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of these auctions: (i) bidders have multiple purchase opportunities for the same product, and
(ii) winning bidders in each round can acquire multiple units of the same product. We apply
the model to bidding data from the world’s largest flower wholesale market at which trades
are facilitated through fast-paced, sequential, Dutch auctions. Using a two-step estimation
approach, we are able to recover the structural parameters effectively and efficiently. We
then conduct policy counterfactuals to evaluate the performance of alternative design
choices. The results suggest that the current auction practice still has ample room for
improvement. In light of this, we propose an optimization framework that can facilitate
auctioneers” decisions in making the trade-off between revenue maximization and oper-

ational efficiency.

History: Accepted by Lorin Hitt, information systems.

Keywords: auction design  dynamic discrete games ¢ sequential auction * structural modeling

1. Introduction
Auctions have long been used as effective mechanisms
for price discovery and resource allocation. Since the
seminal work of Vickrey (1961), a large body of literature
has investigated various informational and strategic
factors in auction design using the game-theoretic
framework. Despite the elegance of the results, such
game-theoretic work has largely focused on highly
stylized settings. The gaps between those stylized set-
tings and the real-world operating environment seri-
ously limit the direct usefulness of the theoretical
insights to practitioners (Rothkopf and Harstad 1994).
The proliferation of online auctions has fueled a wide
stream of empirical auction research. Depending on the
approach taken to characterize bidding behavior, this
body of literature can be divided into two broad cate-
gories. The first category of work takes the reduced-form
approach and seeks to identify the empirical regularities
from auction data. For example, Roth and Ockenfels
(2002) found that, in eBay auctions, a significant amount
of bids were submitted in the last minute. Lu et al.
(2016) identified five different bidding strategies in
multichannel business-to-business (B2B) auctions and
showed that bidders’ choice of strategies is associated
with their demand, budget constraint, and transaction
cost. Despite its usefulness in understanding real-life
bidding behavior, the reduced-form approach, in

general, cannot be used to evaluate policy interventions
as they often constitute changes in bidders” bidding
strategies (Lucas 1976). The second category of work
takes the structural approach, assuming that bidders
are profit-maximizing agents and they make the best
response to the current situation. The structural ap-
proach attempts to recover the primitives—for exam-
ple, bidders’ value distribution—of an auction model
from the observed data. The estimates of the primitives
allow us to simulate results under alternative auction
designs' and perform policy counterfactuals (Hickman
et al. 2012). For example, using the bidding data from
collectible coin auctions at eBay, Bajari and Hortacsu
(2003) estimated a parametric structural model and
showed that, for any given reserve price, a secret re-
serve price strategy yields higher revenue for sellers.
Although the value of structural models is well ac-
knowledged, so far, the bulk of the structural empirical
literature has focused on the identification and charac-
terization of static (isolated) auctions. It is noteworthy
that in most real-world auctions, both sellers and buyers
are likely to adapt their behavior to the outcomes of
previous transactions (Rothkopf and Harstad 1994).
Sellers may adjust the reserve price and the supply
based on the observations of previous sales. Similarly,
buyers will update their willingness to pay based on
their demand and participation experience as well as the
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outcomes in previous auctions (Goes et al. 2010). In
particular, when buyers realize that there are multiple
opportunities to purchase their desired products, they
will shade the bids in the current auction to account for
future purchasing opportunities (Zeithammer 2006).
Unfortunately, there has been little research that sys-
tematically investigates such dynamic features and their
policy implications.”

Our study attempts to fill this research gap by ex-
amining competitive bidding in a dynamic B2B market:
the Dutch flower auction (DFA) market. The Dutch
flower auctions play a critical role in the global flower
network. In 2017, Royal FloraHolland, the market
leader, reported a turnover of €4.7 billion.” The DFAs
use the multiunit sequential Dutch auction mechanism.
A unique feature of these auctions as opposed to other
sequential auctions is that winning bidders in each
round can purchase multiple units of goods (i.e.,
a homogeneous bundle of flowers). This poses con-
siderable challenges to modeling the dynamic decision
making in these auctions.

Drawing upon the growing literature on dynamic
oligopoly games (Aguirregabiria and Mira 2007, Bajari
et al. 2007), we develop a dynamic structural model to
characterize the bidding behavior in the DFAs. Com-
pared with existing structural auction models, our
model accounts for both bidders’ forward-looking
behavior and their multiunit demand in sequential
rounds. To address the econometric and computational
challenges associated with the estimation of the model,
we adapt the two-step estimation methods in Bajari
et al. (2007) and Jofre-Bonet and Pesendorfer (2003) and
recover the structural parameters governing the model
effectively and efficiently. Using the estimated struc-
tural parameters, we conduct policy counterfactuals to
evaluate and quantify the impact of different design
choices on revenue and turnaround. The results from
counterfactual experiments show that the current
intuition- and experience-based auction practice has
ample room for improvement. In light of this, we
propose a novel optimization framework that can le-
verage the structural properties of bidders’ strategic
bidding behavior and guide auctioneers’ decision
making under different market conditions.

Our paper makes three important contributions.
First, we extend the prior literature on structural
auction models by characterizing bidding dynamics
in sequential auctions in which winning bidders can
purchase multiple units in each round. Currently, most
of the structural models are concerned with single-unit
auctions (Hickman et al. 2012). Of the few papers that
investigated the dynamics of multiunit auctions, bid-
ders are either assumed to have single unit demand
throughout an auction or they can acquire at most one
unit in each round. In contrast to the existing works,
we relax the unit-demand (unit-sale) assumption and

study the strategic bidding behavior in a more general
setting. Second, our work complements the existing
research that concerns the optimization of lot sizes in
sequential auctions (e.g., Pinker et al. 2010 and Chen
et al. 2011). Although significant effort has been de-
voted to quantify the effect of lot size on auction
process and outcome, previous studies implicitly as-
sume that bidders’ bidding strategies are invariant to
the changes in lot-sizing policies. We, on the other
hand, explicitly account for bidders” potential re-
sponses to policy changes while evaluating the per-
formance of different policies. Third, we contribute to
the nascent literature on smart markets in which high-
performance computational tools can assist human
decision makers in complex trading environments
(Bichler et al. 2010). In particular, our structurally based
optimization framework provides the basis of the de-
sign and development of effective decision support
systems for auctioneers in the DFAs and thereby offers
the first step in reengineering this complex B2B market
toward a smart market.

The remainder of this paper is organized as follows.
Section 2 provides a review of relevant literature. Section 3
introduces the empirical context and presents results
from preliminary analysis. Sections 4 and 5 describe
the structural modeling framework and estimation
methods. The empirical results are presented in Section 6.
In Sections 7 and 8, we demonstrate how to use the
structural estimation results to perform policy coun-
terfactuals and optimize key auction design parameters
in sequential auctions. Finally, in Section 9, we draw
conclusions and outline the future research directions.

2. Literature Review

Our research draws upon two streams of literature:
(i) structural econometric analysis of auction data and
(ii) dynamic oligopoly games.

2.1. Structural Analysis of Auction Data

The structural econometric analysis of auction data,
pioneered by Paarsch (1992), has emerged as one of the
most successful areas of empirical auction research. By
assuming that all observed bids are the equilibrium
bids, the goal is to recover the economic primitives
(e.g., distribution of bidders’ valuations) of the un-
derlying auction model. Over the past decades, there
has been significant progress in structural econometric
analysis of common auctions (Hickman et al. 2012). The
estimation methods can be broadly divided into two
categories: parametric and nonparametric. The para-
metric estimation—for example, Donald and Paarsch
(1996)—imposes explicit distributional assumptions
on bidders’ value distribution, which inevitably bears
misspecification risks. In contrast, the nonparametric
methods initiated by Guerre et al. (2000) do not re-
quire any a priori assumptions regarding the value
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distribution and in many cases offer computational
advantages. Unfortunately, only a few standard auc-
tion models are nonparametrically identifiable (Athey
and Haile 2002).

So far, most of the structural modeling research has
restricted attention to static auctions (Paarsch 1992,
Donald and Paarsch 1996, Guerre et al. 2000, Flambard
and Perrigne 2006). Comparatively, dynamic auctions
(e.g., sequential, Dutch auctions) are much less well
understood. Our paper aims to fill this gap in the lit-
erature. In particular, drawing upon the empirical
findings from Zeithammer (2006), we explicitly model
bidders’ strategic forward-looking behavior in se-
quential auctions. In this regard, our work is related to
the recent work of Backus and Lewis (2016), in which
the authors propose a demand system for a dynamic
market with heterogeneous goods and directed search.
However, their model restricts attention to unit-
demand bidders (thus, winning bidders would exit
at the end of each period with certainty) whereas we
allow for acquisition of multiple units in each round.”* It
is noteworthy that in multiunit settings, bidders have
the incentive to shade bids differently across units
(Ausubel et al. 2014), and the equilibrium can involve
mixed strategies (McAfee and Vincent 1993). Such
complication poses significant challenges to the iden-
tification and estimation of the underlying models. On
the methodology side, we build on Jofre-Bonet and
Pesendorfer (2003) although the latter examines first-
price, sealed-bid procurement auctions with a given
number of bidders whereas we are dealing with fast-
paced Dutch auctions in which only winning bids are
revealed. An important innovation of our work is that
we combine the estimated structural parameters with
the institutional characteristics and build a dynamic
optimization framework to facilitate auctioneers’ de-
cision making.

2.2. Dynamic Oligopoly Games
Given that in sequential auctions bidders’ decisions not
only affect their own payoffs in the current and future
periods, but also the payoffs of their competitors, the
bidding competition studied in our paper is conceptu-
ally similar to the dynamic oligopoly games in indus-
trial organization literature. In their pioneering work,
Ericson and Pakes (1995) (EP) modeled the dynamics of
an oligopoly market with a set of incumbent firms and
a large number of potential entrants and introduced the
Markov perfect equilibrium (MPE) as the solution
concept. The EP model and its extensions have been
widely adopted to study strategic interactions of het-
erogeneous agents in many different fields, including
marketing (Dubé et al. 2010, Yao and Mela 2011) and
information systems (Huang et al. 2015).

Despite the theoretical attractiveness, one of the
main challenges when applying the EP-type models

to real-world settings is the dimensionality problem as-
sociated with the computation of MPE.” Specifically,
because dynamic oligopoly models are analyti-
cally intractable, the “curse of dimensionality” is present
even in a simple model with a small number of players
(Bajari et al. 2007). As soon as we start to account for the
potential heterogeneity among different players (e.g.,
differentiated products or heterogeneous costs), the
computational burden quickly becomes prohibitive. In
our case, given that more than 100 bidders may par-
ticipate in the bidding competition in each auction, we
draw upon the asymptotic environmental similarity
(AES) property of large auctions (Swinkels 2001) to
approximate bidders’ decisions in sequential rounds
of the auctions.

