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1. Introduction and Motivation

A variety of online auction sites such as eBay (www.
ebay.com) and uBid (www.ubid.com) have become an
integral part of mercantile processes on the Internet.
The advantages of using auctions for selling com-
modities are different for sellers and buyers. While
sellers try to reach a wider geographical market in
order to obtain a potentially better price, buyers hope
to purchase the item of interest at a bargain. The auc-
tion mechanisms used by different auctioneers show
tremendous variability. For example, while the major-
ity of auctions on eBay sell a single unit of an item
with 4-6 bidders bidding in most auctions (Kauffman
and Wood 2006), uBid often sells multiple units of
an item with participant count in hundreds (Bapna
et al. 2004). Compared to their traditional (i.e., offline)
counterparts, online auctions run significantly longer,
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with most auctions being conducted over a period of
24 hours to a week.

Because of a variety of interesting issues, such as
auction design mechanisms, incentives, participant
strategies, and the potential for monitoring and using
information via software agents, online auctions are
attracting researchers from a wide array of disci-
plines. In particular, roles and applications of intelli-
gent agents in auctions are growing for a number of
reasons. For example, Chang (2002) reports that, in a
double-auction experiment at IBM Watson Research
Center, bidding agents programmed with simple
strategies were much faster than human players and
were 10% more profitable. However, there is a poten-
tial to use bidding agents in more complex envi-
ronments that are currently being developed. In this
paper, we explore how theoretical properties of a
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mechanism can be used to design software agents that
provide strategic advantage to their users.

While many conventional auction settings have
been studied in detail in economic literature (e.g., see
Milgom 1989), various modifications made by online
auctioneers often change the incentive structures and
create opportunities for bidding strategies and eval-
uation metrics that are not analyzed in conventional
treatments (Bapna et al. 2003a). Traditional game-
theoretic solutions typically used to analyze auction
mechanisms generally require restrictive assumptions
to make the analysis tractable and rarely consider
the real-world operating environment (Rothkopf and
Park 2001). As Klemperer (2002) points out, extensive
theoretical literature on auctions is not fully applica-
ble to the practical auction design.

Therefore, computer science researchers develop
algorithms and heuristics that use ad hoc approaches
for resource allocation in reasonable time instead of
trying to formally solve general cases of complex
real-world implementations of auction mechanisms.
For example, the ongoing Trading Agent Competi-
tion (Stone and Greenwald 2005) simulates auctions
in which multiple software agents try to maximize
their utilities in the travel industry and supply chain
management settings. However, these agents usually
try ad hoc strategies that are rarely designed based
on economic principles (Ketter et al. 2006).

Information systems (IS) researchers have also
made significant contributions to online auction
research by examining issues such as non-game-
theoretic characterization of online auctions (Bapna
et al. 2003a), empirical investigation of factors affect-
ing the results of online auctions (Bapna et al. 2002,
Kauffman and Wood 2006), discovering and monitor-
ing bidder behaviors (Bapna et al. 2004), and creation
of test beds for exploring auction design and bidder
strategies that cannot be explored analytically (Bapna
et al. 2003b, Mehta and Bhattacharya 2006). One of the
key research areas explored by computer science and
IS researchers is the role of software agents in online
auctions (Adomavicius and Gupta 2005, Mehta and
Bhattacharya 2006). Because the auction durations of
24 hours or more make it impractical for human
bidders to monitor such auctions continuously, soft-
ware agents facilitate monitoring of these auctions

and place bids on behalf of the user in predefined
ways.

Online auctioneers use many different auction
mechanisms that range from traditional English
and Dutch auctions to multiunit discriminatory and
uniform-price auctions. Even with seemingly similar
auction formats, online auctioneers use a variety
of strategies to set controllable auction parameters
resulting in different rules of engagement. Typically, the
control of an auction parameter involves two deci-
sions: (i) choosing a particular value for the parame-
ter, such as the reservation price, and (ii) determining
whether to disclose the chosen value to the bidders.
While Milgrom and Weber (1982) have shown that
revealing all information raises the expected revenue
in most auctions where bidders have independent
private values, there are multiple arguments about
the need to conceal some of this information from
bidders in other types of auctions. For example, Tu
(2005) indicates that in iterative sequential auctions,
the information release about bid history should be
selective. Specifically, they show that the only type of
information disclosure that improves seller’s revenue
is a report of winning bids and only for the first-price
and Dutch auctions.

The richness-of-information factors in online auc-
tions combined with the sellers’ incentives to hide
some of the information make intelligent bidding a
challenge. Klusch (2000) specifies that information
agents should carry out at least one of the following
functions: information acquisition and management,
information synthesis and presentation, and intelli-
gent user assistance. Furthermore, Greenwald et al.
(2003) argue that software agents have at least three
advantages over humans: faster operation, no distrac-
tion, and flawless logic. Bicharra Garcia et al. (2001)
point out that agents are present for the entire dura-
tion of an auction and can exploit the information
gathered during an auction. Overall, intelligent agents
are important for both the theory and practice of IS
because they facilitate coping with the variety and
volume of data in constantly changing environments
(March et al. 2000).

However, it is often not clear how the flawless logic
can be generated from the perspective of benefiting
the user, and, more generally, how the presence of
agents can benefit the bidder. One of the ways to



Adomavicius, Gupta, and Zhdanov: Designing Intelligent Software Agents for Auctions with Limited Information Feedback

Information Systems Research 20(4), pp. 507-526, © 2009 INFORMS

509

make the agents directly serve the interests of bid-
ders is to assist bidders in constructing and placing
intelligent bids. Intelligent bids can be broadly under-
stood as the ones which align with bidders” goals and
strategies, e.g., maximizing surplus when bidding on
a commonly available item, or guaranteeing a win
when bidding on a rare item. However, most cur-
rent software agents primarily play a role of pas-
sive participators. According to the categorization of
online bidding agents by Karuga and Maganti (2004),
existing bidding agents do not have any intelligence
built into them. Most bidding agents, such as Bid But-
ler (http://www.ubid.com/help/topicl0.asp), simply
ask the bidder for a maximum bid amount and then
keep placing incremental bids up to this prespecified
amount when a bidder is no longer winning. Very
little attention has been paid to the creation of intel-
ligent agents for B2C auctions, where a bidder par-
ticipates only occasionally and does not usually have
an opportunity to learn from multiperiod data. Based
on the literature cited above, we can identify the fol-
lowing three core capabilities that intelligent bidding
agents should have:

1. Inference of auction parameters. As discussed ear-
lier, there are multiple decisions about the auction
parameters that the auctioneer has to make and
there are incentives to hide some of these parame-
ters from the bidder. An intelligent agent can infer
the hidden parameters—e.g., the number of auction
participants—to use a more informed strategy in sub-
sequent bidding on behalf of its user.

2. Estimation of the current auction state. As Wurman
et al. (2001) argue, there are three major functions of
an auction: accept bids, clear the market, and pro-
vide intermediate information. The first two func-
tions are mandatory, while the last is common, but
not required. Intermediate information typically con-
veys the current state of the auction to the partici-
pating bidders. The current state of an auction can
sometimes also be used to judge the status of a bid-
der’s own bid. For example, in an English auction,
the intermediate information is the highest bid at a
given point in time, which tells every bidder whether
they are currently winning. However, intermediate
information may not allow the computation of exact
allocation easily. For example, in combinatorial auc-
tions (see Kwasnica et al. 2005 and Adomavicius and

Gupta 2005) various approximations often need to be
used (e.g., Sandholm 2002). An intelligent agent can
use complex mathematical algorithms and approxi-
mations to compute useful information to its users.

3. Prediction of the future auction state. Armed with
the knowledge of auction parameters and its current
state, an intelligent agent must use that knowledge
to benefit the user, e.g., by maximizing the bidder’s
expected surplus. This decision problem may be parti-
tioned into three subproblems (Parkes 2000): metade-
liberation, valuation, and bidding. Metadeliberation is
a decision about when to place a bid; valuation refers
to ascertaining the value of an item when it is not
certain, and bidding is the formulation of an exact
bid based on the previous two decisions. It is clear
that all three decisions depend on the information
derived using the parameter inference and the capa-
bility to estimate the current auction state. For exam-
ple, if there are three active bidders for three available
items, a bidder may not want to update her bid until
another bidder arrives.

