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Combinatorial auctions—in which bidders can bid on combinations of goods—can increase the economic
efficiency of a trade when goods have complementarities. Recent theoretical developments have lessened

the computational complexity of these auctions, but the issue of cognitive complexity remains an unexplored
barrier for the online marketplace. This study uses a data-driven approach to explore how bidders react to the
complexity in such auctions using three experimental feedback treatments. Using cluster analyses of the bids
and the clicks generated by bidders, we find three stable bidder strategies across the three treatments. Further,
these strategies are robust for separate experiments using a different setup. We also benchmark the continuous
auctions against an iterative form of combinatorial auction—the combinatorial clock auction. The enumeration of
the bidding strategies across different types of feedback, along with the analysis of their economic implications,
is offered to help practitioners design better combinatorial auction environments.
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1. Introduction
Beginning with the Federal Communications Com-
mission’s (FCC’s) announcement in October 1993
seeking proposals for conducting combinatorial bidding
to sell electromagnetic spectra,1 combinatorial auc-
tions have received considerable academic attention
(see de Vries and Vohra 2003 for a survey). Combi-
natorial auctions are multi-item auctions that allow
bids on single items as well as on multiple items as
a set, which is commonly referred to as a bundle
or package. Compared to the sale of multiple items
through separate single-item auctions, combinatorial
auctions increase the allocative efficiency of trades
when the values of the traded assets exhibit synergies
that differ across bidders (Banks et al. 2003, Ledyard
et al. 2002, Porter et al. 2003). Thus, the mechanism
has been proposed for some prominent applications,
including the allocation of airport time slots (Rassenti
et al. 1982), spectrum rights (McAfee and McMillan
1996), rights to use railroad tracks (Brewer and Plott
1996), delivery routes (Caplice 1996), and the pro-
curement of school meals (Epstein et al. 2002). In
each case, the compelling motivation for the adoption
of combinatorial auctions has been the presence of

1 Available at http://wireless.fcc.gov/auctions/general/releases/
fc930455.pdf; last accessed October 20, 2011.

complementarity among assets (Cramton et al. 2006).
For example, in the case of FCC spectrum auctions,
AT&T may value licenses in two adjacent cities more
than the sum of the individual license values, because
AT&T’s customers value roaming between the two
cities. A combinatorial auction would allow AT&T to
express its complex preferences.

However, the combinatorial auction mechanism has
yet to become popular in the electronic market-
place, primarily because of the computational com-
plexity of determining winners in such auctions and
the cognitive complexity of formulating combinato-
rial bids (Porter et al. 2003). Several iterative solu-
tions aimed at reducing the computational complexity
have been introduced recently (e.g., Ausubel et al.
2005, Goeree and Holt 2010, Kwasnica et al. 2005).
These approaches primarily focus on creating rules
and restrictions to allow several well-defined rounds
of bidding with the auctioneer declaring the interme-
diate results after each round. However, Adomavicius
et al. (2007) have argued that in order for a combina-
torial design to be feasible in the online marketplace,
it is desired for a mechanism to be continuous2—in the

2 A continuous combinatorial auction is similar to the open ascend-
ing format of single-item auctions (i.e., English auctions), where
bids can be submitted at any time during the course of the auction;
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sense that (i) it does not require an auctioneer’s inter-
vention, (ii) bidders can bid at any time, and (iii) bid-
ders can join or leave freely during the auction. With
the development of fast winner determination algo-
rithms (Andersson et al. 2000, Fujishima et al. 1999,
Sandholm et al. 2005, Tennenholtz 2000) and continu-
ous bidder support schemes (Adomavicius and Gupta
2005, Adomavicius et al. 2007), implementing contin-
uous combinatorial auctions has become a possibil-
ity. The design proposed by Adomavicius et al. (2007)
allows bidders to join an auction at any time and
make bids at any time (i.e., asynchronous bidding),3

without an auctioneer’s intervention or an activity
rule. They demonstrated that with the aid of appro-
priate information feedback, continuous combinato-
rial auctions can generate high efficiency.

In this paper, we study how bidders behave in con-
tinuous combinatorial auctions. The study is moti-
vated by the notion that in order to design effective
information systems, it is essential to not only evalu-
ate the performance of the systems but also analyze
the interactions of the users with the systems that
lead to certain economic outcomes (Bapna et al. 2003,
2004). Bapna et al. (2004, p. 1) assert that “users’ pref-
erences, behaviors, personalities, and ultimately their
economic welfare are intricately linked to the design
of information systems.” For combinatorial auctions
to be an effective online mechanism, it is important to
understand the following questions: (i) What behav-
iors do bidders adopt in such auctions? (ii) How do
features of the auction affect the behaviors? (iii) How
do variations in bidding behavior affect the economic
performance of the bidders?

Because combinatorial mechanisms in e-commerce
are virtually nonexistent, a principal application of
increasing our understanding of how bidders behave
in these auctions relates to the design of novel com-
binatorial auction mechanisms. Whereas numerous
studies have examined bidder behavior in various
forms of single-item auctions (Bapna et al. 2003, 2004;
Cox et al. 1982; Ockenfels and Roth 2006; Neuge-
bauer and Selten 2006), only a few have attempted
to analyze bidder behavior in combinatorial auctions
(Brunner et al. 2010, Goeree and Holt 2010, Scheffel
et al. 2011). Moreover, these studies examine bidder
behavior in sealed-bid or iterative auctions. Our goal

iterative auctions, on the other hand, proceed in a series of rounds,
each of which last for a specified duration. In most iterative mecha-
nisms, bidders cannot join the auction at any time because of activ-
ity rules that require bidders to satisfy certain criteria in the earlier
rounds in order to bid in the later rounds.
3 Lucking-Reiley (2000) suggests that one of the primary reasons
behind the enormous popularity of online auctions is that they
allow asynchronous bids; i.e., auction participants can submit bids
any time during the course of the auction.

is to uncover the actual strategies pursued by bidders
in continuous combinatorial auctions.

Because real data from combinatorial auctions are
not publicly available, we rely on laboratory experi-
ments for our empirical analysis. By investigating bid-
der behavior, the study aims to enhance the design of
practical combinatorial auctions and also facilitate the
design of more user-centric artificial bidding agents.

2. Background on
Combinatorial Auctions

A combinatorial auction allows bidders to bid on
combinations of items (i.e., item bundles) as well
as on individual items. As a result, the number of
biddable bundles increases exponentially with the
number of items for sale, making the problem of
determining winners4 in such auctions NP-hard. With
the rapid advances in computing and information
processing power, determining winners for combina-
torial auctions of practical sizes is no longer an issue
in practice. The challenge faced by bidders in formu-
lating combinatorial bids is a bigger practical problem
(Adomavicius and Gupta 2005, Kwasnica et al. 2005).
In single-item ascending auctions, it is easy to find
out the provisional allocation, and hence easy to for-
mulate a provisionally winning bid at any stage of the
auction. However, in a combinatorial auction, com-
puting the provisional allocation itself is an NP-hard
problem. Furthermore, instead of two possible states
(winning/losing) as in single-item auctions, bids in a
combinatorial auction can have three possible states:
(a) winning, (b) not currently winning but possibly
winning in the future, or (c) losing (as detailed in
the next section). Owing to these complexities, even
if the winning set of bids is identified, formulating a
provisionally winning bid on a chosen bundle can be
cognitively challenging.

To lower the hurdles for bidders, several iterative
designs have been introduced, each of which imposes
certain restrictions to make the bidding environment
simpler while generating high efficiency. Such designs
include the combinatorial clock (CC) auction (Porter
et al. 2003), clock-proxy auction (Ausubel et al. 2005),
resource allocation design (RAD) (Kwasnica et al.
2005), and hierarchical package bidding (Goeree and
Holt 2010). The primary focus of these studies has
been the comparison of the economic properties of
the mechanism—especially its efficiency—with that
of existing designs. To the best of our knowledge,
there does not exist a study of bidder strategies in
combinatorial auctions that systematically looks at the

4 The winners in combinatorial auctions are typically determined by
computing the combination of bids that maximize seller’s revenue
with the assumption of cost-free disposal (Parkes 1999).
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characteristics of the bids made by the bidders in
such auctions and what impacts the different bid-
ding patterns have on the outcomes of the auctions.
Furthermore, although the iterative designs reduce
the participation complexity of the bidders, they are
difficult to deploy in the online marketplace because
they do not allow asynchronous bidding.

Adomavicius et al. (2007) addressed this issue by
developing several bidder support schemes to con-
duct continuous auctions, and demonstrating that
high efficiency can be achieved by making the envi-
ronment sufficiently transparent and user-friendly for
bidders. These schemes (described in detail in §3) con-
sist of continuous5 information regarding provisional
allocation and also nonlinear prices for all bundles of
interest to the bidders. In this paper, we use this con-
tinuous mechanism to study bidder behavior in com-
binatorial auctions under three treatments that differ
only in the quality of feedback provided to the bid-
ders. Our objective is to learn how information feed-
back affects bidding behavior leading to differences
in the retained surplus of bidders (i.e., the difference
between the bidders’ values and their winning bids,
a common performance metric).