3. Empirical Context and Data

A good understanding of the institutional environment
and the behavior of the economic agents (individuals
or firms) involved in the environment is both helpful
and necessary to any structural modeling work. In this
section, we first introduce the empirical context, fo-
cusing on the auction mechanism and bidders’ decision
process, and then discuss the data and preliminary
analyses that serve as important precursors to our
structural modeling framework.

3.1. The Dutch Flower Auctions

The Dutch flower auctions play a vital role in the global
floriculture sector, both as a marketplace and as
a distribution hub (Kambil and van Heck 2002). The
auctions attract growers not only from the Netherlands,
but also from other countries—particularly, Belgium,
Denmark, Ecuador, Ethiopia, Germany, Israel, Italy,
Kenya, Spain, and Zimbabwe—who ship their
flowers to the Netherlands for sale. Because flowers
are highly perishable goods, realizing short lead
times is of utmost importance. Most flowers make it
from the growers to the retail shops within 24 to
48 hours.

On weekday mornings, flowers are brought to the
auction halls before 4:30 a.m., and their quality is
assessed before the auctions start at 6:30 a.m. It is worth
mentioning that, currently, 99% of the cut flowers sold
through the auctions are rated as Al, the highest
quality level. Flowers are auctioned in separate lots,
which are bundles of homogeneous products (i.e., from
the same grower and with the same characteristics).
The size of a lot can vary from a few units to more than
a hundred units. Depending on the type and quality of
flower, each unit consists of 10 to 50 stems. Currently,
different product categories (e.g., roses, chrysanthe-
mums) are auctioned based on a predetermined order
throughout the year. However, within the same
product category, the order of auctions is determined
by random draws from the grower pool to ensure
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Figure 1. Overview of the Two Buying Scenarios

Growers Dutch Flower Auctions Wholesalers Retailers

Scenario 1

Notes. In the first scenario, retailers buy for themselves. In the second
scenario, wholesalers buy for their retail clients.

fairness. All the bidders and auctioneers are notified
about the detailed auction schedule at the beginning of
the day.

There are two buying scenarios through the DFAs
(see Figure 1). In the first scenario, the DFA directly
sells flowers to the retailers (e.g., florists) whereas, in
the second scenario, the DFA sells to wholesalers who
buy on behalf of their clients (e.g., retailers located in
different countries). Around two thirds of the auc-
tioned flowers are sold to wholesalers. In this research,
we choose to focus on the bidding and auctioning
decisions in the wholesale scenario.

3.1.1. The Mechanism. The DFAs use an open-cry,
descending auction mechanism, which is also known
as a Dutch auction. It is implemented using a single-
handed clock that initially points to a high price and
then quickly ticks down in a counterclockwise di-
rection. As the price falls, each bidder can bid by
pressing a button indicating that the bidder is willing to
accept the current price. The first bidder who makes
a bid wins. The winning bidder can select the purchase
quantity (which must exceed the minimum quantity set
by the auctioneer). If the winning bidder does not
purchase all the available units in the current lot, the
clock restarts at a high price and the auction continues.
This process repeats until the entire lot is sold or until
the price falls below the seller’s reserve price, in which
case any unsold goods in that lot are destroyed.” On
average, each transaction takes three to five seconds.

3.1.2. Auctioning. Each auction clock is closely moni-
tored by an auctioneer, who can influence the bidding
competition by controlling the speed of the clock, the
starting price, and the minimum purchase quantity.
The auctioneers’ objective is twofold: to realize high
selling prices and to achieve a quick throughput.
During the actual auction process, auctioneers need to
set the auction parameters, taking into account internal
conditions (e.g., warehousing) and market conditions,
which, in turn, depend on the following: (i) historical

Figure 2. Factors Impacting the Auctioneer’s Decision

Product
Prices Characteristics

Historical Upcoming

Auctions

\A]‘ A2 A3
Y A 4

Market Condition

V A
Y

Minimum
Purchase Quantity

T A9 TAS

Warehousing and
Logistic Issues

N“ A7
Y

Starting Price

h

Clock Speed

prices, (ii) product characteristics (e.g., quality mea-
sures), and (iii) upcoming auctions. Because of the high
complexity and extreme time pressure, even though
auctioneers have many years of experience, their de-
cisions are neither optimal nor standardized (Bichler
et al. 2010). In particular, the clock speed is kept con-
stant (36 milliseconds per tick), and the starting price in
subsequent rounds is set by adding a constant in-
cremental on top of the winning price in the current
round (constant swingback). The minimum purchase
quantity is the only parameter used by auctioneers to
influence the real-time bidding dynamics. Figure 2
depicts factors impacting the auctioneer’s decision.
The links A5 and A8 are the focal processes we address
in this paper.

3.1.3. Bidding. As a rule of thumb, no bidder in the
DFAs should ever bid more than the bidder’s walue
of the product (flowers) less any associated costs.
A bidder’s utility upon winning increases as a function
of how far below the bidder’s value the winning price
is. Therefore, the key question a bidder faces concerns
the right time to hit the buy button (i.e., at what price)
and make a purchase. The answer to this question
depends on the price at which the bidder expects the
auction to clear—in other words, the bidder’s predicted
winning price.

These auctions constitute games of incomplete in-
formation. In particular, each auction comprises a set of
players (the bidders), each with a set of actions (prices
and quantities) and private information (resale values),
and the outcome of an auction depends on the choices
of all players rather than the choices of a single player
as in a monopolistic setting or the choices of none as in
a model of perfect competition. Figure 3 depicts factors
impacting the bidder’s decision. The links denoted by
B1-B5 are the processes we model in the current paper.

3.2. Data

Our data consists of transaction details of large roses
from a major auction site” between September 1 and
October 10, 2014 (six weeks with 30 auction days).
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Figure 3. Factors Impacting the Bidder’s Decision
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Table 1 gives a stylized yet representative example of
a sequence of transactions that can be found in our data
set. Here, we do not include all the attributes but only
those relevant to our structural analysis: (i) transaction
timing; (ii) product characteristics (e.g., product type
and quality); (iii) supply-side information, which in-
cludes lot size and minimum purchase quantity;
(iv) the precise market actors (grower identity and
bidder identity); (v) demand-side information, that is,
the number of bidders who registered at an auction;
and (vi) bidders’ real-time decision variables of price
and quantity.

Further, unlike the sequential auctions studied in
Brendstrup (2007) and Donald et al. (2006) in which
only one unit is on sale in each round, in our case,
multiple units can be purchased in each round. Thus,
neither bidders nor the auctioneer knows in advance
how many rounds an auction will take. Table 1 also
shows that the winning prices are not monotonically
decreasing or increasing,” and the same buyer (ID: 439)
may end up winning multiple sublots at different
prices. These observations are indicative of the com-
plexity of the DFAs, and such complexity arises be-
cause of the flexibility of the auction mechanism.

The specific product subcategory we chose is Red
Naomi, which is the most important Dutch-grown red
rose in the high-end segment. Although all the prod-
ucts within this subcategory are rated as of the highest

Table 1. A Sample Entry in a Logbook

quality level, there remains considerable heterogeneity
with respect to product characteristics (e.g., stem
length, blooming stage). Because our study focuses on
bidding dynamics in multiunit auctions rather than
multiobject auctions,” ideally, we would like to have
a homogeneous sample. However, this would leave us
with a very small data set. In light of this, we created
a sample with products that are close substitutes. In
particular, we combined the transactions of Red Naomi
with stem length of 50 cm, 55 cm, and 60 cm as reduced-
form analyses showed no statistical difference between
these products.m In total, we have 5,536 transactions
from 1,012 auctions with 388 unique winning bidders.
Table 2 provides summary statistics of the sample.

At the day level, the number of auctions varied from
a minimum of 15 to a maximum of 45 with an average
of 33.7, and the number of transactions (subauctions)
varied from a minimum of 58 to a maximum of 326 with
an average of 184.5. The average number of winning
bidders also varied substantially from a minimum of 45
to a maximum of 154. Clearly, there were some peak
days during the 30-day period under consideration. At
the transaction level, we examined the number of
registered bidders and the purchase quantity as well
as the winning price. Again, we found considerable
variation. Specifically, the minimum size of a purchase
was as small as one unit whereas the maximum was as
large as 162 units. This implies that the distribution of
the purchase amount at the transaction level is highly
skewed. As for the winning price, the minimum was as
low as five cents, and the maximum was 67 cents.

It is well known that the prices of cut flowers are
extremely volatile, partly because of their perishability.
This is consistent with our observation from Figure 4, in
which prices exhibit considerable variability from day
to day. Specifically, in the first and third week of Sep-
tember, prices exhibited a downward trend whereas in
the second week, there was a mild upward trend. To-
ward the end of September, prices were relatively stable,
followed by a surge starting from October 3. Figure 4
also shows that, even within the same day, there was
significant price variation.

Further, in light of the declining price anomaly
documented in prior literature (Van den Berg et al.
2001), we also examined the price trend in sequential

Transaction =~ Grower  Product Product Available Minimum Number of Buyer Purchase  Price
time ID 1D quality units purchase quantity  registered bidders 1D quantity  (cents)
07:10:54 689 16207 Al 18 1 170 439 1 50
07:10:56 689 16207 Al 17 2 173 395 5 49
07:10:59 689 16207 Al 12 2 175 439 3 46
07:11:01 689 16207 Al 8 4 168 563 4 48

Note. The price is for each stem, not each unit.



6

Lu et al.: Dynamic Decision Making in Sequential B2B Auctions
Management Science, Articles in Advance, pp. 1-24, © 2019 INFORMS

Table 2. Summary Statistics

Day-level variables

Transaction-level variables

Number of Number of Number of winning Number of registered
auctions transactions bidders bidders Purchase quantity Price (cents)
Mean 33.7 184.5 108.2 144.4 11.0 30.6
Standard deviation 8.7 67.2 31.8 19.4 12.3 9.1
Minimum 15.0 58.0 45.0 93.0 1.0 5.0
Maximum 45.0 326.0 154.0 217.0 162.0 67.0
Figure 4. Overview of Price Trend from Day to Day
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rounds. Overall, we found inconclusive evidence for
the downward trend; in some cases, the winning price
continued to decrease in sequential rounds, and in
other cases, the winning price maintained the same
level over time or even increased from an earlier round
to a later round. Figure 5 illustrates the variability in the
price trend. Here, we plotted the sequence of winning
prices in each auction on September 1. The x-axis
corresponds to the round number of a transaction in
a given auction. A round number of two indicates the
second sale in an auction.