In this paper, we demonstrate how theoretical prop-
erties of a mechanism can be used to develop agents
that have all three desired capabilities discussed
above. Therefore, we chose an auction mechanism
that has a high degree of information opaqueness,
and where the computational requirements for an
agent to develop the three core capabilities are non-
trivial. As a result, we concentrate on developing
an intelligent agent for the weighted average auction,
which is inspired in part by the Spanish auction
(Alvarez et al. 2003). We first provide a theoretical
analysis of a general form of the weighted-average
auction. Then, we derive intelligent strategies for
bidding agents to help make bidding decisions. We
demonstrate the efficacy of our approach using a com-
prehensive simulation-based analysis. This paper will
demonstrate and argue that economic principles and
analysis of incentives can be used to derive strate-
gies for the effective design of intelligent agents (Ba
et al. 2001). Because the optimal strategy of bidders
is to maximize their surplus, which is positive only if
a bidder wins an auction, the primary strategy of an
agent should be to win at a reasonable price. Hence,
in our context, the economic incentives of an agent are

to develop a strategy that provides a high likelihood
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of winning at a reasonable price below the agent’s
private valuation.

The rest of this paper is organized as follows. In
the next section, we present our analytical model and
results characterizing the structure of auctions that
involve reporting of the weighted-bid average. In §3,
we develop strategies for an intelligent agent. In §4,
we present the simulation model to test and validate
the agent bidding strategies. Finally, the conclusions
and directions for future research are presented in §5.

2. Analytical Model

In this section, we provide the details of the weighted-
average auction mechanism. We analyze the auction
process and derive theoretical results about its key
parameters. We also discuss the links between the
analyzed auction design and some of the more famil-
iar auction designs.

2.1. Information Properties of
Auction Mechanisms

Practical implementation of optimal auction design
is complex, even for auctions that may look simple.
For example, Banks et al. (2003) analyze multiple set-
tings that might be suitable for FCC spectrum license
auctions. They argue that, in individual private-value
settings, progressive English auctions may not max-
imize revenue if bidders are risk averse; instead,
first-price sealed-bid auctions generate higher rev-
enue. In contrast, in common-value settings, iterative
English auctions may generate higher revenue. How-
ever, these conclusions are based on several assump-
tions that can be challenged, and the equilibrium for
such auctions is very hard to derive. In multiunit auc-
tions, the problem becomes even more complex and
analytically intractable (Nautz and Wolfstetter 1997,
Bapna et al. 2003a).

Therefore, researchers (e.g., Banks et al. 2003) have
been focusing on the complexity of auctions and
induced bidding strategies to control the properties
of the mechanisms via policies rather than focusing
on equilibrium analysis. In the same vein, we focus
on deriving strategies based on auction rules and the
resulting complexity of several different variants of
weighted-average auctions. There are three dimen-
sions of complexity in auctions that define informa-
tion content and drive bidder strategies. First, an

auctioneer needs to decide whether to use an itera-
tive mechanism because there are revenue-based argu-
ments both for and against these types of auctions.
Moreover, in iterative mechanisms the duration of
the auction also has to be considered—for example,
auctions that are limited in duration by time or num-
ber of rounds induce sniping (Roth and Ockenfels
2002). Second, multiunit (as opposed to single-unit)
auctions have an additional set of strategic issues for
bidders related to possible partial fulfillment of bids.
Therefore, creating an agent to bid on multiple items
is more complex than bidding for a single item, poten-
tially requiring more sophisticated strategies. Finally,
a decision about the extent of information revelation
needs to be made because it has an impact on the
revenue as well (Tu 2005).

A variety of auction configurations can be con-
structed by choosing different joint configurations of
number of items and iterations—from a single-item
single-round Vickery auction to iterative multiunit
auctions. However, the final dimension of information
transparency and feedback given to the bidders dur-
ing the auction has not been explored in theory and
practice as comprehensively as other dimensions. The
majority of commonly used auctions use either full-
transparency or no-transparency design. A promis-
ing set of auctions with partial transparency (e.g.,
muni auctions for selling municipal bonds, such as
at grantstreet.com) have not received much attention
in the academic literature, although they are used in
practice. In this paper, we analyze a family of partial-
transparency auctions that may be used to conceal the
bidding information from bidders and influence bid-
der behavior. These auctions use the bidder-feedback
scheme based on a generic form of the weighted aver-
age of winning bids, inspired in part by Spanish trea-
sury auctions. As discussed later, while considering
higher complexity in information transparency, we do
not sacrifice much complexity in the dimensions of
duration and number of items available.

The original design of Spanish auctions is used by
the Treasury of Spain to sell government securities
(Alvarez et al. 2003). A similar design is also used
in electricity auctions in the United Kingdom (Fabra
et al. 2002) and California (Thomas et al. 2002). Span-
ish auctions have the following characteristics (e.g.,
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Alvarez et al. 2003): divisible goods, allowing for par-
tial fulfillment of bidders’ orders; the price paid by
bidders is a combination of discriminatory and uni-
form pricing schemes, where those bidders who win
below the weighted average of winning bids pay their
own bid amount, while those who win above the
weighted average pay that average; the weights used
in averaging of winning bids are equal to the bundle
size of bids; and auctions are typically sealed-bid with
each bidder placing a single bid.

From the modeling perspective, Spanish auctions
may be considered multiunit auctions with arbitrarily
small unit size. The allocation rule in Spanish auc-
tions provides some incentives for bidders to bid their
true valuations because a winner either pays below
average or an average price below their bid retaining
some surplus. However, because the weighted aver-
age depends on the winners’ bids, the auction is not
incentive compatible in a true sense and bidders tend
to overbid thinking that they will win at lower prices.
The properties of such auctions are not yet well stud-
ied, but the mechanism itself seems promising, e.g.,
Abbink et al. (2006) show that the Spanish format gen-
erates higher revenues for the seller in the common-
value sealed-bid setting with repeated auctions as
compared to an English auction. Alvares et al. (2003)
arrive at similar results using a theoretical model and
simulations with two bidders making two bids.

Auctions implementing different forms of the
weighted-average mechanism have been used by var-
ious trading entities throughout the world. For FCC
spectrum auctions, the Auctions Division of the Fed-
eral Communications Commission defined bid incre-
ment for each license based on a weighted average
of the activity on that license in the most recently
completed round as compared to the activity in the
previous rounds.! Chicago Climate Exchange auc-
tions greenhouse gas emission allowances in a mixed-
auction scheme, with about 20% of allowances sold
using average-price auctions. In these auctions, the
current weighted average is defined based on prices
from a preceding discriminatory sealed-bid auction,
which sells the other 80% of allowances.” Such

! http: // wireless.fcc.gov /auctions/data/papersAndStudies/
SmMethFactSheet.pdf.

2 http: //www.chicagoclimateexchange.com /news/auction_intro.
P g g
html.

mechanisms have also been used by B2C auction sites,
e.g., dealspin.com.?

In this paper, we consider a weighted-average auc-
tion mechanism in which the bidders are allowed to
place multiple bids over time. The feedback provided
to the bidders is restricted to a generalized weighted
average of winning bids. In other words, bidders
are not given information about other bids; instead,
bidders are provided a certain aggregate metric—
a weighted average—computed from current win-
ning bids. In addition, each bidder is restricted to a
prespecified number of bids. At the end of an auc-
tion, bidders are notified about whether their bid
was among the winning bids. The formation of a bid
in such an environment becomes a challenging task
because a bidder does not know the bids that are cur-
rently winning. In addition, because of the restriction
on the number of bids a bidder can place, it becomes
important to make intelligent bids and support bid-
ders in evaluating their own bids. Note that auctions
with a variety of different bidding restrictions have
been investigated in the research literature (sealed-bid
auctions being one of the simpler examples). How-
ever, the reporting of a specialized weighted average
of winning bids combined with the restriction on the
number of bids constitutes a novel, interesting, and
plausible way of information masking, particularly if
some of the information involved in the computa-
tion of the weighted average is not known to bidders.
Specifically, our model has the following properties:
It is an iterative auction allowing bidders to place
multiple bids; it uses a general form of weighted-
average computation; bidders’ final price is equal to
their own bid, which discourages the strategy of plac-
ing high bids; and auctions are for multiple units of
the same item.

