Automobile Accident Reconstruction Primer
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The purpose of this primer is to review some of the fundamental physical and mathematical concepts
that are employed when determining physical parameters of automobile accidents.

Automobiles behave like any other deformable objects when they collide with each other or with
stationary objects. Energy and momentum are conserved, meaning the total combined energy and
momentum of the vehicle(s) is the same just before and just after collision. Keeping track of momentum
(a vector quantity) is usually simpler than keeping track of energy (a scalar quantity) since energy is
converted into different forms during collision.

Pre-Collision Energy Post-Collision Energy

Motion (Kinetic) Energy of Vehicles +
Deformation Energy of Vehicle Body and Frame +
Motion (Kinetic) Energy of Vehicles Secondary Effects such as heat, vibration, sound,
turbulence, environment and roadway damage,
etc.

Table 1 - Energy Conservation During Collision

When energy analysis is used in accident reconstruction, vehicle crush displacements are considered for
obtaining an approximation of the energy that is converted from kinetic energy to body and frame
deformation. The secondary energy conversion (heat, vibration, sound, turbulence, etc.) listed above
are usually ignored as a standard practice since the represent a relatively minor portion of the system
energy.

Conservation of momentum in the context of a collision between two vehicles states that the combined
vector sum of each vehicle’s momentum remains the same after impact as it was before impact. This
is a very useful concept when determining pre and post impact speeds and directions.

How do we put these physical laws of conservation of energy and conservation of momentum to work in
our accident reconstruction practice? Let us proceed by examples. First we need to define some
conventions.
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Conventions

Vehicles will be referred to as vehicle “A”, vehicle “B”, etc. Subscripted instants in time will be defined

as follows:

0 = instant before driver reaction begins,
also used to denote time=0

i =instant just before impact

f =instant just after impact

1 = instant vehicle comes to rest

Table 2 - Subscripts Used

Vector quantities will be shown in bolded capital letters, while scalar quantities will be lower-case and
not bolded. Vector and scalar quantities of interest will be defined as follows:

s = Speed (scalar)

d = Displacement or position (vector) = Coefficient of friction

v = Velocity (Yector) f = Friction Factor
a = Acceleration (vector) m = mass
p = Momentum (vector) 8, b = Angle

F = Force (vector) g = Gravitational acceleration constant

X, ¥, z = spatial coordinates

Table 3 - Vector Variables Used Table 4 - Scalar Variables Used

Equations of Motion

Before we can dive into analysis of collisions, we must first establish an understanding of objects in
motion. An object in motion can be fully described in terms of position, velocity, and acceleration
vectors with the following 3D vector equation:

d=d,+vit+% at?

Where:

t = elapsed time

d = position vector at time = t

d, = position vector at time t=0

V, = velocity vector at time t=0

z a = acceleration vector (assumed constant)

Figure 1 - Motion Vectors for an Object in 3D
Space

Equation 1 - 3D Vector Equation of Motion for Constant
Acceleration

Equation 1 describes the translational position of an object’s center of mass in 3 dimensions. Note it

does not describe the object’s rotational motion. It also should be noted that Equation 1 can only be

used when the acceleration vector is not changing (is constant) over the time period being analyzed.

It is usually helpful to split the 3D position vector equation of motion into its x, y, and z component
scalar equations:
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dx = de + VOxt + Vz dx tZ
dy=d0y+VOyt+%ayt2 qu

dz= dOz+VOzt+% dz t2

Equation 2 - x, y, and z component
scalar position equations

Figure 2 - x, y, and z components of
position vector d

These equations of motion can be utilized to determine an object’s (vehicle’s) position or velocity at
specific points in time, forces acting on the object, coefficients of friction, and more, depending on what
parameters are known.

