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The purpose of this primer is to review some of the fundamental physical and mathematical concepts 
that are employed when determining physical parameters of automobile accidents.   

Automobiles behave like any other deformable objects when they collide with each other or with 
stationary objects. Energy and momentum are conserved, meaning the total combined energy and 
momentum of the vehicle(s) is the same just before and just after collision.  Keeping track of momentum 
(a vector quantity) is usually simpler than keeping track of energy (a scalar quantity) since energy is 
converted into different forms during collision. 
 
 

 

 

 

 

 

 

 

When energy analysis is used in accident reconstruction, vehicle crush displacements are considered for 
obtaining an approximation of the energy that is converted from kinetic energy to body and frame 
deformation.  The secondary energy conversion (heat, vibration, sound, turbulence, etc.) listed above 
are usually ignored as a standard practice since the represent a relatively minor portion of the system 
energy. 

Conservation of momentum in the context of a collision between two vehicles states that the combined 
vector sum of each vehicle’s momentum remains the same after impact as it was before impact.  This 
is a very useful concept when determining pre and post impact speeds and directions. 

How do we put these physical laws of conservation of energy and conservation of momentum to work in 
our accident reconstruction practice?  Let us proceed by examples.  First we need to define some 
conventions.   

 

Pre-Collision Energy Post-Collision Energy 

Motion (Kinetic) Energy of Vehicles 

Motion (Kinetic) Energy of Vehicles + 
Deformation Energy of Vehicle Body and Frame + 
Secondary Effects such as heat, vibration, sound, 
turbulence, environment and roadway damage, 

etc. 

 
Table 1  - Energy Conservation During Collision 



 

2 | P a g e  
 

Conventions 

Vehicles will be referred to as vehicle “A”, vehicle “B”, etc.  Subscripted instants in time will be defined 
as follows: 

 

 

 

 

 

 

Vector quantities will be shown in bolded capital letters, while scalar quantities will be lower-case and 
not bolded.  Vector and scalar quantities of interest will be defined as follows: 

 

 

 

 

 

 

 

 

Equations of Motion 

Before we can dive into analysis of collisions, we must first establish an understanding of objects in 
motion.  An object in motion can be fully described in terms of position, velocity, and acceleration 
vectors with the following 3D vector equation:  

 

 

 

 

 

 

 

 

Equation 1 describes the translational position of an object’s center of mass in 3 dimensions.  Note it 
does not describe the object’s rotational motion.  It also should be noted that Equation 1 can only be 
used when the acceleration vector is not changing (is constant) over the time period being analyzed. 

It is usually helpful to split the 3D position vector equation of motion into its x, y, and z component 
scalar equations: 

             d = d0 + v0t + ½ a t2 
 

Where:     
t = elapsed time 
d = position vector at time = t 
d0 = position vector at time t=0 
v0 = velocity vector at time t=0 
a = acceleration vector (assumed constant) 

 

d = Displacement or position (vector) 
v = Velocity (vector) 
a = Acceleration (vector) 
p  = Momentum (vector) 
F = Force (vector) 

0 = instant before driver reaction begins, 
also used to denote time=0 

i  = instant just before impact 
f  = instant just after impact 
1 = instant vehicle comes to rest 

s  = Speed (scalar) 
µ = Coefficient of friction 
f = Friction Factor 
m = mass 
θ, φ = Angle 
g = Gravitational acceleration constant 
x, y, z = spatial coordinates 

Table 3 - Vector Variables Used 

Equation 1 - 3D Vector Equation of Motion for Constant 
Acceleration 

Figure 1 - Motion Vectors for an Object in 3D 
Space 

Table 2 - Subscripts Used 

Table 4 - Scalar Variables Used 

Eq 1 



 

3 | P a g e  
 

 
 
 
             
 
 
 
 

 

These equations of motion can be utilized to determine an object’s (vehicle’s) position or velocity at 
specific points in time, forces acting on the object, coefficients of friction, and more, depending on what 
parameters are known. 