While our main focus is on specific multiunit auc-
tion settings where each bidder can bid only on a sin-
gle item, we also provide a theoretical and empirical
exploration of bidder strategies for bidding on mul-
tiple items. Next, we describe a business setting in
which such an auction may be useful, provide a for-
mal statement of the auction problem, and set up our
analytical model.

% The site now seems to be defunct pending investigation of com-
plaints about irregular credit-card charges.
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2.2. Business Model

Several online sites, such as uBid.com, buy certain
consumer items in bulk and resell them to the end-
consumer. They buy a certain number of units to
receive price discounts from the manufacturer or an
intermediary. Then, they use auctions to attract the
buyers and/or to identify potential buyers. There-
fore, in every auction only a small portion of over-
all stock is sold. It is common to hold several auc-
tions for the same or similar items over time. We
define the total number of units that the reseller
wants to sell as deal group, N. Based on the deal-
group size, the site owner negotiates a discounted
price with their supplier. This price is termed as deal
price, P.

In every auction, several units of the item are sold
simultaneously. Each bidder can only bid on a sin-
gle unit and is allowed to place only a prespecified
number of bids. In other words, bidding on multi-
ple items is not allowed, and the subsequent higher
bids from the same bidder replace the earlier bids
from the same bidder. Suppose that the auctioneer is
selling n units (n < N) in a given auction; then, the
bidders with top n bids win the auction. The entire
stock of the product then is sold through repeated
auctions or postauction solicitation. In this way, the
auctioneer tries to estimate the relationship between
prices and respective quantities for sale. In addi-
tion, such information is useful in estimating and
negotiating for volume discounts with manufactur-
ers and/or distributors. We next describe the auction
process and derive some key results about the infor-
mation available to the bidders during this auction
process.

2.3. Characterization of the Auction Process

As mentioned earlier, deal price P and deal-group
size N are defined before the auction begins and
remain constant for its duration. These two parame-
ters are not known to the bidders during the auction.
Suppose that the auctioneer decides to sell n items
per auction (1 < N). Furthermore, assume that all bid-
ders are allowed to place at most k bids during the
auction. If k =1, then we have a conventional sealed-
bid auction, which has been extensively studied in the

literature. Thus, we will focus on auctions with k > 2.4
The additional key rules of the auctions are:

* Before their first bid, bidders observe a minimum
required bid that remains fixed for the duration of
the auction, ie., it does not change as the auction
progresses.

* After the first bid is placed, bidders are continu-
ously provided with the weighted average, that is calcu-
lated from the currently winning bids and deal price
(we formally define this weighted average below).
This is the only piece of information provided to the
bidders with respect to the competitiveness of their
bids.

¢ As the auction progresses, bidders who have
placed at least one bid may continue to observe the
change in weighted average after each bid. Bidders
can place up to k — 1 more bids at any time during
the auction. A bidder is not allowed to revise her own
bid downwards.

* At the end of the auction, the n highest bidders
are declared winners and can receive the items by pay-
ing the price equal to their own final (i.e., highest) bid.

Note that in this auction mechanism, the bidders
do not automatically know whether their bid is win-
ning; the only information they have is the weighted
average, which is computed from the values of win-
ning bids and the deal price. Therefore, one important
question is whether there is a way for the bidders
to determine whether their bid is winning at a given
point in time.

First, let us define the weighted average formally.
Denote WIN, as the set of winning bids at auction
state f (i.e., after t bids have been submitted). Then,
|WIN,| =t, when t < n and |WIN,| =n, when t > n.
We will also use the min(WIN,) notation to denote
the smallest winning bid at any auction state f. Then,
the weighted average at time t, denoted as A,, can be
expressed as

At=(1/N)< > b+ (N-— |WINt|)P>. (1)
beWIN,

We next explore the properties of this weighted
average A,.

*While the computational properties developed in this paper can
be used to make better bids when k =2, our approach is most
effective for cases when k > 3. We omit the analysis of the k =2
case because of space limitations.
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2.4. Properties of Weighted-Bid Average A,

Let A be a finite collection (i.e., a multiset) of
real numbers, ie., A = {a,,...,a,}, where a, € R
(i=1,...,m). Define the average of A as avg(A) =
(1/|A|) ZaeA a.

LemMaA 1. Let A and B be finite collections of real num-
bers, where avg(A) < avg(B). Then avg(A) < avg(A U B)
< avg(B). (The proof is based on straightforward arithmetic
manipulations.)

Now we can derive several properties of weighted
average A,.

THEOREM 1. At any auction state t, the relationship
between the true average of currently winning bids
avg(WIN,), the current weighted average A,, and the deal
price P can be characterized as:

(i) If avg(WIN,) <P, then avg(WIN,) <A, <P;

(if) If P <avg(WIN,), then P < A, <avg(WIN,).

Proor. Immediate from Lemma 1, by taking A =
WIN, and B to be a collection of N — |WIN,| numbers,
each equal to P, and noting that avg(A) =avg(WIN,),
avg(B) =P, and avg(AUB)=A,. O

In summary, Theorem 1 states that weighted aver-
age A, always stays between deal price P and the true
average of winning bids, avg(WIN,). Intuition sug-
gests that over time, as the bids increase, weighted
average A, should also increase; however, in some
cases the weighted average may decrease. Theorem 2
and Corollary 2A describe the behavior of A, over
time.

THEOREM 2. For any t such that t > n, we have
A=A

Proor. Because t > n, at least n bids have been sub-
mitted so far and, therefore, |WIN,| = n. There are
two possible scenarios: (1) If b,,; < min(WIN,), then
WIN, = WIN,,, and, consequently, A, = A,,,. (2) If
b,;, > min(WIN,), then b, ; € WIN, 4, i.e,, it displaces
bid min(WIN,)® in the winning list. Based on the def-
inition of A,, we have A,,; = A, + b,,; — min(WIN,),
and thus, A, <A,,;. O

Assuming t > n, the following relationships are true
based on Theorem 2:

by gWIN, & A=A,
b €WIN,,;, & A <A

and

® Or the previous bid by the same bidder, if it is currently winning.

COROLLARY 2A. If A, > A, 4, then t <n.

Proor. Immediate from Theorem 2 (by taking the
logical negation of the implication). O

Next, we further explore the dynamics of weighted
average A, to derive intelligent bidding strategies.
From here on, we assume that the bidding has
reached the stage when there are as many bidders as
there are items (f > n).® Also, recall that deal-group
size is greater than the number of items for sale in a
given auction (N > n). Furthermore, note that a bid-
der can use the observed weighted average informa-
tion to formulate her subsequent bids. To illustrate
the relationship between the weighted average and
the winning bids, suppose that at some time t the
observed weighted average is A,. The following result
explores the situation when the bidder strategically
bids the current weighted average, i.e., the bidder
places a new bid b, ; = A,.

THEOREM 3. Assume that at auction state t > n, the
following new bid is submitted: b, ., = A,. If A, = A4
(i.e., b,y  WIN, ), then for all winning bids b € WIN,,
we have that b > P.

ProoOE. Assume otherwise, i.e., that min(WIN,) < P.
When t > 1, by the definition of A,, we have that A, =
(Xbewmv, b + (N —n)P)/N, and min(WIN,) represents
the smallest of N values (that are being averaged) in
the numerator. Therefore, min(WIN,) < A,.” Because
b,.1 = A,, we have that min(WIN,) < b,,,, and, con-
sequently, b, ; would displace min(WIN,) in the win-
ning list at auction state t 4 1. This would result in
A, > A,—a contradiction. O

In other words, Theorem 3 implies that (at any
point in time t > n) if bidding the current weighted
average does not cause the weighted average to
change, then all the winning bids are equal to or
higher than the deal price.

CoRroLLARY 3A. Given auction state t, if there exists
a currently winning bid b € WIN, such that b < P, then
new bid b, = A, is guaranteed to be winning, i.e., b, ; €
WIN ;.

¢ The situation where t < 7 is not very interesting because any next
bid, however small, will be a winning bid.