A similar (and related) set of equations can be derived for the velocity vector, again assuming constant
acceleration:

v=Vot+at
Vx = Vox + ax t Eq 3
Vy=V0y+ayt

VZ=VOZ+azt

Equation 3 — velocity vector equation
and x, y, and z component scalar
velocity equations

Figure 3 - x, y, and z components of velocity
vector v

Example 1

An automobile is traveling down a straight road at 45 mph (72.4 kph). At time t=0, the driver steps on
the gas and accelerates for 5 seconds at 10 ft/s? (3.05 m/s2). Determine the following: a) How far did
the vehicle travel in those 5 seconds? b) How fast was the vehicle travelling at t=5s? c¢) How much time
elapsed before the vehicle’s speed reached 65 mph?

Solution:
We choose a coordinate system that aligns the x-axis with the direction of travel.
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Solution (cont.)
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a) We can then use the x-component of Eq 2:
dx=d0x+V0xt+1/2axt2
We also assume t=0 when the driver steps on the gas, and we assume the origin
of our coordinate system is located at the position of the vehicle when t=0,
therefore dg,=0.
dx=glf)x+v0xt+1/zaxt2
0

2
=V0xt+1/zaxt

= (45 mi/hr)(5280 ft/mi)(1 hr/3600 s)(5 s) + (0.5)(10 ft/s*)(5 s)’

= 455 ft | (139 m)

b) Using the x-component of Eq 3:
Vi = Vox + ax t
= (45 mi/hr)(5280 ft/mi)(1 hr/3600's) + (10 ft/s*)(5 s)

= 116 ft/s =/79.1 mph| (127 kph)

¢) Rearranging the x-component of Eq 3 and solving for t at v,=65mph:
t=(Vx- Vou) / ax

_ (65 mi/hr —45 mi/hr)(5280 ft/mi)(1 hr/3600 s)
(10 ft/s%)

SPETS
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Momentum and Forces

Isaac Newton’s Laws of Motion lie at the foundation of the analytical side of vehicular accident
reconstruction. The First Law of Motion states that an object’s momentum will remain unchanged
unless it is acted upon by an external force.

An object’s momentum is a vector quantity that is determined by multiplying its velocity vector by its
mass. An object’s momentum vector is always in the same direction as its velocity vector.

Figure 4 — Newton’s 15t Law - Momentum
Vector

Newton’s Second Law of Motion states that a force applied to an object will result in an equivalent rate
of change in momentum:

L

> X

Figure 5 — Newton’s 2" Law - Applied Force and Derivation of F=ma

Since momentum is the product of velocity and mass, and in most cases we can assume mass is
constant, this gives rise to the familiar and ubiquitous F=ma.

Newton’s Third Law of Motion states that two bodies in contact will exert equal opposing forces on one
another. The resulting forces are not necessarily normal (perpendicular) to the contacting surfaces.

Figure 6 - Newton's 3rd Law
- objects in contact
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Example 2

A 2500 Ib car is traveling at 75 mph on a straight road and a deer steps into the road 350 feet in front of
the car. After a driver reaction time of 1 second the brakes are applied and a constant braking force of
2000 Ib is applied. Does the car stop in time to avoid hitting the deer?

Solution:

This is another 1-dimensional problem, so we choose a coordinate system that
aligns the x-axis with the direction of travel.

&

1 o ’1‘
4l
&
Nl

A 4

We first need to know how far the car travels in the initial 1 second reaction time
of the driver. Since our coordinate system sets our initial position at x=0, and since
there is no acceleration during this reaction period, the initial position and
acceleration terms are zero in Eq 2:

Oyters = Doy + Vox t+ % 3 t2 = Vgt = (75mph) (1.47 fps/mph) (1.0s) = 110 ft
0 0

The next phase is with the brakes applied, and a 2000 Ib braking force applied to
the car in the negative x direction. The acceleration produced by this braking force
can be determined by Eq 4. We can drop the vector notation since this is a 1D
problem:

Fob=ma, — a,=Fy/m=[-(2000 Ibf) / (2500 Ibm)] (32.2 Ibm ft/Ibf s?)
a, = -25.8 ft/s’

Now we can determine the time required to stop the car by Eq 3, setting v,=0:

Vy=Vox+axt — O=vge+act — t=-vp/a
t=- [ (75mph) (1.47 fps/mph) ]/ (- 25.8 ft/s°)
t=4.27s

And finally, we use Eq2 again to determine the total distance travelled, including
reaction time and braking:

dx,t=4.27s = de + Vot + 7 ay tz
= (110 ft) + (75mph) (1.47 fps/mph) (4.27 s)
+(0.5) (-25.8 ft/s%) (4.27 s)°

dyteazrs = 346 ft | (<350 ft so Bambi lives) |
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There are two fundamental forces acting on a vehicle at any given time during normal operation: gravity
and contact forces on the tires from the road. We ignore wind drag under most circumstances.