A variety of theories have been developed to explain
the price trend in sequential auctions (see Ashenfelter

Figure 5. Price Dynamics in Sequential Rounds (September 1)

0
wn

Price (cent)

Auction Rounds

and Graddy 2003 for a review). However, almost all
the theoretical work adopts a stylized setup with unit-
demand bidders who are competing for two units.
In this regard, the dynamic structural model devel-
oped in this paper serves as a useful starting point
for understanding to what extent the predictions of
prior literature carry over to more general and realistic
settings.

As we mentioned before, an important feature that
differentiates the DFAs from other sequential auctions
is that bidders can purchase multiple units of goods
in each round. Panel (a) of Figure 6 shows the distribution
of purchase quantities. We can see that (winning) bidders
typically purchased no more than 30 units. We also plot
the distribution of the excessive purchase quantities, that
is, purchase quantities less the corresponding minimum
purchase quantities (see panel (b) of Figure 6). The enor-
mous amount of zeros indicates that many transactions
take place for the minimum purchase quantity, sug-
gesting that bidders might use the minimum purchase
quantity as the reference point to determine their pur-
chase quantity. Auctioneers must choose the minimum
purchase quantity carefully to achieve desirable out-
comes. In Section 8, we discuss in detail the optimization
of the minimum purchase quantity in sequential rounds.

4. Modeling Framework
Consider a simplified market of the DFAs with a single
auction clock. Each day, a homogeneous good is
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Figure 6. Distribution of Purchase Quantities vs. Distribution of Excessive Purchase Quantities
(a) Histogram of Purchase Quantities (b) Histogram of Excessive Purchase Quantities
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pushed to the market and auctioned using the mech-
anism described in Section 3.1. At the beginning of the
day, an auction schedule is announced that specifies,
for each lot 1 = 1,2, ..., the quantity for sale Ql. There
are N risk-neutral bidders indexed by i. The dynamic
game proceeds as follows:

e Stage 1: Auctioneer announces the available units
and the minimum purchase quantity.

e Stage 2: Bidders simultaneously and privately
submit'" their bids.

e Stage 3: Auctioneer announces the bidding out-
come (i.e., the winning price and winner’s identity),
and the winning bidder selects the purchase quantity.

Because each lot is auctioned in several rounds, that
is, there are multiple subauctions from the same lot,
to simplify the notations, we index the subauctions
1,...,t,... using lexicographical order.’? In the fol-
lowing, we use t to refer to a subauction as well as the
time period corresponding to the subauction. Addi-
tionally, when there is no confusion, we use % to de-
note the available quantity for the lot under auction at
time ¢.

For any bidder, prior to submitting a bid, the vector
of commonly observable endogenous state variables at
time t are s':= (), 4}, ...,q., ..., 4y), where . denotes
the quantity that has been purchased by bidder i at the
beginning of period t. We can also write s’ from bidder
i’ s perspective as (so,sl,s .), where sf =g}, st = 3!, and

st = {q] j#1}. Bidder i’s action in perlod t denoted
by al, is a bid-quantity pair; that is, at:= (b}, q!). The
collection of all bidders’ actions in perlod t is denoted

by a':=(al,...,a, ..., a}).

4.1. Key Assumptions

As Chintagunta et al. (2006) point out, theory per se is
rarely sufficient to enable a complete specification of
a structural model. In fact, most structural models
make strong assumptions about the form of the utility
function, the distribution of unobservable components,

Purchase Quantity Less Minimum Purchase Quantity

and the nature of equilibrium in a given market. Our
model is no exception. In what follows, we discuss the
main assumptions used in our modeling framework.
To start with, because bidders are buying on behalf
of their customers, their participation decision is
primarily driven by customer orders. Specifically, as
flowers are highly perishable, bidders’ procurement
decisions must been synchronized with customer orders.

Assumption 1 (Market Entry). Bidders’ participation in the
auction market is order driven. In particular, at the be-
ginning of the day, each potential bidder receives a private
signal C;=0,1,2,... regarding customer orders; C; is in-
dependently and randomly drawn from a commonly known
Poisson distribution with intensity A; that is,

A" exp(=A)

Pr(C; =m) = ol

, m=0,1,2,... 1)
Bidder i will enter the auctions on a given day if and only if
bidder i receives a nonzero signal. In other words, bidders’
entry follows a Bernoulli process. Thus, the number of
bidders participating in the auctions (N) is distributed bi-
nomially with two parameters: the total number of bidders
registered at the market, denoted by N, and the participation
probability, that is, 1—exp(—A). Its probability mass
function is given by

Pr(N=n) = (J}j)[l — exp(=A)]" exp(=A)"",
n=0,1,2,... (2)

Note that our market entry assumption admits differ-
ential participation at the day level, which is consistent
with the observation from the empirical data (see Table 2).
The Poisson assumption is widely used in modeling cus-
tomer behavior in supply chain environments (Caldentey
and Vulcano 2007, Shen and Su 2007). In our case, given
that customer orders are from different segments
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(countries or regions), it is reasonable to assume that
they follow a Poisson distribution.

As Donald et al. (2006) has pointed out, non-
participation in first-price, sealed-bid auctions does not
introduce a problem in deriving the data-generating
process of the winning bids. This is because the bid-
ders’ decision rule depends on the number of potential
bidders instead of the number of actual bidders. Given
the strategic equivalence between first-price, sealed-bid
auctions and Dutch auctions, the decision rule and the
data-generating process on a given day in the DFAs
depends on the total number of bidders who have
received a nonzero signal and decided to enter the
market rather than the actual number of bidders who
logged into the system in each round. Thus, we do not
make further assumptions about bidders’ entry or exit
decisions at the auction level.

Next, drawing upon prior works on structrual
analysis of auction data (see Hickman et al. (2012) for
more details), we make the following assumption about
the bidders” information structure.

Assumption 2 (Bidders’ Valuations). Bidders have in-
dependent, private valuations. In particular, bidder i’s unit
wluation for any homogeneous bundle in period t, denoted by
ot, is privately known and drawn independently from a twice
differentiable, common knowledge conditional distribution
function F(-|sh,st,s',) with compact support [v, 7).

The independent private valuation (IPV) assumption
is widely used in both theoretical and empirical auction
literature.'®> In our case, the IPV assumption can be
justified by the market structure: bidders are typically
serving distinct market segments, and they come to the
auctions with the willingness to pay of their customers.
Note that within-bidder volatility in valuations across
different subauctions may arise from unexpected de-
mand shocks from the customer side and the change
of market condition as well as the temporary budget
constraint for distribution and delivery.

Finally, we assume winning bidders” purchase quan-
tities in sequential rounds are conditional on customer
orders and strictly exogenous. Such a strict exogeneity
assumption can be justified by the B2B nature of the
trades; that is, bidders are not purchasing the auctioned
products for personal consumption, but for resale."* In
particular, with the increasing use of the online channel in
these auctions, bidders can easily communicate with
their customers about the purchase quantities in real
time. Based on empirical observation from Figure 6,
we make the following assumption about bidders’ pur-
chase quantities to account for idiosyncratic shocks as-
sociated with customer orders.

Assumption 3 (Bidders’ Purchase Quantities). In period t,
bidder i's purchase quantity is given by qt = q* + r, where q* is

the minimum purchase quantity and v! is the idiosyncratic
shock, drawn from a commonly known, zero-inflated negative
binomial distribution with probability density function

f zinb-

According to Hickman et al. (2012), when bidders are
allowed to purchase multiple units in each round, the
dynamic system would be intractable even for a small
number of bidders. The strict exogeneity assumption of
purchase quantities is indispensable for our empirical
estimation given the large number of active bidders in
the market. Despite its restrictiveness, the parametric
specification in Assumption 3 is well supported by
empirical data.'’

4.2. A Single Bidder’s Decision Problem
For any bidder i, the bidding problem can be repre-
sented as a Markov decision process (MDP). Figure 7
provides an illustrative example of two sequential
auctions, each with two units. Suppose the minimum
purchase quantity is set to one throughout the auction.
Bidder i starts in the upper-left node: it is the first round
of the auction, there are two units for sale, and the
bidder has not yet purchased any units. Bidder i will
choose a bid—quantity pair at this state. There are four
possible transitions from this state: either a competitor
wins, which reduces the available quantity by one or
two without increasing bidder i’s purchased quantity, or
bidder i wins, which increases bidder i’s purchased
quantity and reduces the available quantity by one or
two. The probability that bidder i transitions to the
winning state depends on bidder i’s own bid and bidder
i’s competitors’ bids. Once all the units are sold out in the
first auction, bidder i transitions to the second auction.
Formally, the bidding problem for bidder i can be
defined by the following MDP:

Figure 7. Bidder i’s Decision Problem as an MDP: An
Ilustrative Example of Two Auctions, Each with Two Units

Remaining Quantity Remaining Quantity

2 0 2 1 0

Purchased Quantity
2

Auction 1 Auction 2 O
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* States: {s'}, where s':= (7,7, ...,3., ..., k)

e Actions: Given state s, the set of actions for
bidder i is {af:= (b}, q}), b <b;<b, g\ = 4"+, g} <7}},
where b and b refer to the lower and upper bounds of
bids. Note that for states in which no item remains at
time t (75 = 0), there only exists a single, dummy action;
that is, bidder i moves to the next auction with
certainty.

¢ Transitions: The transition function, denoted by
w:AXS—S, is a deterministic function of the states
and actions. In particular, we have

Bl _ =t b ol o=t b bl ot

So =90~ 98 =4q; T4, 85 =8

L if b;>max;4; b;
wla’,s’) = t+1 _ =t _ t t+1 _ ot
( ’ ) SO - qO qj*’ Sl - Si/

t+1

Sl={a i # LY + )
if b,' < bj* = man:/:jb]‘
®)
e Rewards: Given the private valuation v} and the

state s, bidder i’s expected unit payoff in the current
period is given by

S

ti(s', bl v!) = (v} - b})P(iwins| b}, s}, s!,s",). (4)

In addition to the current-period payoff, bidder i also
takes into account bidder i’s expected future payoffs
when making the bidding decision. Thus, given the
state variables in period t, bidder i’s expected unit
payoff, evaluated prior to the realization of the private
valuations, is given by

E| > B m(s", by, o) |. 5)
1=t

The expectation is taken over the realization of bidder
i’s private valuation and all bidders” actions in the
current period as well as the future realizations of state
variables, actions, and private valuations. The param-
eter B€(0,1) is a common discount factor. It accounts
for the impact of participation costs (e.g., the time
and effort incurred monitoring the dynamics and de-
liberating the bids) on bidding decisions in sequential
rounds. The endogenous state variables s'*! are drawn
from the probability distribution P(s'*!|s!, a’). Note that
because bidders” purchase quantities are strictly ex-
ogenous (see Assumption 3), maximizing the expected
total payoff reduces to maximizing the expected unit
payoff. This property is very useful as it allows us to
adapt the two-step estimation frameworks in Bajari
et al. (2007) and Jofre-Bonet and Pesendorfer (2003)
to estimate our model.