3. Characteristics of
Combinatorial Auctions

3.1. Bid States in Combinatorial Auctions
In single-item ascending auctions (e.g., English auc-
tions), if a bidder is not the highest bidder, she must
bid an amount higher than the current highest bid
to have a chance of winning the auction. However,
in combinatorial auctions, even if a bid is not cur-
rently winning, it can still be among the future win-
ners depending on the later bids. For example, in an
auction of two items, P and Q, if the current bids are
(1) $2 for the single item {P}, (2) $4 for the single item
{Q}, and (3) $8 for the package {PQ}, only the third
bid is currently winning, assuming that the auction-
eer’s objective is to maximize his revenue. However,
if a new bid of (4) $7 for {Q} arrives, then bid 1,
which was nonwinning after the first three bids, will
now be among the winning bids because the combi-
nation of bids 1 and 4 ($2 + $7) is greater than the
existing winning bid of $8. Note, however, that after
bid 4 has been placed, bid 2 can never win the auc-
tion because a higher bid (of $7) has been placed on
the exact same item.

Thus, at any given stage of a combinatorial auction,
a bid can be in one of three possible states: (1) currently

5 Although some iterative mechanisms, such as the RAD and CC
auctions, provide provisional allocation and price information to
bidders as feedback, they do so only at the end of each round. In
the continuous mechanism, the provisional allocation as well as the
prices are updated after every bid.

winning (winning state), e.g., the state of bid 3 follow-
ing the first three bids; (2) currently nonwinning but
with a possibility of winning in the future (live state),
e.g., the states of bids 1 and 2 following the first three
bids; and (3) currently nonwinning with no chance of
winning in the future (dead state), e.g., the state of bid 2
following the first four bids. This is in contrast to tra-
ditional single-item auctions where a bid can only be
in either of two possible states (winning or losing).

Reconsidering the auction stage following the first
three bids in our exemplar two-item auction above,
if a bidder chooses to place a minimal nonlosing bid
on {Q}, she has a range of options available between
$4 + � and $6 + �, where � is the minimum bid incre-
ment. If � is $1, a bid of $7 on {Q} would make it
winning at that auction stage along with bid 1, because
$2 + $7 > $8 (where $8 was the auction revenue after
three bids), and a bid of $5 or $6 would make the bid
live. We call the price ($4) at or below which a bid
will be dead, the deadness level (DL) and the price ($6)
above which a bid will be winning as the winning level
(WL).6 Furthermore, we represent the minimum price
for a live bid (i.e., DL + �) as DL∗, and the minimum
price for a provisional winning bid (i.e., WL + �) as
WL∗. This exemplifies an important property of com-
binatorial auctions: there is not necessarily a single
minimum successful bid as there is for single-item
auctions. Instead, a minimal potentially successful bid
can have a range of values.

Based on these characteristics of combinatorial
auctions, the feedback schemes developed by
Adomavicius et al. (2007) consist of, at every stage of
the auction, (i) the provisional allocation, and (ii) DL∗

and WL∗ for any chosen bundle. The information
feedback treatments (discussed in §4.3) that we use
in our experiment are based on the manipulation of
these schemes.

3.2. Combinatorial Clock Auction
To provide a benchmark for the continuous auctions,
we conduct CC auctions. A CC auction is an itera-
tive mechanism that was introduced by Porter et al.
(2003) and has been used as a benchmark by Brunner
et al. (2010) and Kagel et al. (2010). As a benchmark,
this format has been used in multiple studies, and it
is an efficient auction mechanism compared to most
other notable iterative mechanisms, such as the simul-
taneous multi-round (SMR)7 auction, Charles River

6 More details on winning and deadness levels and related theoret-
ical results can be found in Adomavicius and Gupta (2005).
7 SMR is a form of simultaneous ascending auction (SAA) that was
used by the FCC for the allocation of the broadband spectra begin-
ning in 1994. In the context of FCC auctions, the terms SAA and
SMR have been somewhat interchangeably used. SMR does not
allow package bidding.
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and Associates (CRA) proposal,8 RAD, and the simul-
taneous multiround auction with package bidding
(SMRPB). In the study introducing the CC auction for-
mat, Porter et al. (2003) found it to be more efficient
than both SMR and CRA. Brunner et al. (2010) found
the CC mechanism to be more efficient than SMR and
at least as efficient as RAD and SMRPB in environ-
ments with high asset complementarities. Kagel et al.
(2010) found the CC mechanism to be more efficient
than SMR.

A CC auction proceeds in discrete rounds, where
bidders are allowed to submit package bids, only
one of which could be provisionally winning in each
round (i.e., XOR bids). In contrast, auctions like RAD
allow OR bidding. A significant difference between a
CC auction and other ascending combinatorial auc-
tions is that in a CC auction, prices rise automatically
and incrementally in response to excess demand. That
is, whenever multiple bidders bid for the same item
(either separately or as part of a package) in a round,
the clock price for the item rises by the bid increment.
Prices for items not having excess demand remain the
same from one round to the next. Bidders observe
the new prices at the end of each round and decide
which packages to bid on. The prices of the packages
are assumed to be the sum of the prices of the items
constituting the packages and are therefore not exact
(i.e., the prices do not necessarily reflect the minimum
price required to win a given package at a given auc-
tion stage). Furthermore, the provisional winners and
the new prices are revealed at the end of each round
and do not continuously update after each bid.

4. Methodology
4.1. Experimental Environment
To study bidder behavior, we constructed a hypotheti-
cal combinatorial auction environment where bidders
compete to acquire real-estate properties around a
lake. The bidders can bid on individual lots as well
as any combination of the lots. The valuation struc-
ture of the assets for each bidder is created in such a
fashion that the bidders benefit by acquiring adjoin-
ing lots (because they afford more options for devel-
opment) as a single bundle rather than separately. To
test the robustness of the results concerning bidder
behavior in continuous combinatorial auctions, we
conducted two sets of experimental auctions with dif-
ferent setups. Setup 1 used a symmetric, systematic val-
uation scheme across bidders. Setup 2 used an asym-
metric, random valuation scheme.

8 The combinatorial auction design proposed by the consulting firm
Charles River and Associates has been also referred to as the com-
binatorial multiround auction.

Figure 1(a) Values of Individual Lots

A

F
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B
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E

$50

$25
$50$12.5

$100$25

Figure 1(b) Values of Combinations of Lots

A

F

C

B

D

E

$165

$100

$50

$105

$50

$25

$12.5

In setup 1, a distinct lot, designated the preferred lot,
is identified for each bidder participating in the auc-
tion. This lot has the highest value for the bidder, with
the value of the remaining lots decreasing by 50% as
they are farther from the preferred position. An exam-
ple of a possible individual-lot valuation structure is
shown in Figure 1(a), where lot B (with a value of
$100) is shown as the preferred lot for some individ-
ual bidder.

In setup 2, the values of the lots for each auction
are picked from a uniform distribution and then, for
each bidder, randomly assigned to the lots. An exam-
ple of a possible individual-lot valuation structure for
setup 2 is shown in Figure 2, where the uniform dis-
tribution is [$5, $100].

In both setups 1 and 2, we introduce complemen-
tarities among lots by creating superadditive valuations
for bundles with adjoining lots in them. This is accom-
plished by adding 10% to the additive valuation of the
lots for each adjoining lot in the bundle. Thus, if the
valuations of the individual lots are those depicted
in Figure 1(a), then the valuation of the bundle {BC}
with one adjoining lot is ($100 + $505 ∗ 101 = $165000,
and that of bundle {AEF} with two adjoining lots is
($50 + $25 + $12050)∗102 = $105000, as shown in Fig-
ure 1(b).

This setup, similar to the experimental environ-
ment of Banks et al. (2003), allows both for a com-
pact description of the scenario to the participants as
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Figure 2 A Sample Assignment of Values in Setup 2
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well as for building a simulation of the auction envi-
ronment. We conducted several simulation runs with
computerized bidding agents and several pilot tests
with human bidders to refine the parameters of the
model. For example, in setup 1, if the superadditivity
rate is set at 25%, the optimal allocation is for one bid-
der to buy all the lots. In that case, if a bidder places
a high bid on the bundle that includes all the lots, no
other combination of bids can outbid her. After sev-
eral simulations we chose to set the superadditivity
rate to 10%,9 this leaves ample room for combinations
of packaged bids to outbid a single bid on all the lots.
The same superadditivity rate was used in setup 2 to
maintain consistency.

4.2. Rules and Procedure
To avoid confounding our results due to learn-
ing effects, we conducted a purely between-subjects
study: Each subject participated in only one auction.
We conducted three to four auctions simultaneously
in each experimental session. Because the participants
did not know how many auctions were being con-
ducted, they did not know how many bidders they
were competing against. The participants were all
undergraduate business students (mean age 20 years;
54% male) who responded to volunteer solicitation
announcements throughout the campus. Instructions
explaining the rules of the auction were read aloud at
the beginning of each session. The instructions were
followed by short tests to familiarize the participants
with the rules of the auction and the bidding environ-
ment. Subjects were randomly assigned to a particular
auction. The auctions as well as the instructions were
entirely computerized.

All auctions were conducted with six lots and three
bidders. Whereas the rules to generate the valuations
of the lots (i.e., the concepts of peak sites, decay and
superadditivity rates) were common knowledge, the
distribution of the values among the lots was private
knowledge. Therefore, each bidder in an auction had

9 Brunner et al. (2010) consider a superaddivity rate of 20% as high
and 1% as low.

no explicit knowledge of the specific lot valuations
of other bidders. In setup 1, lots A, C, and E were
designated as the preferred lots of the three bidders,
respectively.

For both the continuous auctions as well as the CC
auctions, a soft stopping rule was used; i.e., the auc-
tion continued as long as bids were being submit-
ted. This rule of extending the auction was followed
in order to eliminate sniping, i.e., placing bids in the
last few seconds of the auction. The practice of hav-
ing a soft stopping rule is widely used in combinato-
rial auction research literature (Kwasnica et al. 2005,
Brunner et al. 2010, Kagel et al. 2010).