A similar (and related) set of equations can be derived for the velocity vector, again assuming constant 
acceleration: 

 

 

 

            
 

 

 

 

 

Example 1 

An automobile is traveling down a straight road at 45 mph (72.4 kph).  At time t=0, the driver steps on 
the gas and accelerates for 5 seconds at 10 ft/s2 (3.05 m/s2).  Determine the following:  a) How far did 
the vehicle travel in those 5 seconds?  b) How fast was the vehicle travelling at t=5s?  c) How much time 
elapsed before the vehicle’s speed reached 65 mph? 

 

 

 

 

 

 

 

 

 

 

 

dx = d0x + v0xt + ½ ax t2 
dy = d0y + v0yt + ½ ay t2 
dz = d0z + v0zt + ½ az t2 

 
Equation 2 - x, y, and z component 

scalar position equations 
Figure 2 - x, y, and z components of 

position vector d 

Figure 3 - x, y, and z components of velocity 
vector v 

v = v0 + a t 

vx = v0x + ax t 
vy = v0y + ay t 
vz = v0z + az t 

 
Equation 3 – velocity vector equation 

and x, y, and z component scalar 
velocity equations 

Eq 3 

Eq 2 
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Momentum and Forces 

Isaac Newton’s Laws of Motion lie at the foundation of the analytical side of vehicular accident 
reconstruction.  The First Law of Motion states that an object’s momentum will remain unchanged 
unless it is acted upon by an external force. 

An object’s momentum is a vector quantity that is determined by multiplying its velocity vector by its 
mass.  An object’s momentum vector is always in the same direction as its velocity vector. 

 

 

 

 

 

 

 

 

Newton’s  Second Law of Motion states that a force applied to an object will result in an equivalent rate 
of change in momentum: 

 

 

 

 

 

 

 

Since momentum is the product of velocity and mass, and in most cases we can assume mass is 
constant, this gives rise to the familiar and ubiquitous F=ma. 

Newton’s Third Law of Motion states that two bodies in contact will exert equal opposing forces on one 
another.  The resulting forces are not necessarily normal (perpendicular) to the contacting surfaces. 

 

 

 

 

 

 

 

 

Figure 4 – Newton’s 1st Law - Momentum 
Vector 

Figure 5 – Newton’s 2nd Law - Applied Force and Derivation of F=ma 

Figure 6 - Newton's 3rd Law 
- objects in contact 

Eq 4 
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Example 2 

A 2500 lb car is traveling at 75 mph on a straight road and a deer steps into the road 350 feet in front of 
the car.  After a driver reaction time of 1 second the brakes are applied and a constant braking force of 
2000 lb is applied.  Does the car stop in time to avoid hitting the deer? 
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There are two fundamental forces acting on a vehicle at any given time during normal operation: gravity 
and contact forces on the tires from the road.  We ignore wind drag under most circumstances.   

Gravity (weight) is a body force that acts in a distributed manner according the mass distribution of the 
vehicle.  To simplify analysis, we treat the gravitational force as a single force vector applied at the 
vehicle’s center of mass.  The gravitational force always acts in a vertical direction (relative to earth) 
regardless of the orientation of the vehicle or the angle of the driving terrain. 

 

 

 

 

 

 

 

 

The contact forces on the tires by the road surface are usually split into two components: Normal and 
Frictional forces.  Normal forces always act perpendicular to the contact surface of the road, and 
Frictional forces always act parallel to the contact surface of the road. 

Figure 7 shows how, in general, these forces are different for each tire.  Front and rear tire normal and 
frictional forces are shown, but in general each of the four tires would have a unique combination of 
normal and frictional forces acting on them.  These many force vectors depend upon many factors 
including path curvature, weight distribution of vehicle, front vs. rear wheel drive, accelerating vs. 
braking, consistency of braking effectiveness between the 4 wheels, suspension dynamics, road surface 
uniformity, and the list goes on. 

It is easy to see how analyzing these forces individually for each wheel would quickly become 
overwhelming and this purist approach would be prohibitive and beyond the scope of most accident 
reconstruction analyses.  Fortunately there are shortcuts we can take to simplify our models and reduce 
the number of variables to a manageable level, while remaining within an acceptable envelope of 
accuracy. 