4.3. The Equilibrium Concept
To analyze bidders’ equilibrium behavior, we focus on
pure-strategy Markov perfect equilibrium.'® The MPE

implies that bidders” bidding strategies only depend
on the payoff-relevant information. Thus, we can
describe the equilibrium bidding strategy of bidder i
as a function (s, v!) = bl. Because the strategy profile
0 = (01,02, ...,0N) is time invariant, we can drop the
period index t. Given state s, we can express bidder i’s
expected unit payoff under the equilibrium strategy
profile ¢ recursively as a Bellman equation:

Vi(s; 0) = E|mi(a(s,v),s, v;)
B / Vi(s';0)-dP(s | o(s,v),8)[s|.  (6)

Here, V; is bidder i’s ex ante value function in the sense
that it reflects the expected unit payoff at the beginning
of a period before the realization of private valuations.
Following the literature of dynamic oligopoly games,
a strategy profile o is an MPE if, for any bidder i, given
competitors’ strategy profile o_;, states s, and Markov
strategies o7,

Vi(s; 0) = Vi(s; 0}, 0-). (7)

Table 3 provides a summary of the notations used in
our modeling framework.

Before moving to the details of the estimation
strategy, we would like to discuss under which con-
ditions our model can be identified. It is worth men-
tioning that although Guerre et al. (2000) shows that the
value distribution is nonparametrically identifiable in
the static first price auction, Rust (1994) demonstrates
that the model primitives in a dynamic decision
problem are not identified when the per-period pay-
off function is unknown. In our case, because the re-
ward function and the discount factor § are both
known, it follows from proposition 2 of Jofre-Bonet and
Pesendorfer (2003) that the value distribution function
is identifiable on the interval [v, 7].

5. Estimation Strategy

A standard approach to estimate MPE models is to
employ dynamic programming (Rust 1994). However,
this requires repetitive evaluation of the value function
(Equation (6)) and is computationally demanding.
Given the high dimensionality of our state space and
action space, such an approach would be infeasible.
In light of recent works on structural modeling (Yao
and Mela 2011, Huang et al. 2015), we adapt the two-
step estimation frameworks in Bajari et al. (2007) and
Jofre-Bonet and Pesendorfer (2003): in the first step, we
estimated the transition function, the bid distribution
function, and the value function from the empirical
data; in the second step, the distribution of bidders’
private valuations is estimated based on the first-order
condition. In what follows, we explain the estimation
method in detail and demonstrate its effectiveness
using Monte Carlo simulation.
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Table 3. Summary of Notations

Notation Explanation

if k1t Indices of bidders, index of auctions, index of
time period
G The private signal about customer orders for
bidder i, which is randomly drawn from

a Poisson distribution with intensity A

N, N Number of potential bidders, number of active
bidders

Q The initial available units for auction in lot /

ah The remaining units at the beginning of period f

gt The required minimum purchase quantity in

B period ¢

s! The commonly observable state variables in
period ¢

(sh,st, st The state variables evaluated from bidder i’s

perspective in period ¢
Bidder i’s unit valuation for the product in
period #
\% The collection of all bidders’ unit valuations for
the product in period ¢

F(-Ish, st, s, The cumulative distribution function of bidder
i’s private valuation defined in [v, 7]

f(Ish, st st The probability density function of bidder i's
private valuation

bt Bidder i’s bid in period t, which is bounded by b
and b

b, Bidder i's competitors’ bids in period ¢

G(-lsh, st,s-,) The cumulative distribution function of
equilibrium bids

g(lsh, st, 8L, The probability density function of equilibrium
bids

gt The quantity purchased by bidder i at the
beginning of period ¢

qt Bidder i's purchase quantity in period £

rt The difference between bidder i’s purchase
quantity and the minimum purchase quantity
in period f, which is drawn randomly from
a zero-inflated negative binomial distribution
with probability density function f

at Bidder i’s action in period t, at := (b, q!)

a' The collection of all bidders” actions in period ¢

B The fixed discount factor associated with future
payoff

oj Bidder i’s equilibrium bidding strategy

T Bidder i’s period payoff

1) Transition function of state variables

Vi Bidder i’s value function

o(-) The explicit function expressing bidder’s private
valuation in terms of the equilibrium bids, the
distribution of equilibrium bids, and the value
function

Y(-lso, si,$-i) Auxiliary function, which is defined as the ratio

of bid distribution function and probability
density function of equilibrium bids at state
(si,8-1)

5.1. Estimation Method

Our estimation method is based on the first-order
condition of optimal bids."” The general idea is to ex-
press the privately known valuations as an explicit
function of the state, the observed bids (which are

assumed to be equilibrium bids), the bid distribution
function, and the value function.

Let ¢(-) denote bidder i’s private valuation associ-
ated with a bid; G(:|so,si, s—;) and g(|so, si,s-;) denote
the distribution function and probability density func-
tion of equilibrium bids of bidder i at state (so, s;, 5-:),
respectively. In addition, we define an auxiliary func-
tion ¢ as follows:

g('|50/ Siy S*l’)

Cllso,505-0)° ®

w(‘lSOI Siy S—i) =

The first-order condition yields (see Appendix A.1 for
details of the derivation):
1

(b|S ,Si,8—i, U, V,) =b+
Pl 4 3z Y(blso, sj, 5-5)
_ lP(b|50/5j, S—j)
SO0, 50,5
- (Vi(wi(a, (s, 51, 5-1)))
- Vi(a)j(a/ (SOI Siy S—i))))/

©)

where w;(-) denotes the state transition given bidder
i is the winner and w;(-) the state transition given
bidder j(j # i) is the winner. For simplicity of notation,
we write wj(a, (so, $;,5-)) as ;. Equation (9) states that
the private valuation equals the bid plus a markup. The
markup consists of two parts: the first part accounts for
the level of competition in the current period, that is,
the more intense the competition is, the more the bidder
must pay to win in the current period; the second part
accounts for the effect on the future discounted payoff if
bidder i wins the auction instead of losing it to bidder j.
When making the bidding decision, a strategic (forward-
looking) bidder is making the trade-off of winning in the
current round (but perhaps paying too much) and
winning in a future round (but perhaps the product is
sold out).

To estimate the distribution of bidders” private valu-
ations, we need estimators for the transition function w,
the auxiliary function ¢, the discount factor 8, and the
value function V; on the right-hand side of Equation (9).
As described previously, the transition function is
a given function (see Equation (3)); the bid distribution
function as well as the auxiliary function can be directly
estimated from the bidding data. The discount factor
is typically nonidentifiable without exogenous vari-
ation in the bidding environment (Rust 1994). In light
of this, we follow prior works (e.g., Yao and Mela 2011
and Huang et al. 2015) and set the discount factor § to
0.9 for our estimation.'® Thus, the main challenge lies
in the estimation of the value function: because the
expression of the value function in Equation (6) in-
volves the bidders’ valuations that are unobserved
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and endogenous bidding decisions of multiple bid-
ders, we cannot directly estimate it from the bidding
data. In what follows, we explain how to approximate
the value function.

The key idea underlying the approximation method
is that the distribution of equilibrium bids deter-
mines the discounted sum of expected future pay-
offs. As such, we can represent the value function using
the distribution of bids only. This is formalized in
Proposition 1.

Proposition 1. The wvalue function can be represented as
a recursive equation involving the bid distribution function.
In particular,

Vi(so, si, dGO(bls, si,5-:)

/

o3[

-dGY(blsy, i, 5_7)

1+

Y(blso, si,5-i) ]
Sk Y(blso, Sk, 5-k)

Vilw)), (10)

where GY(blsy, s;,s_;) denotes the probability that bidder i
wins with a bid less than or equal to b given state vari-
ables (sg, si,S—i).

The representation of the value function in Proposition 1
consists of two parts: the first part accounts for bidder i’s
current-period expected unit payoff; the second part
accounts for bidder i’s expected future unit payoffs. The
proof of Proposition 1 is based on two observations. First,
the winning probability can be written as a function of
the distribution of bids of competitors. Second, the first-
order condition of optimal bids provides an explicit
expression of a bidder’s private valuation in terms of the
bidder’s equilibrium bids and their distribution (see
Equation (9)). The detailed proof of Proposition 1 is pro-
vided in Appendix A.2.

Based on Proposition 1, we can use a numerical
method to approximate the value function. To start, we
select a grid of state vectors S =(sy,...,sr) from the
distribution of observed states and solve Equation (10)
for each bidder on this grid. We restrict the range of the
transition function w toAS by defining a pseudo-transition
function @(a, s) = {s€S|s is closest to w(a,s)}. For each
s€8§, we calculate the expected current-period unit
payoff

Ui(s) dG?(blso, s, 5-) (11)

b 1
- /1; 3 j#i Y(blso, sj,5-)

and the 1 x T vector of transition probabilities of the events
that the states (s1, . . ., st) are reached when bidder j wins,

Wij(s) = ‘/j

X (1&)(21,5):51/ ..

ll’(b|50/ Si, S—i)

1+
ki P(lso, Sk, 5-k)

dG(j)(b|50,Sj, S—j)

.y 1(2)(&1,5):57-)-
(12)

Given this definition of U; and W;;, we can rewrite the
value function in Equation (10) as

Vi(s) = Ui(s) + B> \Wii(s)(Vi(s1), ..., Vilsr))”,
J#
(13)

where (-)” denotes the transpose operator. We can
rewrite Equation (13) in matrix form

[I-pWi]V: = U, (14)

where [ denotes the T-dimensional identity matrix,
W; denotes the TXT transition matrix given by
[Z]-#W,'j(sl),...,Z#,-W,-j(sr)]", V; denotes the vector
(Vi(s1), ..., Vi(st))”, and U; denotes the vector
(Uy(s1), ..., Ui(s7))". The value function can be cal-
culated by

Vi =[I- W] 'U. (15)

For points outside the grid S, we can approximate
the value function using a quadratic polynomial (see Judd
1998 for more details about the approximation).
Despite the theoretical attractiveness, however, the
two-step estimation procedure described herein is
computationally expensive and even infeasible because
the state space will grow exponentially as the number of
bidders increases. Further, because there are typically
more than 100 bidders competing in each period and
bidders have only a few seconds to make their bidding
decision, it is unlikely a bidder can monitor and track
each competitor’s state in each period. Given these
considerations, we draw upon the asymptotic environ-
mental similarity property'® of large markets (Swinkels
2001) and assume that any bidder i in these auctions
makes bidding decisions only based on bidder i's own
state s; (i.e., the quantity purchased so far) and the market
state sy (i.e., the current supply). In other words, we can
remove s_; from Equations (9) and (10). This helps to
significantly reduce the computational cost. It is worth
mentioning that such approximation shares the same
spirit as the one described in Yao and Mela (2008).