The bidders were not given any fixed budget, but
the final compensation scheme was a fixed amount of
$10 plus an amount based on their individual perfor-
mances in proportion to their surplus from the auc-
tion. Surplus was calculated as the difference between
their valuation of the item(s) and their winning bid(s).
Consequently, their surpluses were positive, zero, or
negative depending on whether their winning bid
was less than, equal to, or greater than their valua-
tion, respectively. Those who failed to win any item
only received the fixed amount of $10. Negative sur-
pluses were taken off from $10, up to $10. At the end
of a session, participants were paid privately in sealed
envelopes.

4.3. Treatments and Interfaces for the
Continuous Auctions

To observe how the variation of information feedback
affects bidding behavior in continuous combinatorial
auctions, we administer three treatments (with
setup 1 as well as setup 2) that differ only in the
amount of information available to bidders. The three
treatments are (i) baseline feedback (BF), where all the
bids are displayed anonymously to the bidders but no
other feedback is provided; (ii) outcome feedback (OF),
where, in addition to BF, the provisional winning allo-
cation is identified at every stage of the auction; and
(iii) price feedback (PF), where, in addition to OF, the
two important minimum prices, DL∗ and WL∗, are
supplied on demand for any bundle of interest, in
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order to aid bid formulation. It should be noted that
BF can be provided in any combinatorial auction set-
ting regardless of the winner determination approach.
In addition, OF can be provided with most fast win-
ner determination algorithms by solving the winner
determination problem after each bid. PF can be pro-
vided in the continuous manner by the algorithm of
Adomavicius and Gupta (2005), which we used in our
experiments.

The bidders’ assigned valuations for the individual
lots were displayed on their screens at all times. The
bidders could find their assigned valuations for any
possible bundle by simply clicking on checkboxes cor-
responding to each of the six lots. For instance, if a
bidder wanted to find her assigned value for the bun-
dle {ABF}, she could click the checkboxes beside the
lots A, B, and F, and the value would be displayed
at the center of the screen. This provided an intuitive
approach to user interface design, because the bidders
could immediately view the valuations of bundles as
they were composing them.

Bids could be placed by selecting the lots (i.e., com-
posing the bundle), entering a bid amount, and then
pressing the submit bid button. The total elapsed time
of the auction and the time since the last bid was
placed were also displayed. With OF and PF, the set
of winning bids was updated, if necessary, after every
new bid. Furthermore, with PF, a bidder could find
the two components of price feedback (DL∗ and WL∗)
by simply clicking on the lots constituting the bun-
dle of interest. Finally, all dead bids, i.e., bids that
stood no chance of winning at any subsequent state
of the auction, were removed from display in the PF
case. The subjects could refresh the screen by click-
ing either the checkboxes corresponding to the lots
or a refresh button provided on the auction interface.
Refreshing the screen updated the list of bids (in all
treatments), the set of winning bids (in treatments
OF and PF), and the minimum prices for a currently
selected bundle (in PF only).

4.4. Interface for the CC Auctions
As in the continuous auctions, the bidders’ assigned
valuations for the individual lots were displayed on
their screens at all times. The bidders could find their
assigned valuations for any possible bundle by sim-
ply clicking on the checkboxes corresponding to each
of the six lots. To place a bid, bidders needed to select
the lots to compose the bundle, and then press the
submit bid button. The current prices for all the lots
were displayed on the screen. The prices for all the
lots were set at $5 at the start of the auction and
increased by $5 following the rules of CC auctions
summarized earlier (§3.1). The prices were updated
after every round. The bids submitted by a bidder
both in the current round as well as in the previous

rounds were displayed but the competitors’ bids were
not shown. If any of the bids was provisionally win-
ning, it was highlighted. Note that provisional win-
ners were announced by Kagel et al. (2010), but not by
Brunner et al. (2010) or Porter et al. (2003). We chose
to follow the format of Kagel et al. (2010) for a better
comparison with the continuous auctions with feed-
back (outcome and price feedback treatments). Fur-
ther, to maintain consistency with Kagel et al. (2010),
we did not impose any activity rules restricting the
items subjects could bid on. Whereas Porter et al.
(2003) did not use activity limits either, Brunner et al.
(2010) did.

4.5. Data Collection
We conducted a total of 94 continuous auctions: 51
using setup 1 and 43 using setup 2. All 282 (94 × 3)
subjects in these auctions were unique participants,
each of whom only participated in a single auction.
The subjects used in the experiments with setup 2
were from a different university compared to those
used with setup 1. We excluded 11 auctions from our
analysis, because in these at least one bidder mis-
takenly placed a bid significantly above her valua-
tion. They immediately notified us of the mistake;
because our design disallowed bid withdrawal, recti-
fication of the user error was not possible. Therefore,
we removed these auctions from further analysis,
attributing the irrational bids to bidding errors. The
remaining auctions consisted of 44 auctions using
setup 1 (14 with BF and 15 each with OF and PF) and
39 auctions using setup 2 (13 each with BF, OF, and
PF). Over 3,000 bids were placed in each setup. In
addition to the bids, to better understand the behavior
of the bidders, the clickstream of each participant was
also recorded. The clickstreams include data on the
bidder’s exploration of various bundles (the bidders’
actions of checking and unchecking checkboxes on the
display), screen refreshes, and bid submissions. About
50,000 clicks were recorded in each setup. Together
the bids and clicks provide a rich data set for inves-
tigating bidders’ behaviors. The bid data allow us to
analyze patterns of participation of the bidders in the
auction, and the clickstream data provide an oppor-
tunity to understand the bidders’ underlying bid for-
mulation processes.

In addition to the continuous auctions, we con-
ducted 18 CC auctions to benchmark the performance
of the continuous auctions. One auction had to be dis-
carded for the same reason as stated above. The par-
ticipants in these auctions were also unique and had
not participated in the continuous auctions.

5. Results and Discussion
5.1. Efficiency Comparisons
Our main focus for this study is the data-driven
exploration of the effect of feedback on the behaviors
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Table 1 Continuous Combinatorial Auctions in Setup 1 vs. Setup 2:
Mean (SE) Efficiency

Baseline Outcome Price
feedback (BF) (%) feedback (OF) (%) feedback (PF) (%)

Setup 1 86023 (3.0) 90064 (3.5) 93048 (1.6)
Setup 2 78078 (2.4) 86074 (1.6) 89039 (3.0)

of bidders. However, prior to presenting the analy-
ses of the bidder behaviors, we provide several com-
parisons of the allocative efficiency of the continuous
auctions. First, we compare the allocative efficiencies
of the continuous auctions across the two experimen-
tal setups for consistency. Next, we use the iterative
CC auction as a benchmark. Finally, we look at the
allocative efficiency of two rational bidding strategies.

5.1.1. Allocative Efficiency of Two Continuous
Auction Setups. Table 1 summarizes the allocative
efficiencies for continuous combinatorial auctions.
Also, the pairwise comparisons between treatments
within each setup are presented below, where ∼

indicates no significant difference, �∗, �∗∗, and �∗∗∗

indicate significance at the 10%, 5%, and 1% levels
respectively,

Setup 1: PF ∼ OF; OF �∗BF; PF �∗∗ BF;
Setup 2: PF ∼ OF; OF �∗∗BF; PF �∗∗∗ BF.

The pairwise comparisons indicate remarkable consis-
tency between the two setups in terms of efficiency.

5.1.2. Allocative Efficiency of Combinatorial
Clock Auction. Because the CC auctions were con-
ducted with the symmetric and systematic bidder
valuations, we compare the efficiency of the CC auc-
tions to that of the continuous auctions in setup 1.
The mean (SE) efficiency of the CC auctions is 90.4%
(2.1%). Although the CC auction is more efficient
(10% significance level) than the continuous auction
with BF, its efficiency is not significantly different
from that of the continuous auctions with feedback,
either OF or PF.

5.1.3. Rational Bidding Strategies. Because assets
in combinatorial auctions exhibit value synergies,
the structure of the allocation problem is noncon-
vex, and therefore no equilibrium strategy may exist
that can support the optimal allocation (Banks et al.
1989). In the absence of an equilibrium strategy,
researchers have considered several feasible ratio-
nal bidding strategies. The most popular among
them is the straightforward bidding strategy (Ausubel
and Milgrom 2002), wherein bidders in each round
bid on the bundle(s) with the highest profit poten-
tial. This myopic best response strategy (Parkes 1999)
has been considered as a rational bidding strategy
in several studies (Bichler et al. 2009, Parkes and
Unger 2000, Scheffel et al. 2011). However, Chen and

Ledyard (2008, p. 10) point out, “There is no evi-
dence that actual bidders will actually behave this
way.” This observation has been corroborated in lab-
oratory experiments conducted by Kagel et al. (2010)
and Scheffel et al. (2011).

Aside from straightforward bidding, another poten-
tial strategy that has been considered in the litera-
ture is a powerSet bidding strategy (Bichler et al. 2009),
wherein a bidder places bids on not just the bun-
dle with the highest profit potential but also on a
few other bundles with high profit potentials, e.g.,
the 10 most profitable bundles in each round. How-
ever, unlike in iterative auctions that progress in dis-
crete rounds, in continuous auctions it is impossible
to clearly identify a powerSet strategy because other
bidders may submit bids before a bidder completes
bidding on the intended set.