7 This is true because N > n, otherwise the relationship could pos-
sibly be min(WIN,) < A,.
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Proor. Immediate from Theorem 3. O

As stated in Theorem 1, A, always lies between
avg(WIN,) and P. Note that if avg(WIN,) < P, at least
one winning bid is guaranteed to be less than deal
price P. In this case, bidding the current weighted
average, i.e., b, = A,, will definitely place bid b, in
the winning bid list. However, when avg(WIN,) > P,
bidding the current weighted average A, will not place
the bidder in the winning list unless min(WIN,) < A,.

By applying the results of Theorems 1-3 and strate-
gically placing bids, it is possible for a bidder to com-
pute whether her bid is among the winning bids.
In addition, by exploiting the mathematical proper-
ties of weighted average A;, bidding strategies can be
devised to increase the chances of winning in an auc-
tion. In §3, we derive and describe these strategies.
However, first we briefly discuss how our auction for-
mulation may be applied in some related settings.

2.5. Generality and Applicability of the
Weighted-Average Auction

Let us explore the circumstances that would lead a
seller to choose the weighted-average auction for-
mat. As Banks et al. (2003) point out, transparency
of information has an impact on bidder strategies
and seller revenues in auctions.® We conjecture that
the use of the weighted-average auction can increase
seller’s revenues in cases when there is high uncer-
tainty about the valuations of the bidders, for exam-
ple, when new products are introduced to the market
or when an auction is used to sell used commodities.
In these cases, individual valuations can be highly
variable. Because in most traditional auctions prices
tend to coalesce around the marginal bid, a higher
variance in valuation implies that, for the same num-
ber of units on sale, prices might be lower because
marginal bid will typically be based on lower val-
uation (assuming that maximum valuation is stable
and set by market information). To test our conjecture,
we conducted a simulation-based analysis comparing
the seller’s revenue from multiunit English (Yankee)

8 For example, Wes Shepherd, CEO of Channel Velocity, mentions
that he tries to withhold the inventory information from auction
participants. Channel Velocity sells excess inventory of consumer
goods using eBay auctions. (See http://channelvelocity.blogspot.
com/2006/08/thoughts-on-auction-psychology.html for more details.)

Figure 1 Comparison of Seller Revenue for Yankee and
Weighted-Average Auctions
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auctions and weighted-average auctions, while iden-
tically varying uncertainty about the valuations of the
bidders.

In particular, we used seven uniform distributions
of valuations with increasing variance (as measured
by the difference between minimum and maximum
possible bids) to draw 10 sets of valuations from each
distribution. Then, we simulated 100 pairs of Yankee
and weighted-average auctions using these valuations
and computed the average revenue for each distri-
bution. All the auctions had five items for sale with
a maximum possible individual valuation of $1,000.
We found that the weighted-average auction outper-
forms the Yankee auction with respect to the seller’s
revenue when the degree of uncertainty in bidders’
valuations is relatively high (see Figure 1). We also
found that relatively high revenues generated by the
weighted-average auction are not caused by the exces-
sive bidder aggressiveness because the bidding strate-
gies used for the simulated bidders were risk averse.

As discussed earlier, this mechanism design con-
siders auctions in the space of iterative bidding,
while providing the opaqueness of feedback via
the weighted-averaging technique. Next, we address
the generality of the proposed design by showing
that other conventional averaging techniques can be
viewed as special cases of our general averaging
mechanism.

Recall the definition of weighted average A, in (1):
Ay = (Cpewn, b+ (N — [WIN,|)P)/N. Suppose that the
auctioneer decides to sell her entire stock in a sin-
gle auction, thus making the deal-group size equal
to the number of winners, i.e., N = n. In this case,
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the second term in the above summation is equal to
zero, and A, becomes an arithmetic mean of winning
bids. Because of the simplicity of calculating A, =
avg(WIN,), presenting such A, as feedback to bidders
would not provide the auctioneer with any protection
against information derivation strategies described in
the next section. However, it still could be used as a
basis for allocation rule in the auction, for example,
as in Spanish auctions.

It is also easy to see that our form of the weighted
average encompasses the case of bundle-size weights
used in Spanish treasury auctions. To see that, we
need to make the same assumption N =n, and allow
bidders to bid for multiple units. In this case, the bid
of, say, $300 for three units together, can be entered
into calculation of the weighted average as three bids
of $100 for one unit. Such repeated counting of single-
unit bids creates the effect of averaging by bid bundle
size. One related question remains, however: Will the
behavior of the bidders bidding for multiple units be
any different than in the case of single-unit bids? We
will answer this question after the bidding strategies
for the iterative weighted-average auction are ana-
lyzed in the next two sections.

3. Deriving Intelligent Bidding

Strategies

The properties of average bid metric A,, described
in §2, can be used to address a number of questions
related to quality of bidder response in terms of for-
mulating intelligent bids, such as: Is a given bid cur-
rently winning? Can we develop bidding strategies
based on the available information that will increase
bidder’s chances to win in a given auction?

To apply the results of Theorems 1-3 for assessing
whether a given bid is on the winning bid list, at some
auction state ¢ the bidder needs to obtain information
about weighted average A, that can be used to esti-
mate important auction parameters. This task can be
accomplished as follows:

* Assume that the strategic bidder placed the
required minimum bid b, (her first bid) early in
the auction to be able to continuously observe the
weighted average.

e At auction state ¢ (¢ > n), the bidder can observe
the current weighted average A, and then place bid

b,.1 = A;(her second bid overall) and observe A, ;. By
doing so, the bidder can check whether bidding has
gotten above the deal price (by applying Theorem 3).
Note that we are proposing the design of a software
agent and, therefore, we assume that the agent will
be able to participate in the auction early enough to
place this second bid (and assess strategic informa-
tion, as will be described later on) before all winning
bids go above deal price P. With this bid, the bidder
prepares for future bidding by trying to estimate deal-
group size N and other important auction parameters,
as discussed next.

3.1. Estimating the Auction Parameters by
Strategic Bidding

Let us rewrite Equation (1) by representing the lowest

of currently winning bids, min(WIN,), at time ¢ by «

for convenience

At=<a+ >

beWIN,, bmin(WIN;)

b~|—(N—n)P>/N. 2)

When the bidder places the bid at time 41 valued at
A, (her second bid overall), she displaces’ min(WIN,)
by overbidding it by some amount x, which we call
safety padding. Therefore, we can write her second bid
b,.1 = A, = a+x. We can then express weighted aver-
age A, as

At+1=(a+x+ >

beWIN,, b£min(WIN,)

b+(N—n)P>/N. 3)

Note that the difference between A;,; and A, is
equal to x/N. To estimate safety padding x and deal-
group size N, the bidder needs to place an imme-
diate strategic bid b,,, = A, + s =a + x + s, where
s is a strategic increment. Because b,, is a bid by the
same bidder (her third bid overall), it replaces b,,;.
One of the key issues in placing b,,, is that it should
be placed as soon as possible after placing b,,,. As
Greenwald et al. (2003) mention, software agents are
best suited for such applications because the agents
can place the bids in rapid succession (while record-
ing the observed resulting weighted average). Assum-
ing that the second and third bids can be placed in

? Note that, while we are definitely displacing the lowest bid, we do
not know how our bid fares compared to other winning bids. The
new bid can be lowest as well as highest or midranked winning bid.
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rapid succession without another bid affecting the
weighted average, Theorem 4 provides the results
about the auction parameters of interest.

THEOREM 4. Given strategic bids b,.,, b,., and ob-
served weighted averages A,, A,.., and A,.,, the deal-
group size, safety padding, and the value of the smallest
winning bid at time t are given by

N=5s/(Apr— A1),
X = S(At+1 - At)/(At+2 - At+1)/ (4)
a=A;—s(A —A) /(Ao — Ajr)-

Proor. After the third bid b,,, is placed, the
weighted average can be represented as

At+2=<a+x+s+ > b—i—(N—n)P)/N.
beWIN;, bmin(WIN,)
®)
Obviously, A, — A;;; =5/N. We compute N, x,
and « from the following system of equations:

ba=a+x, A —A=x/N,
Ay — Ay =s/N. (6)

Solving this system of equations, we obtain the
expressions represented in (4). O

Note that the actual value of strategic increment
s must be determined carefully. On the one hand, it
should not be too high (in order not to overbid unnec-
essarily). On the other hand, the value of s deter-
mines the ability to derive deal-group size, e.g., if A,
is reported with rounding of $0.10, s should allow
one dollar for every 10 members of the deal group.
Thus, after strategically placing three bids, a bidder
can observe average bids A,, A,,,, and A,,, and also
estimate the lowest winning bid « at time ¢, “safety
padding” above the lowest winning bid x at time ¢,
and deal-group size N.