5.2. Monte Carlo Simulation
To demonstrate the effectiveness of our estimation
method, we conduct Monte Carlo experiments on
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a simulated auction market. In what follows, we first
describe the data-generating process and then present
the estimation results on the simulated data.

5.2.1. Data-Generating Process. Consider a simulated
auction market with 100 risk-neutral, ex ante symmetric
bidders competing for a homogeneous product. We
focus on two scenarios that correspond to two different
market conditions:*” scarcity and balanced. The scarcity
condition refers to the situation when demand exceeds
supply substantially in the market and the balanced
condition when demand is roughly equal to supply.

For illustration, we simplify the data-generating
process as follows. The minimum purchase quantity is
set to one unit for each round. Each bidder demands
a maximum of five units in each auction. Further, we
assume the total supply of the product is 100 units under
the scarcity condition and 400 units under the balanced
condition. For both conditions, we consider the grid
of state vectors {500, S01, 502,503,504, 510, S11, 512, 513, 514},
where sy denotes the state in which the supply is low
(remaining units less than half of the initial supply) and
bidder i has not won anything yet, sox denotes the state
in which the supply is low but bidder i has purchased k
unit(s), s1o denotes the state with high supply (remaining
units larger than or equal to half of the initial supply) and
bidder i has not won anything, and s denotes the state
in which the supply is high and bidder i has purchased k
unit(s) in previous rounds.

Given these states, we assume bidders’ private valu-
ations v are random draws from truncated normal
distributions defined at [0,100]. Specifically, we as-
sume F(Z)|S()0) = N(60,5), F(ZJISQl) = N(57.5,5), F(U|S()2) =
N(55,5),  F(v|so3) = N(52.5,5),  F(v|so4) = N(50,5),
F(U|510) = N(50/5)/ F(vlsll) = N(475/5)/ F(U|512) =
N(45,5), F(vls13) = N(42.5,5), and F(v|s14) = N(40,5).
Bidders’ equilibrium bids are calculated by solving the
corresponding MDP defined on the aforementioned
grid. The winning bid and purchase quantity in each
round are recorded. We repeat the data-generating
process and generate bidding data for 100 auctions
under each of the two scenarios.

5.2.2. Estimation Results. Using the simulated bidding
data, we can recover the structural parameters (i.e.,
mean and standard deviation for each of the truncated
normal distributions) by following the two-step esti-
mation approach described in Section 5.1. Tables 4 and
5 summarize the statistics of the estimation under the
scarcity and balanced market conditions, respectively.
The numbers in parentheses are standard errors of the
estimates. For state s34, as there are not enough obser-
vations, it is not possible to estimate the parameters (see
the “NA” in the last row of Table 4).

The results from Tables 4 and 5 demonstrate that our
approach yields good estimates of the model primitives

under both the scarcity market condition (i.e., 100 units
for sale) and the balanced market condition (i.e., 400
units for sale).

Before moving to the discussion of empirical esti-
mation, it is worth noting that the choice of the grid is
critical for the performance of our estimation approach:
an overly coarse grid cannot adequately capture the
conditional distributions for bidders’ private valuations
whereas an overly fine grid might lead to instability of
the estimation if we do not have enough observations.
In the next section, we discuss the choice of an ap-
propriate grid for our empirical estimation.

6. Empirical Estimation

This section describes the empirical estimation of our
dynamic structural model. Section 6.1 begins with
a discussion of discretization of the state space, the
estimation of number of active bidders, and the dis-
tribution of purchase quantities, which are prerequi-
sites for the application of the two-step estimation
approach. Section 6.2 reports the estimates of the bid
distribution functions and the value distribution
functions. Given the observed price volatility in these
auctions (see Figure 4), all the estimations are done on
a day-to-day basis.

6.1. Preliminaries

Our data pose several challenges for empirical estimation.
To start with, although the original high-dimensional
state space is reduced to a two-dimensional space, it
is still very sparse in the sense that we only have
observations from a limited number of states, which
would lead to instability of the estimation. In light
of this, we discretized the state space into a two-
dimensional grid based on the distribution of bid-
ders’ purchase quantities and the lot sizes. Specifically,
we discretized sy (the remaining quantity in the current
period) into five intervals: [0,9], [10,19], [20,49],
[50,99], and [100, +oo). Similarly, for any bidder i, we
discretized s; (recall that s;:=g,) into five intervals:
[0,5],[6,10],[11,20],[21,50], and (50,+c0). Table 6
provides an overview of the discretization and the
notations for the states in the grid.

Next, unlike prior works on English auctions or
first-price, sealed-bid auctions (e.g., Jofre-Bonet and
Pesendorfer 2003), in the DFAs, only winning bids are
revealed and recorded. In other words, we need to
estimate the distribution of bidders’ equilibrium bids
from the empirical distribution of winning bids. This
can be done by using the order statistics (Paarsch
etal. 2006); that is, G¥"(b¥in|s) = G(bls)"®. Here, G%in
denotes the cumulative distribution function of the
winning bids b"™", which can be directly estimated
from empirical data; n(s) denotes the number of
bidders in state s, which requires the knowledge of
the total number of active bidders in the market on
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Table 4. Estimation Results of Monte Carlo Simulation Under Scarcity Condition

True values

Estimated values

Mean Standard deviation Mean (Standard error)

Standard deviation (Standard error)

F(olsge) 60 5 59.11 (0.13) 4.83 (0.12)
F(vlsp)) 575 5 57.04 (0.12) 5.47 (0.22)
L(vls)) 55 5 54.77 (0.34) 6.03 (0.66)
F(vlsgs) 525 5 52.08 (0.78) 5.72 (1.22)
F(vlses) 50 5 51.34 (1.19) 5.91 (1.71)
F(vls10) 50 5 49.32 (0.09) 5.06 (0.13)
F(vlsy) 475 5 47.64 (0.26) 5.80 (0.63)
F(ulsiy) 45 5 45.75 (1.02) 5.41 (1.43)
F(olsis)  42.5 5 44.21 (1.05) 6.12 (1.18)
F(U|514) 40 5 NA

Note. When there are insufficient observations for a given state, it is not possible to estimate the
corresponding parameters; thus we set the values to NA (i.e., not applicable).

Table 5. Estimation Results of Monte Carlo Simulation Under Balanced Condition

True values

Estimated values

Mean Standard deviation Mean (Standard error)

Standard deviation (Standard error)

F(vlseo) 60 5 58.66 (1.53) 3.83 (1.11)
F(vls) 57.5 5 56.51 (0.16) 4.66 (0.17)
F(vlsp) 55 5 54.32 (0.07) 5.03 (0.13)
F(vlss) 52,5 5 52.05 (0.07) 5.44 (0.16)
F(vlsss) 50 5 49.73 (0.10) 5.96 (0.27)
F(vls) 50 5 49.28 (0.07) 4.95 (0.12)
F(ulsn) 47.5 5 47.03 (0.07) 5.48 (0.20)
F(vls) 45 5 44.71 (0.09) 5.86 (0.2)

F(vlsi3) 42,5 5 4244 (0.31) 6.46 (0.69)
F(vlsi) 40 5 41.27 (1.52) 6.67 (1.57)

a daily basis. Following Assumption 1 in Section 4.1,
the number of active bidders in the market is dis-
tributed binomially with two parameters: the total
number of potential bidders registered at the market
and the participation probability. Although the for-
mer number is not directly available, we can use the
number of unique winner IDs (388) observed from
the transaction data as the proxy given that the data
covers an extended period.”' Using the proxy of total
number of potential bidders and the daily log-in
data, we can estimate the participation probability
(44.7%) and thereby the number of active bidders
each day.”

Further, to characterize the state transitions, we also
need to know the distribution of bidders’ purchase
quantities upon winning. Given Assumption 3 in
Section 4.1, we only need to estimate the parameters
characterizing the zero-inflated negative binomial
distribution. Using maximum likelihood, we obtain the
estimates of the parameters, and the zero-inflated
density can be written as fzng(y) = 0.1-Ip(y) +0.9
-fnB(y; 61,02), 61 = 4,0, =5, where I is the indicator

function and fngp(y; 01, 02) is the density function of
negative binomial distribution; that is,

T+ 6\ 6,
P(Y_y)_ y!l‘(@l) (62+61) 6, + 61 !

y=0,1,...

and I'(-) is the gamma function.

6.2. Main Estimation Results
Following the work of Athey et al. (2011) and Jofre-
Bonet and Pesendorfer (2003), we model the bid