To derive a benchmark for the observed bidding
behaviors in our laboratory experiments, we ran auc-
tion simulations using these two strategies considered
rational in the literature. In both our setups, straight-
forward bidding resulted in the convergence of all
bids on the bundle that includes all the items, gener-
ating an efficiency of 78% in setup 1 and a mean effi-
ciency of 78% (standard deviation of 4.7%) in setup 2,
comparable to the efficiency observed in the baseline
case. We provide further details of how closely the
bidders in continuous auctions followed this strategy
in §5.3, where we consider individual bidding behav-
ior. With the powerSet bidding strategy, in setup 1,
when bidders bid on their top five or more surplus
generating bundles, 100% efficiency was achieved. In
setup 2, because the distribution of values were not
the same in each auction, depending on the instance,
the 100% efficiency achieving powerSet varied from
top three or more surplus generating bundles to top
seven or more surplus generating bundles.

5.2. Overview of Behavior Analyses
Because observed behavior in a cognitively complex
environment frequently deviates from theoretical pre-
dictions, our overall strategy for data analysis is to
discover meaningful patterns from the data and inter-
pret the patterns to provide insights regarding the
different bidder strategies. At the outset, we identify
three broad levels of analysis of the data that we have
collected:

(i) We categorize overarching strategies of bid-
ders through an analysis of the clickstream data and
bidder-specific auction level data. Because the click-
stream data represent the exploration that a bidder
does before placing a bid, they capture aspects of the
bid formulation process. Bidder-specific auction level
data, such as the total number of bids made and the
time of the first bid, capture characteristics of par-
ticipation. Together, these data provide information
about the bidders’ strategies.
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(ii) Next, we explore the relationship between bid
types and bidder strategies. We characterize bid types
using two different typologies. An understanding of
bid properties helps to identify key characteristics that
distinguish the bids placed within different strategies.
We identify a mapping of bidder strategies over the
bid characteristics to describe the complex temporal
bidding process used in combinatorial auctions.

(iii) Finally, we conclude our analysis with an
exploration of the economic implications of bidders’
strategies, tying the data-driven analyses to the bid-
ders’ economic welfare.

Throughout these analyses, a major goal of this
research is to examine the role that information feed-
back plays. If we understand the impact of different
types of information on bidder behavior and auc-
tion dynamics, we can design practical mechanisms
that achieve intended auction objectives, such as max-
imization of welfare, revenue, or market coverage.
Therefore, we study the effects of feedback within
each of the analyses.

5.3. Bidder Strategies
Our conceptualization of bidder strategies involves
the activity that bidders engage in to formulate their
bids and auction-level characteristics that capture the
nature of participation by an individual bidder. To
uncover the different bidder strategies, we conduct
a cluster analysis based on four aggregate variables
representing each bidder’s behavior. The choice of the
variables is in part based on existing literature on
bidder behavior in a single-item setting (Bapna et al.
2003, 2004). However, because of the complexity of
multi-item combinatorial auctions and our ability to
collect primary data on bidder activity, we differenti-
ate between bidder strategies (including bid formula-
tion) and bid characteristics. In Bapna et al. (2004), bid
characteristics are part of bidder strategies because
bid formulation in single-item auctions is a rather
straightforward process. But combinatorial auctions
allow for the placement of several different types of
bids. Therefore, we extend and adapt the input vari-
ables to our multi-item setting as well as on the avail-
ability of data that capture exploratory behavior by
the bidders during the auction.

Table 2 Mean (SE) of Behavior Variables for Each Experimental Treatment in Both Setups

Feedback types (number of bidders) BIDS ENTRY [mm:ss] SPANS EFFORT

Setup 1
Baseline feedback (BF) (42) 16086 (13.51) 01:37 (02:59) 9092 (6.59) 15084 (14.31)
Outcome feedback (OF) (45) 24098 (18.80) 02:38 (05:41) 11080 (9.17) 24085 (27.21)
Price feedback (PF) (45) 27002 (15.19) 01:38 (03:10) 11053 (5.79) 17084 (11.51)

Setup 2
Baseline feedback (BF) (39) 26050 (15.57) 00:51 (01:36) 15072 (7.52) 12025 (13.53)
Outcome feedback (OF) (39) 36018 (19.33) 00:46 (01:22) 17087 (8.39) 13008 (16.80)
Price feedback (PF) (39) 38066 (17.45) 1:01 (02:61) 14074 (6.54) 11092 (9.42)

The variables considered by Bapna et al. (2004)
were time of entry (TOE), number of bids (NOB), and
time of exit (TOX). We consider TOE and NOB. TOX—
the time of a bidder’s final bid in the auction—is not
pertinent in our setting because, instead of online auc-
tions where bidders are free to join and leave any
time over a period of a day or multiple days, our
data come from auctions conducted in a laboratory,
where bidders did not leave the auction until it was
over and the average duration of the auctions was less
than 30 minutes. In addition to TOE (called ENTRY
in our setting) and NOB (called BIDS in our setting),
we include two new variables: SPANS and EFFORT,
which are particularly important in a multi-item set-
ting. SPANS captures the number of distinct bundles
that a particular bidder placed the bid on: e.g., if a
bidder places bids only on bundles {ABC} and {AB},
then SPANS = 2. EFFORT captures the amount of
exploratory analysis a bidder conducted before plac-
ing a bid, and is defined as the total number of clicks
made by a bidder divided by the total number of bids
placed by that bidder (i.e., the mean number of clicks
per bid).

The means and standard errors for each of these
dimensions in each treatment for the two setups are
shown in Table 2. The mean of BIDS increases mono-
tonically with the amount of feedback in both setups.
It is interesting to note that EFFORT is highest with
OF in both cases. With the availability of the win-
ning set of bids at every stage of the auction (OF), the
bidders could formulate better bids through greater
effort. But in BF, without the provisional allocation
or the prices, the bidders could not acquire meaning-
ful information through greater effort. Further, with
greater transparency (PF), the bidders did not need
to expend as much effort to formulate efficient bids
as they did in the other two cases. For instance, sup-
pose that at a certain auction stage, the winning set of
bids are {ABC} and {DEF} and the maximum bid on
a bundle S is denoted by max {S}. If a bidder wants
to bid on the bundle {BC}, she can bid max {ABC}—
max {A} + � to be among the winning set replacing
the bid on {ABC}, where � is the bid increment. With
BF, a lack of feedback regarding the currently winning
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bids makes similar computation of potential winning
bids difficult. But, with PF a bidder can easily find
the exact current winning price on {BC} (in this exam-
ple) without needing to explore suitable complemen-
tary bids.

To uncover differences in bidder behavior as cap-
tured by the four input variables, we used the
k-Means clustering algorithm in conjunction with the
expectation-maximization (EM) algorithm to deter-
mine the value of k, i.e., the optimum number of
clusters in each case (Witten and Frank 2005). This
well-known clustering mechanism has been used for
similar analysis (e.g., Bapna et al. 2004).

The clustering algorithm uncovered three groups
of bidders in each treatment. The cluster means (cen-
troids), arranged in ascending order of BIDS within
each type of feedback, are shown in Table 3. Compar-
ing the three clusters across feedback types, we find
that the properties of each cluster are very similar
across treatments. The small number of bidders in the
first cluster in each type places the fewest bids over
the fewest spans, but invests a massive amount of
effort in placing them. Based on their aggregate bid-
ding behavior, it appears that these bidders carefully
analyze the bid space before narrowing down the set
of spans and placing a small number of bids; there-
fore, we call the bidders in the first cluster analyzers.

In all three treatments, the second cluster is char-
acterized by moderate activity—both in terms of the
number of bids and spans, as well as the number of
clicks per bid. This class of bidders usually starts bid-
ding within the first minute of the start of the auction
(ENTRY ≤ 1:00, except with OF in setup 2). Because

Table 3 Cluster Centroids for Bidder Classes

Clusters ENTRY
Feedback types (number of bidders) BIDS [mm:ss] SPANS EFFORT

Setup 1
Baseline feedback (BF) Analyzers (2) 2000 14:15 1050 66000

Participators (34) 13041 01:00 8038 14023
Explorers (6) 41033 00:43 21050 2043

Outcome feedback (OF) Analyzers (1) 18000 10:05 2000 144078
Participators (36) 18072 02:18 8067 25032
Explorers (8) 54000 03:10 27013 7070

Price feedback (PF) Analyzers (4) 15050 11:05 8000 32097
Participators (34) 23006 00:43 9088 17045
Explorers (7) 52086 00:35 21057 11015

Setup 2
Baseline feedback (BF) Analyzers (13) 10062 01:00 8015 16080

Participators (18) 28067 00:35 18056 10049
Explorers (8) 47060 01:18 25020 6081

Outcome feedback (OF) Analyzers (11) 10064 00:35 6045 26023
Participators (21) 37000 01:26 19014 8061
Explorers (7) 73085 00:26 32000 5083

Price feedback (PF) Analyzers (11) 15045 1:18 10027 20096
Participators (20) 34000 00:35 15090 8073
Explorers (8) 83060 02:10 30020 7063

the bidders in this cluster seem to place bids in regu-
lar intervals throughout the auction and exhibit qual-
itatively similar behavior as attributed to participators
in single-item auctions by Bapna et al. (2004), we call
the bidders in the second cluster participators as well.

In all three treatments, the bidders in the third clus-
ter are characterized by a larger number of bids on
significantly more spans than bidders in the other two
clusters. These bidders put comparatively the least
amount of effort in placing their bids. Thus, it appears
that the bidders in this cluster explore the bid space
by placing a large number of bids after only a rudi-
mentary analysis. Based on these observations, we
label the bidders in the third cluster as explorers.