Before we demonstrate the utility of the parameter
estimation procedure in placing final bids for poten-
tially winning the auction, we would like to address
the issues related to the possible effect of any addi-
tional bids (i.e., bids by other auction participants)
on the weighted average before the intended strategic
bid b,,, is placed.

3.2. Sensitivity of the Parameter Estimation
Procedure to Bid Interference

After placing the first bid, the bidder can monitor
the average bid continuously. Generally, it will change
as other users place their bids. As discussed in §3.1,
the parameter estimation procedure is based on the
following observed weighted averages: A,, A;,;, and
A;,». Thus, there are two time intervals of interest
from the perspective of changes in the weighted aver-
age: (t,t +1) and (¢t + 1,t + 2). Also, recall that
every new bid that becomes a winner increases the
weighted average.

Consider the interval (¢,t + 1). After t bids have
been submitted, according to our parameter estima-
tion procedure, the bidder is supposed to bid b, ; = A,.
If someone else bids instead and becomes a winner,
the actual weighted average at time ¢t +1 will change
to Aj. Therefore, the bidder using our strategy is
forced to bid A} to be on the winning bid list. How-
ever, this change in weighted average does not matter
because A} is observed before making a bid.

On the other hand, any change in weighted aver-
age during the interval (t + 1, ¢+ 2) is more impor-
tant. Ideally, we want to hold everything fixed, so
that after placing the strategic bid b,,, we know
with certainty that we are displacing our own win-
ning bid b,,, and, therefore, can estimate the param-
eter values precisely (using Theorem 4). However, in
practice this may not hold because of bids by other
people interfering with our strategic bidder’s bids.
We next analyze the impact of these potential inter-
ferences on the estimated parameter values. Assume
that the weighted average changes to A}, (A}, >
A1) because of another bid during the time between
observed A,,; and reception of our strategic bid b,_,.
(For the moment, let us assume that there is exactly
one such interfering bid.) The interference by another
bid or bids can be classified in two broad cases based
on whether bid b, ; remains winning after the inter-
fering bid was placed.

Case 1. Assume that the strategic bidder’s previous
bid, b,,,, is still among the winning bids. The net
result of the interfering bid is that it increases the
value of the winning bids by some amount 6 as com-
pared to the situation where there was no interfering
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bid. More formally,

f+1=<a+x+5+ > b+(N—n)P)/N.
beWIN,, b#min(WIN,)

)
Equation (7) implies that the difference between
A}, and A, , is equal to 6/N. If deal-group size N
is large or if the “interference” bid increment is small
compared to N, the distortion will not be significant.
Nonetheless, the impact of the additional bid would
be that a larger than expected difference between A,
and A,,, will be estimated with the net result of
underestimating deal-group size N. Note that the for-
mula for A}, in (7) applies in more general condi-
tions. For example, if instead of just one there were
several (up to n —1) bids that became winners, then
0 represents the cumulative interference bid increase and
can be interpreted in the same way as before.

Case 2. Suppose that the strategic bidder’s previ-
ous bid, b,,,, is displaced from the winning bid list
because of another bid. In this situation, the new
bid must replace the current lowest winning bid
instead of the previous bid by the same bidder. There-
fore, 6 in (7) will also include the amount by which
earlier strategic bid b,,; is smaller than the current
lowest winning bid. Thus, the estimation of the deal-
group size would be even smaller than the situation
described in Case 1.

In summary, if we look at Theorem 4 and the sys-
tems of Equations (4)—(6) and evaluate the impact of
using Ay, instead of A, ;, we can make the following
three observations:

* Because the “distorted” value of the weighted
average is greater than the “undistorted” value and
it is placed in the denominator of the formula for N,
deal-group size will be underestimated.

¢ Similarly, safety padding x will be underestimated.

* Because the formula for the lowest currently
winning bid a involves x with the negative sign,
and because the latter is underestimated, « will be
overestimated.

Thus, the interference of other bidders when plac-
ing strategic bids leads to an inflated estimate of the
weighted average attributed to the strategic bid b, ,.
That, in turn, results in underestimation of the deal-
group size and safety padding and overestimation of
the lowest winning bid. On the one hand, thinking

that the lowest winning bid was higher than it really
was will force the strategic bidder to place higher bids
in the final stage of the auction (as we discuss in the
next section). Therefore, the bidder will have higher
chances of winning the auction. On the other hand,
the bidder will be able to retain smaller surplus from
the transaction.

However, as discussed earlier, using software
agents for placing strategic bids can greatly reduce
the chances of making these estimation errors because
of the ability to place several bids in rapid succession
and to obtain true weighted averages just before plac-
ing the strategic bids. In addition, depending on the
number of bids that a bidder is allowed to bid, an
agent can use an improved strategy by placing mul-
tiple bids in succession and estimating the parame-
ters with respect to two successive bids repeatedly.
If the two (or more) consecutive assessments are the
same, then it is less likely that there was interference
from another bid. If the estimates are different, then
a larger estimate (of the deal-group size) is better to
use because the smaller estimate was likely affected
by interference.

Having provided the basic information extraction
strategies and their vulnerabilities, in the next subsec-
tion we discuss strategies for winning the auction and
associated trade-offs.

3.3. Strategies for Winning the Auction

We first provide a general result for the guaranteed
winning bid at any time during the auction. We then
argue that a surplus-maximizing bidder might like to
win with a smaller bid than the guaranteed winning
bid and provide a strategy for intelligent bidding that
can facilitate that.

Suppose that the bidder placed a winning bid
b, = A, at time ¢ +1 (assuming A, < P, as mentioned
in Corollary 3A). If at some later time t +y we have
that A,,, > A;, then Theorem 5 provides the result
about the guaranteed winning bid at that point in
time.

THEOREM 5. Suppose that the winning bid at time t+1
was b, = A, (where A, < P) and, by time t +y the
weighted average was A,,, > A,. Then, a guaranteed win-
ning bid at time t +y is given by

b*

t+y

= A+ (A — A)(N/n). ®)



Adomavicius, Gupta, and Zhdanov: Designing Intelligent Software Agents for Auctions with Limited Information Feedback

Information Systems Research 20(4), pp. 507-526, © 2009 INFORMS

518
Figure 2 Growth Curves for Weighted Average and True Average of
Winning Bids
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Proor. From (1), we have that A, = (n/N)avg
(WIN,) + P(1—(n/N)) and, similarly, A, = (1/N)avg
(WIN,,,) + P(1 — (n/N)). Thus, A, — A, =
(n/N)(avg(WIN,,,) —avg(WIN,)). By rearranging this
equality, we obtain avg(WIN,, ) = avg(WIN,) +(A,,, —
A,)(N/n). Because A, < P, then avg(WIN,) < A,
(by Theorem 1). Hence, avg(WIN,,,) < A, + (A, —
A;)(N/n). Because avg(WIN,, ) is the average of win-
ning bids at auction state t 4+ y, there must be a
winning bid that is less than or equal to avg(WIN ).
Therefore, a bid of A, + (A, — A;)(N/n) would be a
winning bid at auction state t +y. O

COROLLARY 5A. by, (as defined in Equation (8)) >
Apyy, le., the guaranteed winning bid is greater than

weighted average at time t+y.
Proor. The proof directly follows from (8). Because
N > n, we have that

b*

t+y

= A+ (At+y —A)(N/n) > A+ (At+y —A)
=A O

by

Figure 2 provides a visual explanation of Theorem 5
and Corollary 5A. Essentially, because the true aver-
age of the winning bids avg(WIN,) grows faster than
weighted average A,, then if we know that A, is a
winning bid at time {41 and increase it by the cal-
culated growth of the winning bids between t and
t+ vy, we are guaranteed to obtain a winning bid at
time t +v.