Gravity (weight) is a body force that acts in a distributed manner according the mass distribution of the
vehicle. To simplify analysis, we treat the gravitational force as a single force vector applied at the
vehicle’s center of mass. The gravitational force always acts in a vertical direction (relative to earth)
regardless of the orientation of the vehicle or the angle of the driving terrain.

F: F, = Friction Force front tires, rear tires

N: N. = Normal Force front tires, rear tires
W = Gravity (Weight) Force

O = Road angle of inclination

Figure 7 - Forces acting on a vehicle during normal operation

The contact forces on the tires by the road surface are usually split into two components: Normal and
Frictional forces. Normal forces always act perpendicular to the contact surface of the road, and
Frictional forces always act parallel to the contact surface of the road.

Figure 7 shows how, in general, these forces are different for each tire. Front and rear tire normal and
frictional forces are shown, but in general each of the four tires would have a unique combination of
normal and frictional forces acting on them. These many force vectors depend upon many factors
including path curvature, weight distribution of vehicle, front vs. rear wheel drive, accelerating vs.
braking, consistency of braking effectiveness between the 4 wheels, suspension dynamics, road surface
uniformity, and the list goes on.

It is easy to see how analyzing these forces individually for each wheel would quickly become
overwhelming and this purist approach would be prohibitive and beyond the scope of most accident
reconstruction analyses. Fortunately there are shortcuts we can take to simplify our models and reduce
the number of variables to a manageable level, while remaining within an acceptable envelope of
accuracy.

Tire Friction

The frictional force on a tire acts in the plane of contact (road surface). This force can also be broken
into components: roll friction and lateral friction forces. The roll friction force vector acts in the
direction of roll of the tire, in the plane of contact. The lateral friction force vector acts perpendicular to
the roll friction vector, in the plane of contact The lateral friction force is what enables the car to follow
a curve without sliding off of the road. The roll friction force is what causes the car to accelerate when
the throttle is applied, or to slow down when the brakes are applied.
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F;
F;

Flat + Frc:II

Total friction force vector

F... = lateral friction force vector,
perpendicular to plane of wheel

F.., = roll direction friction force vector,
parallel to direction of roll

l:roII
F:

Figure 8 - Friction forces on a tire

Friction forces are continually changing during normal operation of a vehicle depending on driver
behavior and geometry of the road. The magnitude of frictional force that two contacting surfaces are
capable of exerting on each other is determined by the material of the surfaces, the Normal force
(perpendicular to plane of contact) that the surfaces are exerting on each other, and whether the
surfaces are in static or sliding contact with one another. This maximum friction force magnitude is
governed by Equation 5 below.

Eq 5
The numerical value for the coefficient of friction ’
depends upon the mating materials, but also on Fe=uN
whether the surfaces are in static or sliding contact. Where:
If the surfaces (tire and road) are in static contact, as u = coefficient of friction
is the case under normal operation of the vehicle, (property of mating materials)
Equation 5 tells you the maximum friction force that N = Normal contact force
the tire can carry without breaking into sliding (perpendicular to plane of contact)

contact (skid).

If the surfaces are in sliding contact (tire is skidding)

Equation 5 tells you the resulting frictional force on the tire. Note in a skidding scenario this frictional
force does not depend upon the vehicle’s speed. Note also that Equation 5 only tells us the actual
frictional force if we are skidding. If we are not skidding it only tells us what the maximum can be before
skidding begins.