One notable difference between the clusters in the
two setups is the greater number of analyzers in
setup 2 for all the treatments. Although the percent-
age of explorers is not much different, the percent-
age of analyzers is greater and that of participators
is lesser in setup 2 compared to those in setup 1.
One possible explanation for the difference is that
the asymmetric and random valuation structure of
setup 2 posed a bigger challenge to bidders for plac-
ing profitable bids. Compared to setup 2, it was rel-
atively easier for bidders to bid in setup 1, wherein
they could focus on and around their preferred lots.
However, the same level of focused strategy was not
possible for the analyzers in setup 2. As a conse-
quence the analyzers placed more bids and on rela-
tively more spans as compared to their counterparts
in setup 1. In setup 2 analyzers also entered ear-
lier and spent less bidding effort. Overall, although
the analyzers still spent more effort and are more
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Table 4 Percentage of Bids That Were Best Response

Setup 1 Setup 2

Analyzers Participators Explorers Total Analyzers Participators Explorers Total

Baseline feedback (BF) 000 705 408 605 904 609 402 603
Outcome feedback (OF) 1607 1007 307 800 904 801 207 602
Price feedback (PF) 1903 2107 1302 1900 1904 1107 1109 1207

focused than the participators, in setup 2 the differ-
ence between analyzers and participators is not as
stark as it is in setup 1. Thus, the relative proportions
of analyzers and participators are likely influenced
by the relative difficulty of the bidding task and the
dispersion in valuation distribution of the items in a
bundle.

In terms of how closely these three types of bidders
followed the best response strategy discussed earlier,
the behavior we observe (summarized in Table 4) is
no different from what has been observed in previ-
ous studies (Kagel et al. 2010, Scheffel et al. 2011);
i.e., bidders do not consistently follow a best response
strategy. This suggests that identification of profit
maximizing bundles (along with their prices) is a
potential feedback that could be provided to bidders
to assist them in their bid formulation, however, such
feedback would require the bidders to disclose their
valuations on an exponential number of bundles.

Overall though, the analyses of bidder strategies
demonstrate a remarkable consistency across the two
setups, given the quite different experimental condi-
tions. The systematic nature and limited number of
primary bidding strategies is a significant finding and
contribution of this study. To delve into more specific

Figure 3 Mix of Bids Placed by the Different Types of Bidders
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understanding of these strategies, in the next three
subsections we develop an analysis of bid character-
istics that we relate to these strategies.

5.4. Analyses of Individual Bids: Bid States
We first explore a basic characterization of bids, i.e.,
the bid state (dead, live, or winning) at the time they
are placed by the bidders. Our interest in exploring
the bid states across different bidder strategies stems
from a desire to learn the effectiveness of the strate-
gies in leading to successful bids under the different
information regimes (BF, OF, and PF). We address the
questions: (i) What proportion of live and winning
bids do bidders place? (ii) Do bidders place a large
percentage of dead bids with BF and OF, where the
minimum prices to place live and winning bids are
not identified? (iii) Are certain bidders more capable
than others in identifying the minimum prices even
without explicit feedback?

The percentages of dead, live, and winning bids
that each type of bidders placed are shown in Fig-
ure 3. One can think of the ratio of winning and live
bids to dead bids as a measure of the success or effec-
tiveness of a bidding strategy as well as the help-
fulness of the information feedback provided to the
bidders, because dead bids represent lost effort. Three
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trends stand out from the figure. The first is the signif-
icantly higher proportion of winning bids placed by
the analyzers across feedback conditions as compared
to both participators and explorers. In addition, the
analyzers (who spent the highest amount of effort in
placing each bid) also placed the fewest percentage of
dead bids overall. Interestingly, in setup 1, even with
just BF and OF, analyzers do not place dead bids. The
fact that this class of bidders places a few dead bids
with PF might seem surprising, but the likely cause
of this behavior is that the DL∗ can increase (by virtue
of other bids) between the time a bidder observes this
level and the time she places a bid. We show later
that with PF the bidders place bids that are extremely
close to DL∗ and WL∗; hence, the likelihood that these
marginal bids can be outbid when additional bids are
placed, is quite high. We study this phenomenon in
more detail in §5.5. Analyzers placed some dead bids
in all three treatments in setup 2. The number of dead
bids is still small for analyzers across all conditions.

The second major pattern in the figure is the simi-
larity of bid state distributions across the three types
of bidders in the baseline and outcome feedback
conditions, with increasing proportions of winning
bids (and smaller proportions of dead bids) from
explorers to participators to analyzers. The analyzers
are the most effective bidders with very few dead
bids, whereas the explorers, who place a large num-
ber of bids with minimal effort, appear to be the
most ineffective, making a large percentage of dead
bids. Although the explorers were actively bidding
throughout the auction, they were not actively analyz-
ing the existing bids before placing a bid and ended
up placing a large percentage of inconsequential bids.

The similarity of bid states with BF and OF raises
the question of whether the addition of only the pro-
visional allocation feedback helps the bidders in esti-
mating the prices of the bundles. At the outset, only
the analyzers appear to be able to estimate the prices
and place profitable bids even without the availability
of PF. We will further explore this in the next section,
where we refine the bid characterization to explore
the impact of feedback at a much finer granularity.

Without the aid of exact prices to make a potentially
live or winning bid, the percentages of dead bids with
BF and OF across all bidder strategies are almost iden-
tical: 30% with BF and 31% with OF in setup 1 and
42% with BF and 43% with OF in setup 2. Even the
percentages of live and winning bids are fairly close
with these two types of feedback: 38% live and 32%
winning with BF, and 32% live and 37% winning with
OF in setup 1, and 33% live and 25% winning with
BF and 30% live and 27% winning with OF in setup 2.
Thus, without feedback regarding potentially live and
winning bids, on average the mix of bids is simi-
lar with BF and OF. However, there is one important

difference between the two: with OF, identifying the
winning bids provided an implicit WL for the few
bundles included in the winning set. Thus, whereas
only about 30% of the bids placed on currently non-
winning spans (i.e., bundles that were not part of
provisionally winning allocation) in either setup were
winning bids, about 75% of the bids placed on the
winning spans (bundles that constituted the provi-
sional allocation at that state of the auction) were win-
ning bids. This implicit identification of bundles with
known WL also explains the slightly higher percent-
age of winning bids with OF as compared to that
with BF.

The third pattern in the figure is the similar-
ity in bid state distributions for all the three bid-
der strategies with price feedback. The availability
of PF had a big impact on the distribution of bid
states. The effectiveness of both the participators and
explorers moves toward that of the analyzers. This
phenomenon demonstrates the value of PF for the
bidders in combinatorial auctions. It also emphasizes
the fact that bidder behavior can be significantly influ-
enced by the design choices made by an auctioneer.
With PF, far fewer dead bids overall (about 6% com-
pared to about 30% in each of the other two treat-
ments in setup 1 and about 40% in each of the other
two treatments in setup 2) were placed and a far
greater proportion of winning bids (65% compared
to about 35% in the other two treatments in setup 1
and 59% compared to about 25% in the other two
treatments in setup 2) were placed. The decrease in
dead bids is expected because of the availability of
exact bundle prices, but the high percentage of win-
ning bids with PF implies that, with the availability of
provisional allocation and exact prices for any chosen
bundle (i.e., information analogous to that automati-
cally available in single-item ascending auctions), the
dynamics of the combinatorial auctions become simi-
lar to English auctions, where every new bid is a win-
ning bid. In spite of the relatively higher percentage
of winning bids with price feedback, the winning bids
with the PF were closer to the prescribed minimum
(WL∗). On average, with bidders not explicitly aware
of the WL∗, the winning bids with OF were about $25
above the WL∗ compared to only about $10 above the
WL∗ with PF in either setup.

In summary, the types of feedback and individ-
ual differences in bidders’ strategies have a consis-
tent effect on the states of the bids that are placed.
We find that in either setup, availability of price feed-
back leads to fewer dead bids, as expected, but also
to a high percentage of winning bids. Further, just
announcing the provisional winners (OF) does not
change the behavior of the bidders significantly, in so
far as the bid states are concerned. However, price
feedback changes their behavior considerably.
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5.5. Taxonomy of Bid Characteristics
Although the mapping of bid states across different
bidder strategies provides some interesting insights,
in this subsection we develop a more refined taxon-
omy. The taxonomy includes more nuanced charac-
teristics that identify, for example, whether the bid is
barely live (i.e., just above DL) or is quite close to WL,
or whether the bid was placed early in the auction or
late. The more complex characterization of bids will
allow us to better understand the bidding dynamics.
The resulting taxonomy of bids is then related to bid-
der strategies and feedback in §5.6.

The taxonomy is developed empirically by con-
ducting cluster analysis on the bids in each treat-
ment based on the following attributes of each bid:
(i) TIME—the normalized time when the bid was
placed; e.g., if a bid was placed halfway through the
auction, the TIME is 0.5. (ii) SIZE—the size of the
bundle on which the bid was placed, in terms of
the number of items in the bundle; e.g., the SIZE of
a bid on {ACD} is 3. (iii) STATE—the state of the bid
immediately after it was placed, defined as − 1 if the
bid was dead; 0 if it was live; and 1 if it was win-
ning. (iv) WINSPAN—defined as 1 if the bundle on
which the bid was placed was among the provisional
winners right before the bid was placed, and 0 if it
was not winning. (v) EXCESS_DL—the percentage by
which the amount of the bid was above the DL∗, i.e.,
the minimum required to place a live bid, calculated
as (Bid-DL∗)/DL∗ for a bid above the DL∗, and 0 oth-
erwise. (vi) EXCESS_WL—the percentage by which
the amount of the bid was above the WL∗, i.e., the
minimum required to place a winning bid, calculated
as (Bid-WL∗)/WL∗ for a bid above the WL∗, and 0
otherwise. (vii) SEARCH—the total number of clicks
by the bidder prior to placing the bid.

