining near-optimal revenue under
stochastic demand. Therefore, the heuristic approach
can serve as a useful tool for managers to make
liquidation-related decisions in realistic, stochastic
demand scenarios. Finally, the computational effi-
ciency of our approach enables managers to quickly
experiment with different liquidation parameters
and examine the resulting revenues even for large
scale liquidation problems.

Our proposed computational strategy is valuable in
a number of real-world scenarios. For example, our
heuristic approach provides a significant speed-up
over alternatives (e.g., stochastic dynamic program-
ming and approximate dynamic programming)without
significant sacrifices in revenue performance. Such
improvement can be crucial when liquidation decisions
need to be made for large inventories and/or with
limited lead time. It is also valuable for third-party
liquidation service providers, such as Liquidity Ser-
vices (liquidation.com), because for them the capa-
bility to liquidate large volumes of items for their
clients on a real-time basis is a key source of com-
petitive advantage. Finally, going beyond the posted-
price mechanisms that we have discussed in this
paper, our approach can also be useful for designing
B2C online auctions. Specifically, Bapna et al. (2002,
2003) examined the multiunit sequential auction, where
the auction revenue depends critically on the value of
marginal bid (i.e., the highest bid that does not win the
auction) and the choice of bid increment. For this type
of auction, our heuristic approach can help identify
the marginal bid as well as choose the appropriate
bid increment. Essentially, one can treat the price on a
given day as an indicator of marginal valuation that
determines the number of items to sell using any as-
cending multiunit auction mechanism, whether it is
discriminatory or uniform price.

Our work also provides several interesting directions
for future research. One possible direction is to consider
demand uncertainty (as in Farias and Van Roy 2010)
and develop useful heuristics that incorporate demand

learning. Furthermore, one can also take into account
certain strategic behaviors of customers. For example,
with access to information such as the remaining in-
ventory levels, customers may strategically wait until
a later period to purchase the items at a lower price.
Future research should consider these factors and
form more comprehensive liquidation models and
strategies.

Endnotes
1 In particular, the arrival process and valuation distribution can be
approximated with respective empirical distributions learned from
historical sales data. The decay rate can be estimated according to
the valuation distributions. We discuss the estimation method for
several common valuation distributions in the online supplement
(Appendix 3).
2 In this paper, for convenience, we use “day” as an example of
the minimum time unit for which the retailer can make price ad-
justments. Depending on specific context, this time unit could be an
hour, a week, etc.
3Note that we do not assume arrival process to be time-invariant
(i.e., we allow Lt1 ≠Lt2 for t1≠ t2), although for notational simplicity,
we present our theoretical results and computational simulations on
the basis of a time-invariant arrival process. All of our results can
extend to time-variant arrival, by considering Bd � E(Ld), as will be
discussed in Section 4.4.
4As discussed in Section 3.1, the setup of our model ensures that
Vbd ≥Vb+1 d and Vbd ≥Vbd+1. Therefore, V11 is the highest valuation
among all customers across all days.
5This is because there are DB possible DMRs to compute, and each
takes constant time. Additionally, because typically B<N in large-
scale liquidation scenarios, the overall complexity of the heuristic
approach is O(DN) +O(DB) � O(DN).
6Although valuation decay rates are objective reflections of the
generally declining customer valuation as time goes by, their mag-
nitudemay be indirectly affected if marketing activities are successful
at changing customers’ perceptions toward the value of the item
being liquidated.
7Although we consider the most natural constructions of FP/FQ and
DP/DQ here, other variations are possible. As an example, under
fixed-price strategy, the seller can potentially set the fixed price to be
the (N + i)th expected order statistic, where i is a certain predefined
quantity. We discuss these variations and their performances in the
online supplement (Appendix 7).
8We do not simulate customer valuations from the general forms of
distributions, such as U[a, b], Exp(λ), or Weibull(λ,ρ), because the
range parameters (a and b) and the scale parameter (λ) only change
the magnitude of expected order statistics but not how many items
are sold on each day.
9 If the valuation decay is fast and the liquidation period is relatively
long, price-/quantity-based strategies can result in highly suboptimal
revenues. In practice, additional tuning (e.g., shorten the liquidation
period) may provide some improvement to these two simple strat-
egies. In contrast, our proposed heuristic handles such situation
automatically (i.e., does not require such additional tuning).
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