Generally speaking, the coefficients of friction () for static and sliding contact are not the same. The
static coefficient is usually higher than the sliding coefficient. Fortunately, in accident reconstruction we
mostly use Equation 5 in situations where the vehicle is in a skid, in which cases we only require the
sliding coefficient of friction.

Example 3

Two cars are traveling at 65 mph on a straight, level road in the same lane. The front car starts braking
and the driver of the trailing car is texting and doesn’t notice that the car in front is slowing down.
When the driver finally looks up he brakes hard, locking all four wheels in a skid. The trailing car weighs
3000 Ib and the pavement is dry —assume 0.75 sliding coefficient of friction. Determine the following:
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Solution
d,=0&t=0 Y
when brakes
first applied
dy = =
=0
yui > X
“ F, T F;
N, N¢
w

a) The road is level, so the average Normal force on each tire is:
N.ve = W/4 = (3000 Ib)/4 = 750 Ib
We can then use Eq 5 to determine the average sliding friction force per tire:

Ff,ave =M NaVe = (075)(750 |b)

Ftave = 563 Ib

b) We aligned our coordinates such that the x-axis is in the direction of travel. First step is to
determine the acceleration caused by the sliding friction forces on all 4 tires. We use Eq 4 and
solve for acceleration:

ay = F,/m = [ (4)(-563 Ibg) / (3000 Ibm) 1 (32.2 Iby-ft/Ibe-s?) = - 24.2 ft/s>

Next we use Eq 2 to determine the time it takes to skid 50 feet:
dy = doy + Vort + % a, t2
50 ft = 0 + (65mph) (1.47 fps/mph) t + (0.5) (-24.2 ft/s?) t*
Rearranging, we have a quadratic formula to solve for t:
12.1t°-95.3t+50=0

Keeping the smaller root (the larger root corresponds to the vehicle eventually reversing
direction which is nonsensical for this problem):

t=0.565s
Using this elapsed time in Eq 3:
Vy = Vox + ay t = (65mph) (1.47 fps/mph) + (-24.2 ft/s®) (0.565 s)
=81.9 ft/s

v, = 55.8 mph

It is interesting to note that the vehicle only slows by 9.2 mph (14%) after 50 feet of
skidding!

a) What is the average friction force on each tire? b) How fast is the second car traveling after skidding
for 50 feet?
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Example 4

The same problem as Example 3 except the car is traveling up a steady 10% grade.

Solution

- — 1 =
| 4,=08&1=0 |
| when brakes "
| first applied |

e = dx

o =slope of road = 10% =571

F;

a) We realign our x-axis to be coincident with the road. The weight force vector always acts
vertically, regardless of the slope of the road. The normal forces on the tires act perpendicular to
the road surface. Their combined magnitudes equal the component of the weight force that is
also perpendicular to the road. Thus:

Nave = Wcos(8)/4 = (3000 Ib)( cos(5.71°) } / 4 =746.3 |b
We can then use Eq 5 to determine the average sliding friction force per tire:

Frave = M Nave = (0.75)(746.3 Ib)

Frave = 559.7 Ib

b) We aligned our coordinates such that the x-axis is in the direction of travel. Now that we are
on a slope the braking force is no longer the only force acting in the x-direction — we also have the
x-component of the weight force:

W, =- W sin(B) = - (3000 Ib) sin(5.71°) =- 298.5 |b (negative since it acts in -x direction)

Next we determine the acceleration caused by the summed sliding friction forces and x-
component of the weight force. We use Eq 4 and solve for acceleration:

ay=FJ/m  Fy=(4)(-559.7 lbg) — 298.5 by = - 2537 lby
ax = [ (- 2537 Iby) / (3000 Ib) | (32.2 Ibp-ft/Ib-s)
ay = - 27.2 ft/s?

And repeating the same steps as in Example 3:
dy = dog + Vot + % a, t°
50 ft = 0 + (65mph) (1.47 fps/mph) t + (0.5) (-27.2 ft/s?) t?
13.6t°-95.3t+50=0
t=0.571s (discarding larger root)
Vy = Vox + ax t = (65mph) (1.47 fps/mph) + (-27.2 ft/s”) (0.571 s)
=79.8 ft/s

vy = 54.4 mph

The 10% grade only affects the velocity after skidding by about 2.5%
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Energy

The concept of energy plays a central role in vehicular accident reconstruction. It is energy which has
the capacity to do harm to property and person. More precisely, it is the uncontrolled conversion of
energy from one form to another which releases the destructive potential of object (automobile) in
motion.