Note that with PF, the winning bids were continu-
ously identified at each stage of the auctions, and the
minimum potentially winning bids could be immedi-
ately obtained by the bidder for any chosen bundle.
Furthermore, all the dead bids were removed from
display. Thus, STATE, WINSPAN, EXCESS_DL, and
EXCESS_WL were directly available to the bidders.
With OF, WINSPAN was known because the winning
set of bids was identified, but STATE, EXCESS_DL,
and EXCESS_WL were only available indirectly and
in a very limited sense—only for the (very few) bids
that were provisionally winning at a given time. For
instance, if a bid of $100 on bundle {ABC} is winning
at a certain stage of the auction, $100 is the DL as
well as the WL on {ABC}, according to the theoreti-
cal results derived in Adomavicius and Gupta (2005).
Thus, the identification of winning bids implicitly
provided feedback regarding the minimum potential
bids on those bundles. However, at any stage of the
six-item auction, there could only be between one and

six winning bundles out of the 63 possible bundles.
With BF, none of this bid-related information (i.e.,
STATE, WINSPAN, EXCESS_DL, and EXCESS_WL)
was explicitly provided to the bidders.

As in the bidder analysis, we use the EM algorithm
(Witten and Frank 2005) to find out the optimum
number of bid clusters, and then apply the k-Means
procedure to discover the clusters. We find five clus-
ters with BF, six with OF, and four with PF. The
cluster centroids are shown in Table 5. Although the
number of clusters discovered in each treatment dif-
fers, significant similarities exist in the clusters across
the three treatments, allowing us to identify six bid
types overall.

For each feedback condition, we find a cluster
with jump bids (with high EXCESS_DL and high
EXCESS_WL) placed early in the auctions. These bids
are all winning bids (STATE = 1) in setup 2 and with
PF in setup 1 but a mix of live and winning bids with
BF and OF in setup 1; furthermore, they occur after
moderate to high SEARCH. We call these bids early
aggressive winning bids (EAWB).

With BF and OF we find a cluster of early dead bids
(EDB): dead bids (STATE = −1) placed relatively early
(TIME < 0040) in the auctions. Similarly, we find a
cluster of late dead bids (LDB) characterized by pri-
marily dead bids placed relatively late in the auctions
(TIME > 0065). We do not find either of these clusters
with PF.

Another bid type in the first part of the auctions
is a cluster of early live bids (ELB), seen in each treat-
ment except with BF in setup 1, containing primar-
ily live bids placed relatively early in the auctions
(TIME < 0035). These bids are somewhat similar to the
earlier occurring EAWB, but occur a little later and
are less aggressive (i.e., have smaller EXCESS_DL and
EXCESS_WL values).

Along with the continued use of dead bids (LDB
defined above) with BF and OF, in the second half
of the auctions the bids retain a similar character
with a somewhat more conservative slant compared
to the first half. In all three treatments, we find a clus-
ter of bids placed on provisionally winning bundles
(WINSPAN = 1). With both BF and OF this cluster
contains about 15% of the bids in that treatment and
is entirely composed of winning bids (STATE = 1).
With PF it contains 19% of the bids in setup 1 and
24% in setup 2, with over 90% winning in each
case. Based on these characteristics, we call this clus-
ter of bids winning span winning bids (WSWB). The
bids bear a similarity to the initial EAWB; how-
ever, they are less aggressive with lower EXCESS_DL
and EXCESS_WL. For BF and PF, these bids involve
slightly less SEARCH than is used for EAWB; but for
OF, a high amount of SEARCH is required.
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Table 5 Cluster Centroids for Bids

Feedback type (no. of bids) Clusters (% of bids) TIME SIZE STATE WINSPAN EXCESS_DL EXCESS_WL SEARCH

Setup 1
Baseline feedback (BF) (708) (EAWB) (29%) 0017 2009 0041 0 28091 10074 13015

(EDB) (20%) 0038 2074 −1 001 0 0 703
(ELB)a

(WSWB) (14%) 0053 2084 1 1 0011 0011 10049
(LDB) (10%) 0068 4083 −0099 0007 0 0 11008
(CLWB) (27%)b 0069 2059 0023 0 3017 0038 12091

Outcome feedback (OF) (1,124) (EAWB) (21%) 0020 1085 0053 0 20034 7085 17009
(EDB) (15%) 0036 2036 −1 0021 0 0 8010
(ELB) (13%) 0025 3077 0021 0 13021 3086 17034
(WSWB) (14%) 0061 2060 1 1 0007 0007 26081
(LDB) (16%) 0067 3092 −1 0 0 0 14052
(CLWB) (20%) 0072 2078 0044 0 2040 0002 21046

Price feedback (PF) (1,216) (EAWB) (23%) 0022 2049 1 0 6018 4030 15064
(ELB) (27%) 0033 2037 −0020 0 3013 0 12004
(WSWB) (19%) 0053 2041 0094 1 0040 0040 13000
(CLWB) (31%) 0078 2087 0079 0 0092 0003 19034

Setup 2
Baseline feedback (BF) (1,023) (EAWB) (14%) 0027 2032 1 0 14090 7094 12040

(EDB) (23%) 0033 3042 −1 0 −0035 −0050 9025
(ELB) (22%)a 0030 1068 0 0 6083 −0053 9030
(WSWB) (15%) 0052 3013 0056 1 0003 0003 11014
(LDB) (27%) 0078 3001 −0059 0 −0012 −0047 10027
(CLWB)b

Outcome feedback (OF) (1,411) (EAWB) (27%) 0029 3001 1 0 14041 9043 10094
(EDB) (13%) 0029 4083 −0098 0002 −0020 −0029 6045
(ELB) (13%) 0017 2034 −0042 0007 6067 −0043 6090
(WSWB) (14%) 0048 3021 1 1 0007 0007 8098
(LDB) (17%) 0070 2069 −1 0008 −0029 −0049 5079
(CLWB) (16%) 0066 2060 0004 0 2027 −0003 7046

Price feedback (PF) (1,510) (EAWB) (28%) 0045 2014 1 0 5021 2028 8059
(ELB) (28%) 0032 2025 −0018 0 4045 −0046 9018
(WSWB) (24%) 0047 3055 0086 1 0005 0005 9069
(CLWB) (20%) 0077 1087 0049 0 0052 −0020 11080

aThis cluster exists in setup 2 but not in setup 1.
bThis cluster exists in setup 1 but not in setup 2.

Finally, in all three treatments (with the exception
of BF in setup 2) we find a cluster of live and win-
ning bids placed relatively closer to the DL and WL.
Thus we call these bids conservative live and winning
bids (CLWB). These bids bear a similarity to the ELB
but are placed much later in the auction and are gen-
erally more conservative, with lower EXCESS_DL and
EXCESS_WL.10 Further, these bids are associated with
a higher amount of SEARCH compared to the ELB.

Overall, we find the clusters in the two setups to be
very similar, with two notable differences, both with
BF: The cluster of CLWB is found in setup 1 only, and
the cluster of ELB is found in setup 2 only. Compari-
son of the clusters with BF in the two setups reveals
that the EDB cluster appeared in setup 2 primarily at

10 For PF in setup 1, EXCESS_WL is not lower for CLWB because
of a floor effect. In other words, for ELB with this feedback,
EXCESS_WL is already at its minimum (i.e., 0). The value for CLWB
is not appreciably higher (0.03).

the expense of the EAWB, which were 29% in setup 1
but only 14% in setup 2. It could be that the bid-
ders wanted to place winning bids but, because of the
relatively more challenging environment in setup 2,
ended up placing bids that were live but not win-
ning. This is also most likely the reason that in setup 2
it was harder to place live or winning bids toward
the end of the auction with BF. This resulted in the
LDB cluster that is almost triple the size (in term of
percentage) in setup 2 as it is in setup 1 while the
CLWB cluster vanished. Thus, the increased difficulty
of the task with the less structured valuations led to
less effective bidding when no outcome or price feed-
back was provided. The provision of this feedback
improved the performance so that this increased task
difficulty was mitigated and lowered bid effectiveness
(resulting in substantially more dead bids) was not
observed.

In summary, like in the case of bidders (§5.3), we
find a fairly stable taxonomy of bids in each treatment.
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The analysis reveals that, unlike assumptions of ratio-
nal bidding, actual bidders place a variety of bid
types and not just one. In the next section, we explore
the patterns of bid type usage by different bidder
strategies.

5.6. Bidder Strategies and Bid Characteristics
The considerable consistency in the bid clusters across
the three feedback conditions with the fine-grained
level of individual bids validates their use as a sound
taxonomy to help develop a better understanding of
bidder behavior. In this section, we use this bid tax-
onomy along with the classifications of the bidders
(identified in §5.3) to explore the types of bids that
different classes of bidders place under different types
of feedback.

Figure 4 graphically displays the percentages of bid
types by types of bidder and feedback for the two
setups. Several bidding tendencies are apparent from
the charts. First, in §5.4, we noted that participators
and especially explorers place a large number of dead
bids with BF and OF. The detailed analysis confirms
the result but provides some interesting additional
insights. It is clear from Figure 4 that explorers place
significantly higher number of dead bids than partic-
ipators. Further, although analyzers do not place any

Figure 4 Bid Composition for Each Bidder Type
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dead bids in setup 1, a significantly larger number of
analyzers in setup 2 results in a few late dead bids.
However, except for analyzers who only place late
dead bids in setup 2, there is no consistent pattern in
terms of whether the dead bids are placed early in
the auctions (EDB) or late in the auctions (LDB). So,
even with a small number of bids early in the auc-
tions, the participators and explorers found it hard to
realize with BF and OF that the bids they are placing
are below DL∗; on the other hand, analyzers seem to
be able to avoid early dead bids. Also, a reduction of
dead bids does not occur as learning during the auc-
tion. The reduction primarily arises with appropriate
feedback (PF) or with a particular bidding strategy
(analyzer’s strategy).