Theorem 5 provides a guaranteed winning bid at
any time during an auction as long as the bidder can
observe a weighted average early enough in the auc-
tion (i.e., while A, < P). However, if at time t +y

at least one winning bid is still smaller than the deal
price, then the bidder would win by bidding only
the weighted average (based on Corollary 3A), which
is less than the guaranteed winning bid provided in
Theorem 5.

We can use an estimate of lowest currently winning
bid, a (as specified in Equation (4)), to create a better
estimate of a lower winning bid at time ¢+y. Let
C = N(Ay, — A;), which also denotes the difference
between the sums of winning bids at time ¢ +y and
time ¢ (as can be easily derived from Equation (1)).
Then, a reasonable lower estimate for the winning bid
would be a + C/n because C/n captures the average
growth in a winning bid. Note that a bidder is not
guaranteed to win at this level. Furthermore, theoret-
ically it is possible to win below this estimate as well,
depending on the distribution of bids that arrived
between t and t + y. However, it is clear that the
expression for guaranteed winning bid in (8) provides
an upper bound. Therefore, a bidder has a range of
bids to try to win the auction by heuristically bidding
b, =a+ C/n+ ¢, where ¢ is in the range [0, A; — «].
Clearly, the probability of winning increases as & —
A;—a, e, as bid b, approaches by, . In the next sec-
tion, we discuss this strategy by developing a simula-
tion model and exploring the probability of winning
as a function of & using the data generated from the
simulation model.

4. Simulation Experiment to Test
Bidding Strategies

Here we first present the specification of the simula-
tion experiment, where the strategic agent bids using
estimates derived in §3 against a set of bidders who
bid using a random strategy based on the weighted
average. We then analyze the results of the experi-
ment and develop a heuristic for improving the per-
formance of the bidding agent. We also study the
performance of the bidding agent in the case when
bidding for multiple units is allowed.

4.1. Experiment Setup

Theoretical results in §§2 and 3 provide lower and
upper estimates for the winning bid at a given point
in the auction. Specifically, a bid of min(A;, a4+ C/n)
gives a lower estimate at any given time T in the auc-
tion. Note that we advocate taking the minimum of
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current weighted average A; and the progression of
lowest bid (a + C/n) because toward the end of the
auction all winning bids may be above deal price P.
If so, A; is not going to be a winning bid but may
serve as a good lower bound. On the other hand,
because C/n reflects the progression of winning bids,
expression a + C/n grows faster than the weighted
average; however, if @ + C/n < A, it provides a
tighter lower bound because it reflects that the aver-
age of winning bids still may be below A;.

As discussed in §3.3 (see Equation (8)), bidding at
the extrapolated average of winning bids A, + C/n
is guaranteed to put the bidder into the winning bid
list. However, bidding this amount is guaranteed to
result in loss of surplus for the bidder, ie., he or
she would be paying more than necessary to win the
auction. Our suggested strategy is to find ways to
use the upper and lower estimates and intelligently
make bids that are smaller than the guaranteed win-
ning bid, while providing an acceptable probability of
winning.

Let b,,, = A, + C/n denote the aggressive bid
that is guaranteed to win, and b,,, = min(Ar, a+C/n)
denote the opportunistic bid that attempts to bid just
above the lowest winning bid. We can then use a
mixed strategy based on these bids by bidding

bpix = bopp + p(bagg - bopp)/ )

where p is the parameter of aggressiveness, 0 <p <1.
When p =1, the bidder wants a guaranteed win and
will pursue the aggressive strategy; when p =0, the
bidder cares mostly about paying the lowest amount
possible in case of winning but can tolerate the pos-
sibility of not winning at all. Intermediate values of
p represent a continuum of mixed-bidding strategies.

To analyze the behavior of the auction under dif-
ferent bidding strategies by varying the values of p,
we developed a simulation model in which the strate-
gic bidder uses different strategies trying to win
the auction. Our implementation of simulation was
largely influenced by the actual auctions observed
at the Internet consumer auction site Dealspin (now
defunct).!’ Its business model appeared to be based

Some archived Web pages from Dealspin.com can be found at
http://www.archive.org.

on buying certain consumer goods in large volumes,
thus realizing some volume discounts from the manu-
facturers or the wholesalers. These items are then sold
in online auctions in lots of five. This site also solicited
losing bidders in an auction by offering the item at
a fixed price afterwards. Note that Dealspin used the
information revelation mechanism similar to the one
described in this paper. In other words, rather than
providing the information about whether a bid is win-
ning, it reports average spin, which is defined simi-
larly to our definition of the weighted average. The
following text defined the average spin on the site:

The “average spin” is a weighted average that guides users
in making winning spins. It includes the top 5 spins, the
total number of spinners (DealGroup), and the agqregate
discount of the DealGroup (DealPrice) ... As a result win-
ning spins may lie above or below the “Average Spin.”

While observing several auctions at the site, we
noted some interesting properties:

¢ There were always five units for sale in an auc-
tion, and a bidder was allowed to update their bids
up to five times.

e While the range of list prices for items sold was
anywhere between $40 for floor scales to $4,000 for
plasma TVs, the majority of items were in $150-$1,000
range.

* Auction duration is fixed at 24 hours. There is
no extended bidding; therefore, the end point of the
auction is uniquely defined. This allows bidders to
use time-based strategies.

¢ Bidding activity is slow at the beginning and end
of an auction, but during some time periods it is very
intense. Usually this happens in the 7th-8th hour of
an auction. Bidding is so fast that one can see that
the value of the average spin changes from the time
the user decided to bid to the confirmation of the bid.
It is virtually impossible for humans to process infor-
mation that fast; only an agent can perform active
bidding in this situation.

To model the auction mechanism, we built an auc-
tion simulator using Java programming language. We
are interested in modeling the strategic behavior of
an agent that is trying to win the auction against
everyone else. Thus, there are two conceptual parts
to the simulator: the strategic agent and the environ-
ment. The strategic agent always observes the flow of
weighted average A,. On the basis of this information,
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it places bids and performs inference as described in
our theoretical results in §§2 and 3. If the strategic
agent chooses not to bid in a particular round, then
there will be a bid from a generic agent. Because we
only track bids of the strategic agent, generic bids are
represented by a random number drawn from a uni-
form distribution with the mean of current A, and
the range of £20% around it. The first bids for all
agents were initialized to the minimum required bid.
All auctions consisted of 50 rounds of bidding.

Most of the complexity in the simulation resides in
the behavior of the strategic agent. It places up to five
bids depending on the current state of the auction.
The first bid is placed at the beginning to start observ-
ing A,;, and it is the minimum required. The second
and third bids are strategic and are used to estimate
important auction parameters, as discussed in §3. The
fourth bid is placed toward the end of the auction at
the level of min(Ay, a+ C/n). If this bid does not win
(as indicated by the unchanged weighted average'),
the fifth and final bid is placed using the mixed strat-
egy defined in (9). In different replications of this auc-
tion, we change the value of aggressiveness parameter
p to study the impact of p on the probability of win-
ning. To control against the effect of “sniping” (win-
ning the auction by bidding as close to the end as
possible) and to focus on the pure effect of our sug-
gested strategies, we have forced the strategic agent to
place its final bid no later than when 80% of auction
duration has passed.

Simulation allows us to study the relative perfor-
mance of different bidding strategies. To do so, we
considered 11 levels of p: 0.25; 0.30;0.35...; 0.70; 0.75.
To check for the possibility of nonstrategic influences,
we also considered 59 price levels from $100 to $3,000
in increments of $50. Thus, we had simulated 649 dis-
tinct auctions. To obtain reliable sampling estimates,
we repeated each auction 30 times. This produced
19,470 data points for analysis.

" Clearly, this strategy is relevant when the number of bids that
can be placed by an agent is restricted. If agents are allowed unlim-
ited bids, another possible strategy is to use Theorem 3 and keep
submitting increasingly higher bids until the reported weighted
average changes. This is yet another task suitable for an intelligent
agent.