 

Tire Friction 

The frictional force on a tire acts in the plane of contact (road surface).  This force can also be broken 
into components: roll friction and lateral friction forces.  The roll friction force vector acts in the 
direction of roll of the tire, in the plane of contact.  The lateral friction force vector acts perpendicular to 
the roll friction vector, in the plane of contact  The lateral friction force is what enables the car to follow 
a curve without sliding off of the road. The roll friction force is what causes the car to accelerate when 
the throttle is applied, or to slow down when the brakes are applied. 

 

 

 

Figure 7 - Forces acting on a vehicle during normal operation 
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Friction forces are continually changing during normal operation of a vehicle depending on driver 
behavior and geometry of the road.  The magnitude of frictional force that two contacting surfaces are 
capable of exerting on each other is determined by the material of the surfaces, the Normal force 
(perpendicular to plane of contact) that the surfaces are exerting on each other, and whether the 
surfaces are in static or sliding contact with one another.  This maximum friction force magnitude is 
governed by Equation 5 below.  

The numerical value for the coefficient of friction 
depends upon the mating materials, but also on 
whether the surfaces are in static or sliding contact.  
If the surfaces (tire and road) are in static contact, as 
is the case under normal operation of the vehicle, 
Equation 5 tells you the maximum friction force that 
the tire can carry without breaking into sliding 
contact (skid). 

If the surfaces are in sliding contact (tire is skidding)  
Equation 5 tells you the resulting frictional force on the tire.  Note in a skidding scenario this frictional 
force does not depend upon the vehicle’s speed.  Note also that Equation 5 only tells us the actual 
frictional force if we are skidding.  If we are not skidding it only tells us what the maximum can be before 
skidding begins. 

Generally speaking, the coefficients of friction (μ) for static and sliding contact are not the same.  The 
static coefficient is usually higher than the sliding coefficient.  Fortunately, in accident reconstruction we 
mostly use Equation 5 in situations where the vehicle is in a skid, in which cases we only require the 
sliding coefficient of friction. 

 

Example 3 

Two cars are traveling at 65 mph on a straight, level road in the same lane.  The front car starts braking 
and the driver of the trailing car is texting and doesn’t notice that the car in front is slowing down.  
When the driver finally looks up he brakes hard, locking all four wheels in a skid.  The trailing car weighs 
3000 lb and the pavement is dry – assume 0.75 sliding coefficient of friction.  Determine the following: 

Figure 8 - Friction forces on a tire 

Ff = μ N 

Where: 
μ = coefficient of friction 

(property of mating materials) 
N = Normal contact force 

(perpendicular to plane of contact) 

Eq 5 
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a) What is the average friction force on each tire?  b) How fast is the second car traveling after skidding 
for 50 feet? 
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Example 4 

The same problem as Example 3 except the car is traveling up a steady 10% grade. 
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Energy 

The concept of energy plays a central role in vehicular accident reconstruction.  It is energy which has 
the capacity to do harm to property and person.  More precisely, it is the uncontrolled conversion of 
energy from one form to another which releases the destructive potential of object (automobile) in 
motion. 

Energy is a scalar quantity (it has magnitude only, with no associated direction), unlike force, impulse, 
position, velocity, acceleration, and momentum which are vector quantities which have both magnitude 
and direction associated with them. Common forms of energy in an operating vehicle include:  

Gravitational Potential Energy – the amount of energy represented by an object’s elevation 
relative to some reference elevation, represented by: 

𝑃𝐸 = 𝑚𝑔ℎ         where:   m = mass of object 
g = gravitational acceleration constant 
h = height (elevation) of object 

 

 

Chemical Potential Energy – in the case of an automobile, this is the amount of energy 
contained in the fuel in the tank.  This can be a considerable amount of energy.   For 
example, there is enough energy in a full 15 gallon tank to lift the car 2000 miles straight up, 
if converted with 100% efficiency.  That’s almost 1% of the distance to the moon!  
Fortunately this fuel storage energy rarely comes into play in accident reconstruction 
analysis.  