Second, another difference is tied to bidding strat-
egy: In setup 1, analyzers place a significantly higher
proportion of conservative live and winning bids
(CLWB) as compared to other bidders and as com-
pared to the other type of bids they themselves place.
Three-fourths of the analyzers’ bids with BF, two-
thirds with OF, and close to half with PF are CLWB.
These bids are a prime component of the analyzer
strategy in setup 1. Note that CLWB is likely to
result in highest surplus, especially with conservative
live bids. However, in setup 2, CLWB is a dominant
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strategy only with PF, and the strategy does not even
appear with BF. It appears that with the more com-
plex valuation structure (with setup 2), price feedback
(PF) is necessary for even analyzers to use this higher
surplus generating strategy.

Third, as the information content of the feedback
increases, the number of early aggressive winning
bids (EAWB) changes in interesting ways. In both
setups, participators place more aggressive early bids
in BF and OF as compared to explorers; however, with
PF participators place fewer aggressive bids as com-
pared to explorers, especially with setup 2. This effect
is even more pronounced for analyzers in setup 2
where they place the highest number of EAWB bids
with BF and OF but the smallest number of EAWB
with PF. It appears that bidders that conduct a higher
level of analysis before placing a bid tend to bid
less aggressively early as more feedback is provided,
whereas the bidders that conduct less analysis either
do not change the aggressiveness of their early bids or
even increase their aggressiveness as more feedback
becomes available. This seems to be a defining differ-
ence between analyzers and the other bidder types.

Fourth, analyzers and participators seem to be the
most consistent users of winning span winning bids
(WSWB). It is part of the participators’ strategy in
every treatment, and of the analyzers’ strategy in vir-
tually every treatment (except for OF in setup 1).
Explorers, on the other hand, seem to be using this
strategy sparingly.

Finally, with both setups, the tendency to place ELB
increases from OF to PF. The availability of prices
appear to positively influence the tendency to place
live bids early in the auction, however, the bidding
strategy does not appear to have any impact on the
use of ELBs. Thus, differences in the use of ELBs is
driven by the situation and not by the strategy used
by the bidder. Between OF and PF, feedback aids in
the placing of live, but not necessarily winning, bids
early in the auction. With BF, the behavior is not so
clear: there are no ELB in setup 1 but a significant
number of them in setup 2. Although this needs to
be further examined in the future, we believe the
higher number of ELB in setup 2 is consistent with
the higher number of LDB in that setup both of which
arise out of the use of more conservative bidding in
setup 2, most likely due to a more challenging valua-
tion structure.

An understanding of how bidding strategies dif-
fer across different types of bidders and which of
these strategies are more susceptible to changes in
valuations and which are more robust against these
changes help understand the effect of design choices
on bidder strategies. Toward that end, it should be
noted that bidder strategy distributions are quite sim-
ilar across the two experimental setups for PF as

opposed to BF and OF where there is a much larger
variance in the distribution of strategies employed by
the bidders. In the next subsection, we explore the
economic impact of bidding strategies employed by
the bidders.

5.7. Impact of Bidder Strategies on
Bidders’ Economic Welfare

An important consideration in the design of trad-
ing mechanisms is the profit implications of differ-
ent bidding strategies (Bapna et al. 2004). Having
a reasonably good understanding of the structural
nature of bids placed by the bidders, we conclude
our results with attention to the success of the three
classes of bidders, as individuals, in generating sur-
plus for themselves. In particular, we want to learn
whether the analyzers, with their seemingly superior
bidding strategy, are able to garner higher surplus
than their counterparts. We also observe how differ-
ent combinations of bidders, as a group, impact the
surplus.

The mean surplus drawn by each type of bidder in
each treatment is shown in Figure 5. Within each type
of feedback, the analyzers generate the maximum sur-
plus for themselves, whereas the explorers retain the
minimum surplus. Feedback type also influences sur-
plus, with OF decreasing the surplus and PF increas-
ing the surplus, compared to the baseline case.

In addition to these individual-level patterns upon
surplus, we are also interested in auction-level bid-
der patterns. In particular, because an auction is a
competitive game, we hypothesize that the types of
the other bidders, with which each bidder had to
compete, will have an effect on economic outcomes,
including the retained surplus. Out of the 10 possible
combinations of three bidder types (because each auc-
tion had three bidders), four different combinations
of bidder types were present in the auctions that we
conducted with setup 1: {APP} (n= 7), {PPP} (n= 22),
{PPE} (n = 9), and {PEE} (n = 6), where A represents
analyzer, P represents participator, and E represents
explorer; and nine combinations were present with
setup 2: {AAA} (n = 2), {AAP} (n = 5), {AAE} (n = 3),
{APP} (n = 5), {AEE} (n = 3), {PPP} (n = 10), {PPE}
(n = 3), {PEE} (n = 3), and {APE} (n = 5). Thus, for a
given bidder, the possible combinations of competing
bidders were {AP} (n = 14), {PP} (n = 82), {PE} (n =

30), and {EE} (n= 6) in setup 1, and {AA} (n = 14),
{AP} (n = 25), {AE} (n = 17), {PP} (n = 38), {PE} (n =

17), and {EE} (n = 6) in setup 2. We call these com-
binations of competing bidders competition types and,
based on our analyses above, we characterize them
as follows: {AA}—highly intense, {AP}—intense, {AE}
and {PP}—strong, {PE}—moderate, and {EE}—weak. As
can be observed from the combinations presented
above, in setup 1, no bidder faced highly intense
competition.
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Figure 5 Average Surplus Generated by Each Bidder Type
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For the individual’s retained surplus, we use
ANOVA to study the three factor model including
feedback effect, the effect of the bidder’s own type (in
terms of the three bidder strategies), the competition
type effect, and all possible interactions. The results
for both setups are shown in Table 6. Overall, the
model is significant at the 1% level with a reasonably
good explanation of variance (adjusted R2 > 17%). As
observed in Figure 5, the bidder strategies have a
significant impact on bidder’s surplus. Interestingly,
although in Figure 5 feedback appears to have a direct

Table 6 ANOVA of the Factors Influencing Individual’s Surplus

Setup 1 Setup 2

Degrees of Degrees of
freedom F freedom F

Feedback type 2 2013 2 1081
Bidder type 2 3026∗∗ 2 2095∗

Competition type 3 0056 4 1023
Feedback type 4 0024 4 0033

× Bidder type
Feedback type 6 2083∗∗ 8 2020∗∗

× Competition type
Bidder type 1a 4058∗∗ 7 3096∗∗∗

× Competition type
R2 = 003036; R2 = 003659;

Adj. R2 = 001927; Adj. R2 = 001735;
F 41811135= 2074∗∗∗ F 4271895= 3010∗∗∗

aThe degree of freedom is only 1 for lack of data points for all possible
combinations of bidder and competition types.

∗∗∗, ∗∗, and ∗ denote statistical significance at the 1%, 5%, and 10% levels,
respectively.

impact on surplus, feedback and competition have no
direct effect. Instead, the two factors interact in their
relationship to surplus. The impact of bidder strate-
gies is also moderated by competition; i.e., the effec-
tiveness of a strategy is dependent upon the other
bidders in the auction.

To uncover the patterns of these interactions, we
employ pairwise t-tests. Table 7 presents the results
from pairwise comparisons of the surplus by feedback
and competition types (with N/A indicating where
comparisons could not be conducted because of lack
of data) for the two setups.

It is quite clear that with PF, bidders generally
extract greater surplus as compared to that with BF
and OF under most of the competitive environments.
This is primarily because bidders with PF were able to
formulate more precise bids due to the availability of
information regarding the minimum prices required
to place live and winning bids. The bidders with OF,
on the other hand, could find out whether they were
winning, but not how much to bid on a bundle of
their choice to place provisionally winning bids. Thus
the nonwinning bidders placed large bids in order
to become winners. For instance, if we consider the
late jump bids (bids well above WL∗ in the final quar-
ter of auctions) with OF, more than 75% of those
bids in either setup were placed by the bidders who
were not winning at that point. Without the feed-
back on minimum prices, these bidders placed jump
bids, thereby squeezing their surplus. Thus, except in
one case (with intense competition in setup 2), the
retained surplus of bidders with OF was either similar
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Table 7 Tests of the Effects of Feedback on Surplus Within Each Type of Competition

Highly intense (AA) Intense (AP) Strong (PP & AE)a Moderate (PE) Weak (EE)

Setup1
Outcome vs. baseline feedback N/A t (4) = 10707 t (56) = 2076∗∗ t (16) = 00499 t (3) = 2000

(BF > OF)

Price vs. baseline feedback N/A t (10) = 20577∗∗ t (50) = 0048 t (18) = 2038∗∗ N/A
(PF > BF) (PF > BF)

Price vs. outcome feedback N/A t (8) = 30457∗∗ t (52) = 1084∗ t (20) = 2027∗∗ N/A
(PF > OF) (PF > OF) (PF > OF)

Setup2

Outcome vs. baseline feedback t (9) = 1045 t (13) = 1098∗ t (33) = 1089∗ t (8) = 2031∗∗ t (2) = 1089
OF > BF BF > OF BF > OF

Price vs. baseline feedback t (7) = 1066 t (19) = 2017∗∗ t (34) = 2006∗∗ t (10) = 1083∗ t (1) = 2011
PF > BF PF > BF PF > BF

Price vs. outcome feedback t (6) = 2016∗ t (13) = 1084∗ t (37) = 3021∗∗ t (9) = 0072 t (3) = 1033
PF > OF PF > OF PF > OF

aNo instance of {AE} in setup 1.
∗∗ and ∗ denote statistical significance at the 5% and 10% levels, respectively.

to or significantly less than that of their counterparts
with BF.