-
|

Figure 3 Predicted Auction Win Dynamics
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For every auction, we recorded the price level and
aggressiveness combination as well as a binary vari-
able indicating whether the strategic agent had been
among the winners of the auction. Other parame-
ters of simulation were held constant, i.e., the range
of generic bids around the current weighted average
(Ap) at £20%, starting bid at $50, duration of auctions
at 50 rounds, number of items for sale at 5, deal-group
size at 50, and strategic increment at $3.

4.2. Analysis of Simulation Data

When analyzing the data, we first explored choosing
the appropriate level of strategic aggressiveness. Fig-
ure 3 depicts the winning probability line along with
a straight line that depicts the proportional rate of
growth for winning percentage as aggressiveness p
increases. The winning probability curve is the out-
come of logistic regression that is mapping agent
aggressiveness to the agent’s chances of winning the
auction. It demonstrates that bidders that do not want
to bid more than at the aggressiveness level of 0.40
may not be able to win often. However, if bidders are
willing to bid above p = 0.40, their chances of winning
increase substantially.

As Figure 3 indicates, the area of fastest growth in
winning percentage lies between aggressiveness lev-
els of about 0.40 and 0.70. Using strategies that are
too opportunistic is not beneficial because they will
often lose; using strategies that are too aggressive is
also not advisable because they will result in spend-
ing more money than is necessary to win. For exam-
ple, if p=0.75 is used, then the winning probability
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is almost 0.99, whereas using p = 0.6 results in a win-
ning probability of 0.70—a reasonable probability of
winning at a substantial discount.

The mere fact of winning may not be an indication
of a truly intelligent strategy—an agent may win by
placing an extremely high bid, but the price it pays
may be much higher than the value of the item to
the agent’s owner. Therefore, we explored additional
dimensions of strategy appropriateness. First, we con-
sidered the position of the agent among the winners of the
auction. We have ordered the auction winners accord-
ing to their final bid—the winner with the lowest
bid being in position 1 and the winner with highest
bid in position 5. Obviously, it is most efficient to
win the auction in position 1 because other winners
overpay relative to the efficient winner. Because we
are not making any assumptions as to what the bid-
ders’ true valuations are, the only comparisons that
we can make are relative among bidders. Thus, we
also computed two other value-related metrics: over-
payment w.r.t. the lowest winning bid and savings w.r.t.
the average of winning bids. Overpayment with respect
to the lowest winning bid is the closest approxima-
tion to the surplus lost by all other winners, includ-
ing the strategic agent; it is measured as a difference
between the agent’s winning bid and the lowest win-
ning bid expressed as a percentage of the lowest win-
ning bid. Obviously, it should be zero in the efficient
case (i.e., when the bid wins at position 1). Similarly,
savings with respect to the average of winning bids
are measured as a difference between the true aver-
age of all winning bids and the agent’s winning bid
expressed as a percentage of the true average of all
winning bids; it should be as large as possible in the
efficient case.

We found that the agent’s aggressiveness level
is a good predictor of all these additional metrics
(quadratic regression models yielded p-values of 0.000
and R? between 20% and 50%). Table 1 presents the
summary of our findings.

As can be seen in Table 1, increased aggressive-
ness of an agent increases its chances of winning the
auction at the cost of being less efficient. While win-
ning at the higher levels of aggressiveness, the agent
ends up in the higher positions on the winning bid
list and overpays a larger amount as compared to
more efficient bidders. Eventually (i.e., at the highest

levels of aggressiveness), the agent starts losing edge
even against the average of winning bids. Thus, it is
important to devise a strategy that allows the agent to
have sufficient chances of winning, while also being
as efficient as possible. We have created a heuristic
that serves this purpose, which will be discussed in
the next subsection.

To complete the testing process, we have also stud-
ied the performance of the agent in the presence of
other intelligent agents using the same bidding strat-
egy. We considered cases where there were 1-3 rival
agents with varying levels of aggressiveness, account-
ing up to 40% of all bids in the auction. This simu-
lation produced very large data sets (e.g., agent with
three rivals with 11 possible aggressiveness levels
and 30 repeats per auction configuration has gener-
ated 439,230 data points), which causes almost all the
lack-of-fit tests to come out as statistically significant.
Thus, we cannot rely solely on statistics to judge the
importance of these results, as described by Hosmer
et al. (1997). From the practical viewpoint, our empir-
ical findings were that:

* Presence and strategy of rivals has a much
smaller effect on the outcome of an auction than the
agent’s own strategy. Figure 4 illustrates this in the
case of one strategic rival.

* Presence of strategic rivals had very little or no
effect on agents pursuing very passive or very aggres-
sive strategies.

¢ The nature of bidding agents in the auction has
no impact on the auctioneer’s revenue.

Table 1 Key Metrics of Agent Performance

No. of wins Mean win Overpayment vs. Savings against

Aggressiveness (out of 30) position  lowest bid, % average, %
0.25 0 N/A N/A N/A
0.30 0 N/A N/A N/A
0.35 0 N/A N/A N/A
0.40 4 1.250 0.033 1.439
0.45 3 1.333 0.066 1.053
0.50 7 2.143 0.315 0.466
0.55 12 2.833 0.900 0.072
0.60 23 3.391 1.089 —0.206
0.65 26 3.577 1.212 —0.406
0.70 21 4190 1.907 —0.962
0.75 27 4222 1.650 —0.769

Note. N/A—Metric not applicable, as the agent did not win any auctions.
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Figure 4 Impact of the Rival is Substantially Smaller Than the Agent’s Figure 5 Improved Upper Bound Estimate for a Guaranteed
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Sample results in Table 2 illustrate the savings of
the strategic agent against the average of winning
bids in the presence of rivals.

4.3. Improved Estimation Heuristic

In this section, we present the approach to improve
the agent’s computation of the guaranteed winning
bid. An ideal situation for the agent is to make sure
that the upper bound on the guaranteed winning
bid, A, + C/n, at the time of the agent’s bid is as
close as possible to the true average of winning bids,
avg(WIN,,,), which is not directly observed. Theo-
rem 1 implies that, if weighted average A, is equal to
deal price P, then it is also equal to avg(WIN,). Thus,
if we observe A, at the time when it is equal to (or
very close to) the deal price, we will get the most
accurate estimate of true average avg(WIN,). This

Table 2 Expected Savings (%) of the Strategic Agent w.r.t. the
Winning Bid Average in the Presence of Rivals

Aggressiveness 0 rivals 1 rival 2 rivals 3 rivals
0.25 N/A N/A 2.064 2.149
0.30 N/A 2.081 2.085 1.976
0.35 N/A 2.415 1.637 1.674
0.40 1.439 1.344 1.316 1.385
0.45 1.053 1.115 0.973 1.055
0.50 0.466 0.733 0.735 0.76
0.55 0.072 0.403 0.434 0.459
0.60 —0.206 0.103 0.123 0.165
0.65 —0.406 —0.221 —0.194 —0.154
0.70 —0.962 —0.639 —0.54 —0.475
0.75 —0.769 —0.885 -0.917 —-0.832

than bf) because ¢, is closer to the point when A, and
avg(WIN,) are equal.

Therefore, we can leverage the agent’s capabil-
ity of being constantly present in the auction, i.e.,
it is possible to estimate when the critical point of
A; = avg(WIN,) is nearly achieved by continuously
observing the changes in A,."”” Assuming that the auc-
tion participants base their strategies on the observed
weighted average—the only available feedback from
the auctioneer—they may be expected to bid above
or below A, with equal probability. When the bid-
ding progression has not yet reached the deal price,
then bids both above and below A, have a chance to
enter the winning list. However, the higher bidding
goes above the deal price, the smaller are the chances
for low bids to win (see Theorem 3). Therefore, the
likelihood of bids entering the winning list decreases
and, therefore, the growth of the weighted average
will slow down.