Table 6. Overview of the Discretization of State Space

A bidder’s cumulative purchase quantity

Remaining quantity [0, 5] [6,10] [11,20] [21,50] >50
[0, 9] 500 So1 02 S03 So4
[10, 19] S10 11 12 513 514
[20, 49] 520 521 522 523 S24
[50, 99] 530 531 532 533 534
>100 S40 S41 S 843 Saq
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distribution as a Weibull distribution because of its 2| 2R S22TIRERS| 2
versatility in modeling uncertain quantities with non- -0 0 T E
negative values (Rinne 2008). Table 7 summarizes the | < R << << | B
estimation results of the Weibull parameters (the shape FlezzzT&zZz 22 q‘é
parameters placed above the scale parameters) for the . N Ol % e ® w0 | 9
first five days. If the number of winning bids corre- Slog "2 ogdE F3| s
sponding to a given state are insufficient (e.g., we rarely o cc oo <« < é
observe winning bids from bidders with a cumulative S|l ONZZ N ZZ 22 *5
purchase quantity of more than 50 when the remaining 2
units were larger than 100), we cannot obtain any es- 3| S E 552233555 <
timates of the parameters, and thereby, we set the 3
parameter values to “NA” in the table. The estimation 2l 28 S SR il 2 42*
results for day 6 to day 30 can be found in Table B.1. - -7 =
The empirical estimation results from Table 7 in- o R e B =
dicate high variability of winning bids across dif- TR ARz 2z g
ferent states. This is not unexpected given that both o= mn oo we 0o z
bidders’ private values and the competitive envi- SlTETG TR TEaN 8
ronment vary across different states. Besides, we can doanneg @ <c o >
see that the distribution of winning bids changes S| "B A8 g FF SH| B
from day to day. This finding is consistent with the g g
observation from Figure 4 and reinforces the ne- g :E g% ﬁg S5 q Q|5
cessity to estimate the parameters in our structural g
model on a day-to-day basis. - i e e I
With the estimated bid distribution, next, we can o - E
apply the two-step estimation approach to recover | QY LR 2w &
bidders’ private valuations. Because we have already K A R -
discretized the state space (see Table 6), we can first use Jdoam e amoaal|®
Equation (14) to approximate the value functions nu- TR TR TR TR TS| g
merically and then apply the first-order condition in o b oo o | =
Equation (9) to recover the private valuations. Because Flg-wddnydg §
bidders’ true valuations are not observable, we cannot ©© o “e e =z
directly evaluate the accuracy of the estimates. In light o | SloigSgog el ag| g
of this, we used the estimated bidders’ valuations to > g
compute bidders’ best-response bids (estimated win- Al g3 § x g Nt 5 ™ . 2 E £
ning bids) by solving a series of MDPs defined in f &
Equation (6) at each state in the grid and then compared AEEE i B R B I I
the cumulative distribution of the estimated winning bids A R
with the cumulative distribution of the observed winning g _ W N T N g E <
Q! N = — M — O OO AL -
bids. As an example, we depicted the comparison results bl N
on September 1 in Figure 8. We can see that the esti- 8| |ommana o inol|F '*é
mated distribution curve tends to be slightly more flat gl f 8 "8 TaY8 7Y % s
than the empirical distribution curve in the range of g J U N 2
. . . . = q . . [
[10, 60], which results in a minor increase of the chances Al Fldgde S orl g9
of observing a winning bid in the two end (i.e., [10, 20] Ei 3 <
and [40,60]) under the estimated cumulative distri- o | g <Zt <ZE 2 % = E = © = § g%
bution. Nevertheless, overall, the two empirical dis- E ‘&5
tributions are very similar to each other. ; gl 55 00 ! w® oo 82
Besides qualitative comparisons, such as Figure §, E - o § E,
we also performed the Kolmogorov-Smirnov two- A I BN R R -
sample test (Pratt and Gibbons 1981) for the estima- g1 ° D s
tion on each day to determine whether the underlying b= oo mmmoy v = o 5 i
probability distributions differ. The results show that § YN TS T8 TR R é 2
we cannot reject the null hypothesis that the estimated ﬁ N E i
winning bids and the observed winning bids have the N F| g g g g Ay | B
same distribution. This result provides strong support = kS g
for the effectiveness of our estimation. e g &8 & 84 & |28
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Figure 8. Comparison of Cumulative Distributions of the Estimated and Observed Winning Bids (September 1)

<
=

0.8

0.6
|

Probability

0.4

0.2

- observed
— estimated

7. Policy Experiment

Although the parameter estimates from the previous
section provide useful insights about bidder behavior,
they offer limited guidance to auctioneers’ decision
making. In this section, we focus on the unique design
parameter, namely, minimum purchase quantity, in the
DFAs and evaluate the effects of different policy in-
terventions related to this parameter.

7.1. Minimum Purchase Quantity
Minimum purchase quantity has a strong impact on the
bidding dynamics and outcomes. On one hand, in-
creasing minimum purchase quantity can speed up the
auction process by forcing bidders to buy more in each
round. On the other hand, given that bidders have
nonincreasing marginal values, a large minimum
purchase quantity may lead to less competition and
a lower price. It is noteworthy that the conflicting ef-
fects of minimum purchase quantity are qualitatively
analogous to the effects of lot size in sequential auc-
tions. Specifically, prior research has shown that a large
lot size often has a negative impact on the closing price
whereas a small lot size leads to excess holding and
administrative costs (Pinker et al. 2010). In this regard,
the decision of minimum purchase quantity can also be
considered as a generalized lot-sizing problem.
Currently, auctioneers mainly rely on their intuition
and experience to decide the minimum purchase
quantity in each round. Typically, they set a relatively
low minimum purchase quantity at the beginning and
gradually increase it as the auction proceeds. It is
important to empirically determine whether this rule of
thumb yields desirable outcomes.

60 80 100

Price (cent)

7.2. Policy Simulation

We consider five alternative auction designs in which
minimum purchase quantities are set as follows:
(1) minimum purchase quantity is fixed to one, (2)
minimum purchase quantity is fixed to three, (3) min-
imum purchase quantity is fixed to five, (4) minimum
purchase quantity is fixed to seven, and (5) minimum
purchase quantity is fixed to nine.”” For each of the
alternative designs, we simulated bidders’ private valua-
tions using the estimated conditional distributions and
then calculated their optimal bids. Winners’ purchase
quantities were drawn from the estimated zero-inflated
negative binomial distribution.

We repeated the simulation for 100 iterations based
on which we compared the performance of the five
alternative designs with the observed design. Note
that, during the simulation process, we matched the
supply in each auction to the supply in the observed
data. Similarly, the auction parameters, such as reserve
price and starting price, were matched to the observed
data. The only thing we manipulated was the mini-
mum purchase quantity in each round.

Given the nature of the market under consideration,
we choose two performance indicators, revenue and
turnaround, with which the latter is measured by the
total number of rounds taken to finish the auctions.
Table 8 provides an overview of the performance of
each design (the numbers in the parentheses are the
standard errors of the estimates). Here, the observed
design refers to the way the minimum purchase quantities
were set in those auctions, and we can directly calculate the
total revenue and number of rounds from the transaction
data. For each alternative design, we simulated bidders’
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Table 8. Performance Evaluation of Different Auction Designs

Total revenue (in euros) Number of rounds

Observed design

Alternative design 1 (minimum purchase quantity = 1)
Alternative design 2 (minimum purchase quantity = 3)
Alternative design 3 (minimum purchase quantity = 5)
Alternative design 4 (minimum purchase quantity = 7)
Alternative design 5 (minimum purchase quantity = 9)

920,116 5,536

1,053,874 (10,518) 7,682 (33)

1,004,604 (9,526) 6,296 (34)
945,941 (8,925) 5,362 (25)
886,203 (11,057) 4,667 (16)
820,157 (11,759) 4,158 (16)

Note. The numbers displayed in the parentheses from row 2 to row 6 (Alternative design 1-5) are

standard errors of the estimates.

valuations and purchase quantities, and we estimated the
winning price; thus, the total revenue and number of
rounds were subject to variability.

To start with, we can see alternative design 1 (i.e.,
minimum purchase quantity always set to one) gen-
erates the highest expected revenue: if we compare it
with the observed design, the revenue is expected to
increase by approximately 14.5%. However, such in-
crease comes at a high cost of turnaround rate: com-
pared with the observed design, the total number of
transactions increased by 38.7%. Given the high per-
ishability of the products and the tight auction
schedule, such alternative design would not be a good
option. Similarly, alternative design 2 is expected to
increase the revenue (9.2%) at a significant cost of
turnaround (expected number of rounds increases by
13.7%), which again makes it undesirable.

Alternative design 3 seems to be a good option: it
generates 3% higher revenue while maintaining a high
turnaround rate. In fact, the expected number of
rounds to finish the auctions even decreases by 3%.
Such observation suggests that (i) a moderate, constant
minimum purchase quantity can yield comparable
outcomes as the rule of thumb, and (ii) auctioneers’
current practice in setting the minimum purchase
quantity has ample room for improvement. Finally, if
we compare the performance of alternative designs
4 and 5 with the observed design, we can see the ex-
pected revenue drops by approximately 3.7% and 11%
whereas the turnaround speed increases by 15.7% and
25%. Note that the potential improvement in turnaround
not only saves the operational and administrative costs,
but also offers time slots for auctioning extra products
that can be similar or different. At the end, if the partial
loss of revenue from the previous auctions can be
compensated or even surpassed by the revenue gener-
ated from auctioning extra products, such alternative
design could be a viable option.

Based on these observations, a natural question is that
of how we can derive the optimal values of minimum
purchase quantities in such a dynamic environment. In
the next section, we explore this optimization problem in
detail.

8. Dynamic Optimization of Auction

Design Parameters

The auctioneers in the DFAs represent the growers, and
their main objective is to realize high revenue. Besides,
it is important to achieve a quick turnaround because
flowers are perishable goods. By controlling key auction
parameters, such as starting price, minimum purchase
quantity, and reserve price, auctioneers can influence
the bidding dynamics as well as the outcomes. How-
ever, currently these parameters are not optimized
because auctioneers cannot adequately process all the
market information under the extreme time pressure.
Instead, they rely on their intuition and experience to
decide how to set these key auction parameters.

A promising way to address these limitations is
to augment auctioneers’ capabilities with high-
performance decision support systems (Bichler et al.
2010). To be useful, these systems must be able to
(i) make good predictions of future states (e.g., the
number of bidders, the winning prices, and purchase
quantities in the upcoming auctions) and (ii) optimize
the key auction parameters based on the predictions. In
this section, we discuss how to apply our dynamic
structural model to optimize the key auction param-
eters. As with the policy evaluation in Section 7, we
focus on the choice of the minimum purchase quantity
in sequential rounds.**

8.1. Structurally Based Prediction

A number of methods have been used for price pre-
diction in online auctions (Bapna et al. 2008, Wang et al.
2008). Despite the differences in the functional speci-
fications, it is widely recognized that prediction models
must be grounded, in one way or another, on market
information (Muth 1961).

Based on the theoretical and empirical analysis of the
DFAs earlier in this paper, we propose a novel pre-
diction method that incorporates the structural prop-
erties of the underlying auction model while exploiting
historical market data. Specifically, given the structural
estimates of bidders” valuations and an auction policy
(i.e., the set of key auction parameters), we can predict
future auction outcomes by repeatedly solving the MDP
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Figure 9. An Illustration of the Structurally Based
Prediction Method
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defined in Section 4.2 for each bidder. An important
characteristic of this method is that it accounts for bid-
ders’ potential strategic responses to any policy changes
(e.g., dynamic changes in minimum purchase quantity)
and, thus, is immune from the Lucas critique (Lucas 1976,
Chintagunta et al. 2006).

Figure 9 illustrates the general idea of our prediction
method. Here, the market condition refers to the col-
lection of market characteristics such as the supply of
the product and the number of potential bidders that
will affect the competition.

To evaluate the performance of such a prediction
method, we split the total number of auctions on a
given day into two parts evenly. The first half serves as
the training set and is used to estimate the distribution
of bidders’ private valuations. The second half serves
as the test set in which we compare the cumulative
probability distribution of the predicted winning prices
and the observed prices using Kullback-Leibler (KL)
divergence (Kullback and Leibler 1951). The KL di-
vergence measure can be interpreted as how much
additional information is needed to achieve optimal
prediction. A KL divergence less than or close to one
suggests the predicted distribution matches well with
the observed distribution (Ketter et al. 2012). In our
case, the KL divergence measures are consistently less
than two (ranging from 0.22 to 1.72) on 24 days, and for
the remaining six days, the highest KL divergence
values are still less than three. This indicates a good fit
between the predicted and the actual winning prices.