 

Kinetic Energy – the energy associated with mass in motion.  There are two basic ways we 
categorize kinetic energy:  

Translational KE, motion energy associated with mass moving at velocity v: 

𝐾𝐸் =
ଵ

ଶ
𝑚𝑣ଶ         where:   m = mass of object 

v = velocity (speed) 
 

Rotational KE – motion energy associated with mass rotating at angular velocity ω: 

𝐾𝐸ோ =
ଵ

ଶ
𝐼𝜔ଶ         where:   I = mass moment of inertia of object, or 

“rotational mass” 
ω = angular velocity 

 

 

Deformation Energy – energy absorbed by materials that are forced to change shape. 
Strictly speaking this is not a form of energy independent of all others.  When deformation 
occurs in as a result of an applied force, the energy put into the deformed object is 
converted mostly to heat, vibration, and noise.  Some of it may also be converted to 
gravitational potential energy if the center of mass changes. 

Eq 8 

Eq 7 

Eq 6 
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During a collision, kinetic energy of the vehicle(s) is converted rapidly into other forms.  You will 
frequently hear in the accident reconstruction community that energy is not conserved in a collision, but 
momentum is conserved.  This is misleading – both energy and momentum are conserved in a collision, 
it’s just that energy is converted to different forms and it not possible to trace these energy conversions 
forensically.  We will discuss conservation of momentum in a later section. 

When investigating an accident, we are often presented with the challenge of determining how fast the 
vehicles were travelling prior to the initial reaction of the drivers.  The evidence used in this 
determination often include skid marks.  What do skid marks tell us about the speed of a car prior to 
braking? 

 

Example 5 

Take the simplest example of a car traveling on a straight road, driver applies the brakes locking all four 
wheels, and skids to a stop.  Determine the initial speed of the car based on the skid mark evidence by a) 
energy method and b) equations of motion 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solution 

a)  The initial translational kinetic energy of the car is  𝐾𝐸଴ =
ଵ

ଶ
𝑚𝑣଴

ଶ 

The car comes to a stop when the work done by the opposing friction force is equal to 
the initial kinetic energy.  The frictional work is 𝑊௙ = 𝐹௙ 𝑑 =  μ m g d   

Since the frictional work energy is equal to the initial kinetic energy, we equate them and 
solve for 𝑣଴: 

1

2
𝑚𝑣଴

ଶ =  μ m g d 

𝑣଴ = ඥ2 μ g d 

 

𝜇 = coefficient of sliding friction between tires and 
road 

g = acceleration of gravity constant 

d = length of skid 

Eq 9 
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Rotational Energy 

Sometimes a vehicle will have rotational motion (yaw) that must be analyzed.  This rotational motion 
can, in general, be analyzed separately from its translational motion.  Yaw motion can result from 
oblique impacts with other objects, non-uniform braking, steering over-correction, etc. 

In this section we will consider the kinetic energy associated with yaw motion and attempt to illustrate 
how the concept of rotational energy can be used in our analyses.  We will also attempt to justify a 
simplification that is often used by accident reconstructionists. 

For an object in rotational motion, as mentioned above in Eq 8 the kinetic energy can be calculated as  

𝐾𝐸ோ =
1

2
𝐼𝜔ଶ 

In this equation the term “I” represents the object’s mass moment of inertia, a property of a given 
vehicle which accounts for the way in which the mass of the object is distributed.  The 𝜔 term 
represents the speed of rotation. 

Properties like weight, center of mass location, and mass moments of inertia are available for individual 
models of automobiles.  Contents of the vehicle, including passengers and driver, must also be 
accounted for and these properties adjusted accordingly in order to maintain accuracy in the 
calculations. 

In general after a collision, if a car has rotational motion there will likely be translational motion as well, 
which means there will be both translational and rotational kinetic energy involved. 

 

Solution (cont.) 

b) Using the equations of motion, we first determine the acceleration due to the frictional 
force using F=ma:    𝑎௫ =  − 𝐹௙ 𝑚⁄     (negative since Ff acts in –x direction) 

Then using the x-component of Eq2, we substitute this expression for the acceleration 
term: 

𝑑௫ =  𝑑଴௫ +  𝑣଴௫𝑡 +  
1

2
𝑎௫𝑡ଶ 

𝑑௫ =  𝑣଴௫𝑡 −  
1

2

𝐹௙

𝑚
𝑡ଶ 

Then using the x-component of Eq3, solving for t and doing a lot of algebraic substitution 
and rearranging we eventually come up with the same expression: 

𝑣଴ = ඥ2 μ g d 

The point being that the energy method is much simpler to implement. 

 

Eq 8 