Based on the realization that the growth rate
of A, slows down as the auction progresses, we
implemented a detection heuristic in our agent. This
heuristic is based on tracking the change of weighted
average A, over time and computing the moving

12 The estimation procedure should be done while A, < P still holds.
On the other hand, as illustrated in Figure 5, as the estimation is
carried out closer in time to the crossing point, the resulting esti-
mate becomes more accurate. The question of practical importance
then becomes: How long to wait before starting the estimation? An
agent, being omnipresent in an auction, can detect this moment
more accurately than a human bidder; the ability to place bids in
rapid succession also reduces the chance of missing the crossing
point while the bid is being placed.
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Figure 6 Heuristic Effectiveness in Winning the Auction
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average of its change (i.e., growth) for the past three
periods. Once the growth of the moving average gets
below 1% (based on last estimated A,), the agent starts
its estimation strategy. To evaluate the heuristic per-
formance, we computed the difference of the agent’s
estimate of guaranteed winning bid and the true low-
est winning bid in the auction, as well as the true
average of winning bids. For an agent with fixed-time
bidding strategy (i.e., without the tracking heuris-
tic), this difference was in the range of 4.23%-5.86%
of the lowest winning bid, while for the heuristic-
equipped agent, it improved to 1.53%-3.04%. The dif-
ference between the upper bound estimate and the
true average of winning bids improved from 3.82% to
1.12%. Bidding at the heuristic level effectively puts
the agent in a position to win more than 90% of the
auctions. Figure 6 illustrates this for auctions where
deal price P = $100 and provides the probability of
winning based on different levels of aggressiveness
(as represented by the last strategic bid).

Because in real auctions it is impossible to predict
the dynamics of bidding and place strategic bids at
an exact, prescribed time, this heuristic leverages the
omnipresent nature of the bidding agent to adapt to
the bidding pattern of the auction. In other words, the
proposed heuristic provides for an intelligent bidding
strategy because it makes the bidding agent much
more autonomous—the agent does not have to fol-
low some predefined bidding scenario but can time its
bids according to the progression of a given auction.

4.4. Bidding Agent Performance in a
Multiunit Scenario

To complete the analysis, we also discuss the per-
formance of our proposed strategies in cases when
the bidders are allowed to bid for more than one
item. This discussion is important because it demon-
strates possible similarities and differences between
our weighted average auction and Spanish and other
forms of multiunit or divisible-goods auctions. When
it is desirable for agents to win more than one unit in
an auction, theoretical analysis becomes much more
complicated. There are two possible problems in this
situation: the potential distortion of the estimation
procedure and the need to consider the possibility of
partial fulfillment in the outcome of the auction.

The problem of distorted estimates because of bid
interference was explored in §3.2, where we have
shown that interference of other bids during the
strategic bidding procedure results in inflated esti-
mates of bid growth. Recall that in the strategic bid-
ding phase, the agent bids on the current weighted
average, and, if it is early enough in the auction,
such a bid is guaranteed to displace one bid from pre-
vious winners. In the case when an agent bids for
multiple units during the parameter estimation stage
(i.e., the early part of the auction), it risks introducing
distortion into calculation. For example, if the agent
bids the current average for three units, it may get
one, two, or three one-item current winning bids at
the same time. Unfortunately, we cannot know exactly
how many one-item bids will enter the winning list
as a result of such a strategy. Thus, for strategic pur-
poses, an agent should not bid on more than one item
during the parameter estimation stage, regardless of
the number of items it is intending to win at the end.

Similarly, toward the end of an auction, the agent
knows with some degree of confidence that placing a
strategically computed bid will earn one spot on the
list of winners. It is impossible to predict if it will be
a high spot or a low spot (although more aggressive
bidding will result in a place among higher winning
bids, as was shown in our simulation results in §4.2).
This may create a problem when the agent’s goal is to
win more than one item, e.g., if its final bid ends up
being the second-lowest winning bid and the agent
needs three items, it will have to settle for only two.
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Table 3 Performance of the Bidding Agent in the Multiunit Case

Auctions won

Aggressiveness Auctions  Partial Total Partial

level lost  fulfillment fulfillment Winning % fulfillment %
0.50 27 3 0 10.00 100.00
0.55 21 9 0 30.00 100.00
0.60 16 11 3 46.67 78.57
0.65 14 13 3 53.33 81.25
0.70 14 9 7 53.33 56.25
0.75 12 10 8 60.00 55.56
0.80 10 8 12 66.67 40.00
0.85 3 13 14 90.00 48.15
0.90 4 6 20 86.67 23.08
0.95 2 9 19 93.33 32.14
1.00 3 5 22 90.00 18.52

We have conducted additional simulation analysis
to see how the agent following our proposed strate-
gies performs in multiunit settings. We have consid-
ered the setup when the agent’s goal is to win four
items at the end of a five-item auction. Because the
number of items that a bidder can win depends on
the position of her highest bid relative to other win-
ning bids, the goals of winning two or three items
are automatically included in our analysis.”> We also
used the previously discussed estimation heuristic,
which is aiming to win a single item in 90% of auc-
tions. We ran the experiments for agent aggressive-
ness levels from 0.50 to 1.00 in increments of 0.05,
keeping all other parameters as before (30 simulations
at every level of aggressiveness, the range of generic
bids around current weighted average A; at £20%,
starting bid at $50, duration of auctions at 50 rounds,
number of items for sale at 5, deal-group size at 50,
and strategic increment at $3). Our findings indicate
that the agent is performing well even in the multiu-
nit case. (See Table 3.)

We also explored the agent’s ability to win the
necessary number of units versus settling for par-
tial fulfillment. The results indicate that with the
increase of aggressiveness, the agent: (a) wins more

BFor example, if the agent’s highest bid is the second-highest
among five winners, it is in position to win four items, which also
includes subsets of two and three items. However, if the agent’s
winning bid is the third-highest, it will win three items, but not
four. Thus, the partial fulfillment problem is most severe with a
higher number of items desired, and the results for fewer items will
be more optimistic.

auctions in general, consistent with a single-unit sce-
nario, and (b) gets all required items more often, i.e.,
it does not have to settle for partial allocation as fre-
quently. Therefore, with the use of timely estimation
and a strategic bidding procedure, the bidding agent
is capable of performing its task in single-unit as well
as multiunit situations.

5. Conclusions

In this paper, we argue that analysis of dynamic infor-
mation provided by an online auction mechanism can
be used to derive information that can help in for-
mulating intelligent bids. We chose an auction mech-
anism that by design is meant to conceal information
from the bidders. Our model provides implications
for a class of auctions based on weighted average
reporting, which are used in multiple domains, e.g.,
Treasury Bill Auctions, B2C auctions, and greenhouse
emission allowance auctions. We derive analytical
results based on strategic bid placements to get esti-
mates of some key auction parameters. We argue that,
in reality, smart agents should be designed to perform
the task of placing strategic bids and extracting infor-
mation because of their inherent advantage in quick
placement of bids and information retrieval.

We then design strategies for intelligent bidding
based on theoretical results about the guaranteed win-
ning bid at any point in an auction and some rea-
sonable lower bounds. We also design a simulation to
test the heuristics for retaining larger surplus for bid-
ders, while keeping a reasonably high probability of
winning.

Although we consider the case where bidders are
restricted to a certain number of bids, this restriction
has very little effect on a bidder’s ability to place
strategic bids. While a large number of bids allow
a bidder to compute parameters such as deal-group
size with more certainty, the impact of potential esti-
mation errors is likely to be small. However, from
the seller’s perspective, the number of allowable bids
is more important, especially if the seller wants to
restrict strategic bidding. For the auction mechanism
explored in this paper, if bidders are allowed to place
more than three bids, then bidders can use strategic
bidding. In other words, with the current set of rules
of the auction (as defined in §2), if the total number of
bids allowed per person is three or fewer, then there
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is no opportunity for strategic bidding by any sin-
gle bidder. However, such restrictions may give rise
to third-party strategic agents that may sell the infor-
mation about estimates of key parameters, and thus
reduce incentives for bidding higher. Another impor-
tant realization for sellers is that if the deal-group size
is advertised, there is no need for strategic bidding
and bidders can always estimate the guaranteed win-
ning bids at any point in time.

The limitations of this work are that we have not
considered the endogenous impact of the choice of
parameters made by the auctioneer. For example,
a different set of parameters may result in signifi-
cant changes in participation incentives of the bid-
ders, thereby affecting the revenue generated from
an auction. In future research, we will explore the
issue of changes in auction parameters and its impact
on auction participation, as well as agent strategies
for participating in multiple auctions over time, e.g.,
whether the deal-group size can be estimated by mon-
itoring multiple auctions for the same item.
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