8.2. Optimal Choices of Minimum
Purchase Quantities

Auctioneers have to choose the minimum purchase
quantity in each round. Note that the choice of mini-
mum purchase quantity in the current round not only
affects the purchase quantity in the current round, but
also the competition in future rounds. In light of this,
we can formulate the auctioneer’s sequential decision
problem as the following MDP:

e States: {s}, where s :=7'.

* Actions: Given state s, the set of actions for the
auctioneer is {a}:=q'lg' = 1,2,...,7'}.

¢ Transitions: The transition function, denoted by
wo: AgXSg— Sy, is a deterministic function of the
states and actions. In particular, we have wo(aj, s{)) =
g' — q', where g' is the winners’ purchase quantity in the
current round.

* Rewards: Given state s}, the auctioneer’s expected
payoff is given by

E| > B max(b]) - qf1s5, 475 fzms |- (16)
=t t -

The expectation in Equation (16) is taken over the re-
alization of the winning price and purchase quantity in
the current period as well as the future realizations of
state variables, winning prices, and purchase quanti-
ties. Because we do not know the exact operational or
administration costs associated with extra transaction
rounds, we experiment with different values of the
discount factor between 0.5 and 1.0 with a step size of
0.1; thatis, p = 0.5,0.6, ..., 1. Using a similar simulation
procedure as in the policy evaluation, we compared the
performance of the optimized designs with the ob-
served design on the test data.

Figure 10 displays the 6 x 5 matrix of subplots of the
auction outcomes under the optimized designs and
observed designs over the 30 days. The y-axis shows
the total revenue generated from the auctions in the test
set, and the x-axis shows the number of rounds taken to
finish the auctions. As Figure 10 demonstrates, for 24
out of the 30 days, the optimized designs generate
higher expected revenues than the observed designs
while maintaining a comparable turnaround. The ob-
served performance gap between the optimized
choices and the ones observed in the data suggests that
auctioneers’ current practice in setting minimum
purchase quantities has ample room for improvement;
that is, the rule of thumb—starting with a low mini-
mum purchase quantity and gradually increasing
it—does not necessarily produce the most desirable
outcomes. Specifically, even if the general idea of such
a heuristic is applicable in some cases, the auctioneers
do not choose the right time to adjust the minimum
purchase quantity. Our two-step optimization frame-
work provides clear reference points for auctioneers in
making the trade-off between revenue and turnaround.
For example, for September 1, the auctioneer can
achieve approximately 15% higher revenue (from
23,543 to 27,020) by following the optimized sequence
of minimum purchase quantities should an extra six
rounds of transactions (5%) be acceptable (when the
discount factor f3 is set to 0.9). Further, the determination
of the minimum purchase quantities is very flexible:
auctioneers can leverage their experience to tailor the
choice of the discount function in Equation (16) to the
specific market conditions (Ketter et al. 2012). In this
regard, our optimization framework shares the same
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Figure 10. (Color online) Optimization Results on the Test Data
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spirit of the adaptive design proposed by Pardoe et al.
(2010), which incorporates prior knowledge of bidder
behavior to enhance the setting of the auction parameters.
It is worth mentioning that our current optimization
framework has not taken into account bidders’ learning
effect; that is, bidders may also form and update their
beliefs about auctioneer’s dynamic decisions over time.
Although a full treatment of designing and imple-
menting effective decision support tools in the com-
plex, dynamic market of DFAs is beyond the scope of
the current study, the optimization framework de-
scribed herein provides a useful starting point.

9. Conclusion

In this paper, we develop a dynamic structural model
for multiunit sequential Dutch auctions in a B2B
market. To the best of our knowledge, this is the first
paper that adopts a structural econometric approach
and systematically examines the dynamic decision-
making problem in these complex auctions.

Our work makes important contributions to both the
theory and practice of auction design. From the theo-
retical perspective, we extend the current structural
empirical auction literature by modeling competitive
bidding in sequential auctions in which bidders have

multiple purchase opportunities over time and can fulfill
multiunit demand in each round. The multiunit, se-
quential nature of these auctions poses both econometric
and computational challenges for the structural esti-
mation. To address these challenges, we adapt the well-
known two-step estimation methods by exploiting the
characteristics of the market processes and market
participants (particularly bidders). This allows us to
recover the structural parameters in a computation-
ally efficient manner. To this point, it is worth noting
that although individual bidders may deviate from
the optimizing behavior quite often because of cognitive
or computational constraints in this competitive en-
vironment, the empirical results indicate that at the
aggregate level, our dynamic structural model well
captures the essence of how bidders interact with each
other under different market conditions.

From the practical point of view, this research pro-
vides valuable insights into auctioneers’ decision
making concerning the key auction parameters. As
Klemperer (2002, p.184) points out, “auction design is
not, ‘one size fits all.”” Although extensive progress has
been made in practical designs of single, isolated
auctions, there is limited understanding of the bidding
dynamics in sequential auctions, and the literature
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concerning the design issues of these auctions is still in
its infancy. In the current study, we conduct a series of
policy simulations based on the structural estimation of
bidders’ values, and the results indicate that the decisions
of auctioneers in setting the key auction parameters (e.g.,
minimum purchase quantity) are often suboptimal. We
then propose a novel, structurally based optimization
framework that can account for bidders’ strategic re-
actions toward policy interventions and guide auc-
tioneers to choose minimum purchase quantities
appropriately under different market conditions. In this
regard, our paper shares the same spirit of Adomavicius
et al. (2009) and Ketter et al. (2012) by providing an ef-
fective computational tool to facilitate decision making
in a complex environment. However, unlike previous
studies that mainly rely on simulated data to evaluate the
performance of proposed tools, we demonstrate the ef-
fectiveness of our optimization framework using real
transaction data, which makes it very promising for
practical use. It is worth mentioning that, although the
current study is specifically geared toward the DFAs, our
optimization framework can be applied to other time-
critical B2B markets, particularly the auction markets
for perishable goods, such as fish, fruits, and vegeta-
bles. Some of the famous markets that have adopted the
multiunit sequential auction mechanism include Ota
Market (Japan's largest flower and vegetable wholesale
market), Kunming International Flora Auction Trading
Centre (China’s largest flower-trading market), and
Pan European Fish Auctions (the first European “vir-
tual” B2B market in the fishing industry). The results
and findings from the current study provide useful
implications to both academics and practitioners in
reengineering these complex markets (Kambil and van
Heck 1998).

The current study bears several limitations that,
nevertheless, provide possible directions for future
research. First, our current model does not account for
the potential complementarity of products. In reality,
many bidders, especially small retailers, may be in-
terested in purchasing an assortment of products on
behalf of their customers. This means that bidders’
valuation of certain products may be conditional on the
purchase of other products. Such a package bidding
feature would pose considerable challenges to the
modeling and estimation of these auctions (Boutilier
et al. 1999). Unfortunately, as we do not have access to
bidders’ order books, it is very difficult to conduct
empirical studies in this aspect. In addition, given the
focus of this study on multiunit sequential auctions, we
have chosen a homogeneous sample and performed
nonparametric estimation. It would be nice to have
a comprehensive, parametric model that accounts
for product heterogeneity across different auctions
although such a model would inevitably require even

stronger assumptions than our current model. Second,
following prior works in structural modeling of se-
quential auctions, we have assumed that conditional on
their states, bidders’” valuations are randomly drawn
from the same distribution. Although this assumption
ensures our model is identifiable, it might be violated in
reality. Specifically, when there exists significant het-
erogeneity in the downstream market, the estimates
from our current model could be biased. To better
understand the downstream market, we have tried
very hard to approach wholesalers as well as retailers
in the DFAs to obtain their order books. Once we have
the information about their order books, we can work
on extensions of our current model to account for
observed heterogeneity. Third, as bidders are allowed
to purchase multiple units in each round, we assume
bidders’ purchase quantities are strictly exogenous to
ensure the tractability of the dynamic system. An ex-
citing and challenging avenue for future research
would be incorporating purchase quantity as an en-
dogenous decision variable in the dynamic structural
model. Finally, as already mentioned in Section 8.2,
our current structurally based optimization frame-
work does not account for bidders’ learning regarding
the dynamic setting of minimum purchase quantities.
Future research may consider using computational
platforms (Bichler et al. 2010) to explore the impact of
this factor.
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Appendix A. Mathematical Proofs

Appendix A.1. First-Order Condition

The probability that bidder i wins the subauction at state
(so0, si,5—i) with bid b, denoted by P(i wins|b, so, 5;, s_;), can be
written as

HG(b|SOrSjr s—j)r (Al)
J#
and the corresponding probability density function is
> T1 G(blso, st 5-)g(blso, 57, 5-))- (A.2)

i ket

The probability that bidder j, j # i wins when bidder i bids b,
P(jwinsl|b, s, si, 5-i), is given by

b
/ —g(els0,57,5-) TT Glalso, si, s-i)dx. (A3)
b ki j
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The first-order condition of equilibrium bids yields

(v = b)(P(i winslb, s, s;,s-1)) — P(i wins|b, sy, s;, s_;)
+B(P(i wins|b, sg,si,5-1)) Vi(@;)

+ B> (P(j wins|b, so, si,5-)) Vi(w;) = 0.
J#i

(A4)

Substituting Equations (A.1)—-(A.3) into Equation (A.4), we
have

(v- b)z 1T G(blso, sk, s-x)g(blso, sj,5-;) — [ 1G(blso, s, )
j#i

T ki
+BVi(w) > TT G(blso, sk, s—x)g(blso, s, 5-7)
j#i k#i]
+B>(—g(blso, 57,5 —;) H G(blso, sk, s-1)Vilw))) =
J#

(A5)

Dividing both sides of Equation (A.5) by [ ];.;G(blso, st,s-x)
and rearranging it yields

-3 SO0 E) g gy 57 8CH0S5-)

j#i G(blSQ,S], 7]) j#i G(b|SO/Sj/ S,]-)

s G(b|50,5]/ —])Vi(wj) =0.

j#i (b|50/ S// *])
(A.6)

We can obtain Equation (9) by substituting the auxiliary
function (e.g., Equation (8)) into Equation (A.6).

Appendix A.2. Proof of Proposition 1

To prove Proposition 1, we first derive the expectation of the
value function. Substituting Equation (4) into Equation (6)
and expressing the sum of discounted future payoffs with
respect to all possible state transitions, we can obtain

0
Vi(s0,50,5-0) = / | @~ ByP( winsle,so,51,5-1)
v

N (A7)
+B Z P(j winsl|b, so, si, S—i)Vi(wj)]
=1

f(©lso, i, 5-1)do.