This analysis, important for system designers, val-
idates the observation in behavioral research that
simply providing outcome feedback is generally insuf-
ficient for decision makers to make myopically opti-
mal decisions (e.g., Brehmer 1980). Because OF
lacked strategic information regarding which lots and
amounts to bid, this type of feedback was unable to
help the bidders in making profitable decisions.

Besides feedback, competition also has a moderat-
ing effect on the impact of bidder strategies. Table 8
presents the detailed comparisons via pairwise t-tests
to further investigate the nature of this moderation.
In setup 1, we had insufficient observations for anal-
ysis for the intense and weak competition types, and

Table 8 Tests of the Effects of Bidders on Surplus with Different Types of Competition

Highly intense (AA) Intense (AP) Strong (PP & AE)a Moderate (PE) Weak (EE)

Setup1
Analyzers vs. participators N/A N/A t (71) = 3060∗∗∗ N/A N/A

(A > P)
Analyzers vs. explorers N/A N/A t (14) = 2006∗∗ N/A N/A

(A > E)
Participators vs. explorers N/A N/A t (73) = 0063 t(28) = 4007∗∗∗ N/A

(P > E)

Setup2
Analyzers vs. participators t (9) = 2063∗∗ t (18) = 2031∗∗ t (44) = 1072∗ t (9) = 2055∗∗ t (4) = 0081

A > P A > P A > P P > A
Analyzers vs. explorers t (7) = 3021∗∗ t (13) = 2009∗ t (18) = 1084∗ t (9) = 0084 t (1) = 2010

A > E A > E A > E
Participators vs. explorers t (6) = 1096∗ t (13) = 0056 t (41) = 2001∗ t (10) = 2095∗∗ t (3) = 2039∗

P > E P > E P > E E > P

aNo instance of {AE} in setup 1.
∗∗∗, ∗∗, and ∗ denote statistical significance at the 1%, 5%, and 10% levels, respectively.

even for the moderate competition type we could con-
duct only one comparison (the others indicated as
N/A). For the groups in setup 2 and for the groups
with sufficient data to conduct the analysis in setup 1,
the general pattern observed in Figure 5 is statisti-
cally validated. Analyzers obtained the highest sur-
plus, participators were next, and explorers had the
lowest surplus. The added nuance is that competi-
tion reduces the difference between participators and
explorers. Participators extract higher surplus with
moderate competition, but not with strong competi-
tion in setup 1. Even in setup 2, explorers generate
higher surplus than participators with weak competi-
tion, and are only weakly dominated by participators
with highly intense and strong competition. An in-
depth analysis of the competition’s moderating effect

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

16
0.

94
.1

13
.1

76
] 

on
 2

8 
Ja

nu
ar

y 
20

16
, a

t 1
5:

02
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Adomavicius et al.: Feedback and Bidder Behavior in Combinatorial Auctions
828 Management Science 58(4), pp. 811–830, © 2012 INFORMS

on the impact of bidder strategies across all possible
competition types constitutes an interesting direction
for future work.

In summary, we find that analyzers retained the
highest surplus followed by the participators and
explorers. The analyzers were able to effectively use
the available information to actively navigate the
search space and place bids with higher precision.
Their adaptive strategy, along with consistent use of
CLWB and avoidance of dead bids, allows them to
be successful even with the changes across setups.
The explorers, on the opposite end of the strategy
spectrum, did not attempt to effectively use the avail-
able information, placed a large percentage of incon-
sequential (dead) bids, both early and late in the auc-
tion, and as a result ended up with a lower average
surplus.

6. Conclusions
When assets have value complementarities that dif-
fer across bidders, combinatorial auctions can have
significant advantages over multiple single-item auc-
tions of the assets. To study the behavior of bidders
under different conditions, we constructed an exper-
imental combinatorial bidding environment. Unlike
other combinatorial auction mechanisms proposed in
the literature, the mechanism used for this study is
continuous. However, with proper information pro-
vided to the bidders, the design remains as efficient
as the CC auction, which has been shown to be an
efficient iterative mechanism in multiple studies.

Although studies of bidder behavior in single-item
auctions (Bapna et al. 2003, 2004) focused primarily on
bidding behavior, our analysis added the clickstream
data of bidders that allowed us to better understand
the bidders’ decision-making processes. Our analysis
applied these data to detail both the types of bidders
and the types of bids placed by them. The analysis of
the bid and click data revealed three bidder types—
analyzers, participators, and explorers—each exhibit-
ing a distinct set of bidding behaviors that is con-
sistent across different information feedback regimes
and valuation schemes. This stable taxonomy of three
bidder types based on their aggregate bidding behav-
ior is a major finding of our research. Some bidders,
with more profitable bidding strategies than others,
are able to generate higher surpluses than their coun-
terparts. Furthermore, the type of competition (in
terms of bidding strategies) that a bidder faces in
an auction moderates the effect of feedback on the
retained surplus. In addition, we identified six distinct
types of bids that bidders placed in the auctions. The
three types of bidders differed in the portfolio of their
bids. Further, the strategies were sensitive to the infor-
mation provided, with the increased transparency of

price feedback reducing the heterogeneity in the type
of bids placed.

Stepping back from the details of the findings, the
main managerial contributions are threefold. The pri-
mary contribution is the understanding of bidder
behavior in these continuous auctions. To design an
effective combinatorial auction mechanism that could
be deployed in the online marketplace with a high
probability of success, it is important to understand
how the manipulation of design parameters (such as
the information feedback provided to bidders) influ-
ences their bidding behavior, and how certain behav-
iors of agents lead to differing economic outcomes.
To date, researchers have focused on developing fast
algorithms and heuristics to accelerate winner deter-
mination as well as on designing iterative mecha-
nisms to simplify participation. Still, despite their
potential relevance, these auction mechanisms have
not penetrated the consumer marketplace. The devel-
opment of practical continuous designs of combi-
natorial auctions that maintain intuitive features of
popular English auctions is believed necessary for
general use of combinatorial auctions among con-
sumers. The technical developments for conducting
continuous combinatorial auctions are now available,
but the study of bidder behavior in such auctions
has been largely untouched. The manner in which
users interact with information systems is crucial to
their design (Bapna et al. 2004). Following this insight,
the present study provides an important, valuable,
and necessary step in developing the underpinnings
for combinatorial auctions to be feasible for gen-
eral consumer use. Because continuous combinatorial
auctions are not yet a popular mechanism in prac-
tice, we do not have field data to study the type of
bids made in such auctions. The findings from this
research can be used in simulating realistic continu-
ous combinatorial bidding environments. Conceptu-
ally, the endeavor is similar to that of Leyton-Brown
et al. (2000) who created the combinatorial auction
test suite (CATS) of distributions for generating com-
binatorial bids in five application domains based on
assumptions of how bidders might construct bundles
and bid amounts. This software has been frequently
used (Adomavicius and Gupta 2005, Gunluk et al.
2005, Hudson and Sandholm 2004, Sandholm et al.
2005, Yokoo et al. 2001) to evaluate and optimize com-
binatorial auction winner determination algorithms.
Our study, by throwing light on how human bid-
ders place bids in a competitive environment, pro-
vides insights for generating more realistic bid dis-
tributions for the study of continuous combinatorial
auctions. We believe that studies regarding the perfor-
mance of combinatorial auctions (Adomavicius et al.
2007, Goeree and Holt 2010, Kwasnica et al. 2005)
combined with an understanding of bidder behavior
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in such auctions will enable the design of continu-
ous combinatorial auction environments that can be
deployed in the online marketplace with a high prob-
ability of success.

Thus, the knowledge of bidder types based on their
bidding characteristics provides the tools for auction
simulations, and allows for a more focused investi-
gation of different strategies and their implications.
With this knowledge, researchers will be able to sim-
ulate different bidder types and observe human bid-
der behavior when engaged with simulated bidders
of different types.

A second managerial implication concerns how
bidders handle complexity as a component of combi-
natorial auctions. Although computational complex-
ity is no longer an issue, because of recent advances,
the cognitive complexity from the bidders’ standpoint
still requires investigation. The auctions’ complexity
primarily arises from three sources. The first is the
degree of competition, a factor whose investigation
is initiated in this study as varying between the two
continuous auction setups. The other two sources of
complexity are the number of items being sold in
the auction and the number of bidders participating
in the auction. Future research needs to expand our
understanding of the effects of complexity along these
different dimensions.

The third broad managerial implication concerns
the role of feedback, particularly as a way of handling
complexity in continuous combinatorial auctions. Our
examination of the impact of feedback suggests that
the dynamics of combinatorial auctions can be signif-
icantly influenced by strategically manipulating the
information provided to the participants. Owing to
the complexity of the package bidding environment,
bidders can benefit from continuous feedback that
assists them in understanding the state of the auction
in terms of what bids are winning and how much the
bidders need to bid to place a winning bid. Our anal-
ysis of the bid characteristics suggests that, without
price feedback, bidders are still unable to formulate
effective bids, resulting in a large percentage (30% to
40%) of dead bids (i.e., inconsequential bids). With
feedback on exact prices and provisional allocation,
bidders are able to place bids with greater precision.
As a result, we believe that providing price feedback
is likely to be essential for the sustainability of the
mechanism in the online marketplace. Otherwise, the
cognitive complexity and unprofitability in terms of
surplus will lead to nonparticipation by bidders.
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