Next, we substitute Equation (9), that is, the first-order
condition for optimal bids, into Equation (A.7). After rear-
rangement, we can obtain

0
1

Vi(so,si,85-i =/ ————P(i wins|b, sp, 5;,5—;

1(0 i 1) ) Zj#i blS(),Sj, —j) ( | 0/ 9i 1)

-f(z;|so,s,-,s_l-)dv
Y(blso,sj,s-j)
P Zzl¢,¢(b|so,s:,sz) Vit

v j#

- P(i wins|b, sy, si, s—;) f (v]so, 5i, s—i)dv
+ ﬁzp(] WiIlS|b, 50, Sis S,i)Vi((L)]').
#
(A.8)

Consider a change of variable of integration from v to b. We
have

db(v)
e do

Let #! denote the inverse bidding function. We have

db = (A.9)

F(ﬁil(b)ls(h Siy S—i) = G(b|50/ Si, S—i)~ (A]-O)

Taking the derivative on both sides of Equation (A.10) yields
the following relationship between the probability density
function of bidders’ private valuations and their equilibrium
bids:

‘1(11)

FE )lso,si,5-)- (A11)

where

= g(blso, si, 5-i),

)1
ob ~ Ib(v)/dv’

Combining Equations (A.9), (A.11), and (A.12), we have

(A.12)

f(@lso, si, s—i)dv = g(blso, si, s—i)db. (A.13)

Note that, given the state (s;, s_;), the probability that bid-
der i wins with bid b is the probability that b is the highest
bid; that is,

P(i wins|b, sg, s;,s-i) = [ [G(blso, Sk, S—k)- (A.14)
ki

Substituting Equations (A.13) and (A.14) into Equation (A.8)

yields

Vi(so, si,s- [1G(blso, sk, 5-k)

b
i) = /g 3 j2i W(blso, 8j,8-)) ki
. g(b|50, Si, S l)db

1P(b|5015]/ —/)V(w/)
ﬁ/ []# ki Y(blso, Sk, S-k)

- [ 1G(blso, sk, s-x)8(blso, si, 5—i)db
ki
+ ﬁZP(] WinSlSQ, Si, S_l')Vi(a)]‘).
i
(A.15)

Finally, taking 3} ;; out from the second term and rearranging
the second and third terms on the right-hand side of Equation
(A.15), we have

b
Vi(s0, i, S-i =/ —
(%0 ) b 2z Y(blso, s, 5-)

’ HG(b|SO/ Sks ka)g(b|50, si,S—;)db
k#i

. ﬁZ[ " ylblso,sis-0)

S Sy Skep(blso, se, 1) (A.16)

' HG(b|50, Sk, s—k)g(b|50/ S, S,])db
k+#j

b
¥ / 4G (U0, 51,5 |Vilw).
b
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Recall that G9(b|sy, s;, s_;) denotes the probability that bidder g8 Ry, <882 BY
i wins with a bid less than or equal to b. Thus, we have ° — — = 22 & ZZ —

i T i e o

G (blso, si,5-i) = [1G(blso, sk, 5-x) x g(blso, si, 5-)db. 5| N8 ZZZZZ2 222222 2ZZ7Z
ki
(A1) Hlea QR Z25522522578%2%
i Y
Substituting Equation (A.17) into Equation (A.16) yields -
Proposition 1. IV s s s s s ssRYss s ss
@ S22 222222 Q2222 2Z7Z
Appendix B. Estimation Results
) . . . CLLL LCL LT LA™ <L L <%
Table B.1 summarizes the estimation results for Weibull PN 2222222222 82222 27
parameters from day 6 to day 30.
o & N oM ¥ =Y 0 NG o 0N
Sl "o s Ad F g B8~ S
Endnotes
"Here, by auction design, we are not only referring to different el e e el
, 4 & <+ a8 S
auction formats (e.g., English auction or first-price auction), but also WERZZEZ2ZZZ2Z2222Z227
the choices of key auction parameters, such as reserve prices, starting PR o © 16
prices, and lot sizes. S| oo "‘g‘ﬁ:ééé?zﬂ”cﬁ Nsﬁ'—:jéé
2Backus and Lewis (2016) is a notable exception.
®More institutional details can be found at https://www 8 i R X R R I <ZC<ZC Y <ZE<ZC R
.royalfloraholland.com/en. - - o o o o o
4 . . . . 11
In this sense, it can be considered as a special case of bundle bidding 2| 2D € I L RR G R
in which the element of the bundle does not have an intrinsic value PR RRzzzZzZzZRI 2278 22
(Boutilier et al. 1999).
a| N\ L oo ] «x N = 00
5 With the estimation methods proposed by Aguirregabiria and Mira G| 7N T g g O AL O o Mo
(2007) and Bajari et al. (2007), it is no longer necessary to solve for
MPE when estimating the model primitives. However, solving for w| e g < ﬁ ; g < < [[: 2 << << << : g
MPE is still needed for policy counterfactuals. LTS TS HZ2Zas2224222 7S
5In practice, the reserve price is set low enough, and we rarely ob- ol Noy e VN o NT DD 0 Oy
serve auctioned goods being destroyed. S| 7N =0 AX® 77 ZZ OQ S0 AN~
" Technically speaking, with the introduction of the online channel, © - - o o~ o - <
bidders can choose to purchase from any one of the four auction sites Sl = : IS g <ZC <Zt < % <2: <ZC I m <Zt <Zt < Q <Zt <Zt
within the country. However, in practice, wholesalers typically buy
roducts from the auction site that is in close proximity to the location
B o e proximity B 2N S IS S SN SS LY SS
y need to ship the goods. @ S Zzzzzzzz PR zzZ°>F zz
8Van den Berg et al. (2001) show empirical evidence for declining o6 16 < o < - oo ~ w
price anomaly in the flower auctions; however, if we look at indi- S| a6 — : S 6 o ‘l: — 15 o m — 5 I S foN
vidual auctions, price trends are inconclusive in these multiunit se-
quential auctions. I N R RN B P IO R N R ) N —
®In multiobject auctions, bidders’ information structure can be very FlTeEfETREYRZZER 22 7 90
complex in the presence of complementarity or substitutability be-

. . . : e R oy N ¢ g 0o Iy D
tween different objects. In particular, when L distinctive objects are » §l "= 186 88 =¥ NG g FF =g =g
auctioned, each bidder may have preferences over up to 2L -1 ks
bundles. Although a structural model for such multiobject sequential ‘é’ | om nn — O g NO £ RO
auctions would offer great insights, it is beyond the scope of this paper. § | ¥ "2 YN8 ERZZY_NZZ 7= 2R
""We performed reduced-form analysis by regressing the winning & o w o w ©
prices on the aforementioned product characteristics; for stem length, ::; Fl NS o <Z: <ZE <ZE <ZC <ZC <Z: % ol <ZE %: <ZC <Z: <Z: <ZC

. . — 3

we created two dummy variables corresponding to the stem length of e

55 and 60 cm. The coefficients corresponding to the two dummy § o| =« O HN NN O HO g Oy N

variables are statistically insignificant (p-value >0.1). 5 sl v eoghgolzz 99 3

" Strictly speaking, in a Dutch auction, only the winning bidder b s s ‘- ® o

explicitly submits a bid. However, from the strategic perspective, it is § S <ZC <Zt alg = <ZC <ZC <Zﬂ <ZC <ZC <Zﬂ — < =%

equivalent to assume that each bidder submits a secret bid and such 3]

bid only gets revealed upon winning (Paarsch et al. 2006). i ol — NI N Oy O N DN O

I o~ — —

2Suppose there are two lots for auction on a given day. The first lot 2 sl esd R A A I =T

gets sold out in j rounds. The first subauction of the second lot has an g

. ) E| gl Qe 09y oad g Q3R 0 %

index of j + 1. = Flogdn S8 77 g dg an g

3 According to Milgrom and Weber (1982), the TPV assumption is H

appropriate for the study of nondurable consumer goods, such as 5 E SRRy <ZC <ZC <ZC <ZC o <ZC <ZC 42

flowers. - == N & & T
)

"Note that, as bidders are buying on order, the commonly used % . N " . S = o o -

assumption of decreasing marginal utility does not hold in the DFA - a a A A QA A A QA A
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case; that is, the unit valuation of a five-unit bundle may be higher
than the unit valuation of a two-unit bundle for a given bidder.

“We have also considered alternative specifications such as zero-
inflated Poisson distribution. Comparatively, the zero-inflated neg-
ative binomial distribution provides the best fit.

'8 Drawing upon prior studies (Aguirregabiria and Mira 2007, Bajari
et al. 2007), we focus on pure-strategy equilibria. Nevertheless,
according to the “purification” interpretation of Harsanyi (1973), they
are observationally equivalent to mixed-strategy equilibria (i.e., the
probability distribution of players’ actions is the same under the two
equilibria). For a detailed discussion about purification of MPE in
dynamic stochastic games, see Doraszelski and Escobar (2010).

" The first-order condition has been used in structural estimations of
both static and dynamic games (Guerre et al. 2000, Jofre-Bonet and
Pesendorfer 2003).

BwWealso experiment with § = 0.85 and = 0.95 but observe minimal
differences in the results.

9 The general idea of AES is that, although each bidder’s value may
vary in different periods and different bidders” values may also be
quite different in any given period, the market environment faced by
bidders and, thus, their optimal decisions with any given value may
be very similar.

® Although market conditions can be broadly classified as scarcity,
balanced, and oversupply (Ketter et al. 2012), we do not consider the
oversupply condition in the simulation experiments as it rarely
happen in the DFA market.

HIdeally, we should use the number of unique log-in IDs as the
proxy for the total number of potential bidders. However, such data
are not available under the current bidding system. Nevertheless,
given the B2B nature of this market, we believe that it is highly
unlikely that a bidder who was interested in the products (i.e., had
received customers’ orders) never won any auction during the six-
week period, and thereby the number of unique winner IDs serves
as a good proxy for the total number of potential bidders in the
market.

2 Because we do not have sufficient information about bidders’ daily
demand, it is not possible to recover the Poisson parameter in
Assumption 1. However, once such data becomes available, we can
easily adapt the estimation process and determine the participation
probability.

5 The maximum of the minimum purchase quantity observed in our
data set is nine.

21t is worth mentioning that, although we have chosen to focus on
the optimal decisions regarding the dynamic setting of minimum
purchase quantity, the methodology developed in this section can be
adapted to optimize other auction design parameters, such as starting
price, reserve price, or lot size.
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