Energy is a scalar quantity (it has magnitude only, with no associated direction), unlike force, impulse,
position, velocity, acceleration, and momentum which are vector quantities which have both magnitude
and direction associated with them. Common forms of energy in an operating vehicle include:

Gravitational Potential Energy — the amount of energy represented by an object’s elevation
Eq 6 relative to some reference elevation, represented by:

PE =mgh where: m = mass of object
g = gravitational acceleration constant
h = height (elevation) of object

Chemical Potential Energy — in the case of an automobile, this is the amount of energy
contained in the fuel in the tank. This can be a considerable amount of energy. For
example, there is enough energy in a full 15 gallon tank to lift the car 2000 miles straight up,
if converted with 100% efficiency. That’s almost 1% of the distance to the moon!
Fortunately this fuel storage energy rarely comes into play in accident reconstruction
analysis.

Kinetic Energy — the energy associated with mass in motion. There are two basic ways we
categorize kinetic energy:

Eq7 Translational KE, motion energy associated with mass moving at velocity v:

KE; = %mvz where: m = mass of object
v = velocity (speed)

Eq 8 Rotational KE — motion energy associated with mass rotating at angular velocity w:

1 _ . . .
KEg = E]wZ where: I = mass moment of inertia of object, or
“rotational mass”
w = angular velocity

Deformation Energy — energy absorbed by materials that are forced to change shape.
Strictly speaking this is not a form of energy independent of all others. When deformation
occurs in as a result of an applied force, the energy put into the deformed object is
converted mostly to heat, vibration, and noise. Some of it may also be converted to
gravitational potential energy if the center of mass changes.
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Eq9

During a collision, kinetic energy of the vehicle(s) is converted rapidly into other forms. You will
frequently hear in the accident reconstruction community that energy is not conserved in a collision, but
momentum is conserved. This is misleading — both energy and momentum are conserved in a collision,
it’s just that energy is converted to different forms and it not possible to trace these energy conversions
forensically. We will discuss conservation of momentum in a later section.

When investigating an accident, we are often presented with the challenge of determining how fast the
vehicles were travelling prior to the initial reaction of the drivers. The evidence used in this
determination often include skid marks. What do skid marks tell us about the speed of a car prior to
braking?

Example 5

Take the simplest example of a car traveling on a straight road, driver applies the brakes locking all four
wheels, and skids to a stop. Determine the initial speed of the car based on the skid mark evidence by a)
energy method and b) equations of motion

Stopped
position

. . Skid )
LI N . I marks C

Solution

a) The initial translational kinetic energy of the caris KE; = %mvg

The car comes to a stop when the work done by the opposing friction force is equal to
the initial kinetic energy. The frictional workis Wy = Frd = umgd

Since the frictional work energy is equal to the initial kinetic energy, we equate them and

solve for vy:
lmvg = umgd u = coefficient of sliding friction between tires and
2 road
v =42pgd g = acceleration of gravity constant
d = length of skid
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Solution (cont.)

b) Using the equations of motion, we first determine the acceleration due to the frictional
force using F=ma: a, = — Ff/m (negative since Fr acts in —x direction)

Then using the x-component of Eq2, we substitute this expression for the acceleration
term:

1
dx = de + voxt + Eaxtz

1Ff
dy = vyt — =—=t?
X 0x 2 m
Then using the x-component of Eq3, solving for t and doing a lot of algebraic substitution
and rearranging we eventually come up with the same expression:

vy =+2pgd

The point being that the energy method is much simpler to implement.

Rotational Energy

Sometimes a vehicle will have rotational motion (yaw) that must be analyzed. This rotational motion
can, in general, be analyzed separately from its translational motion. Yaw motion can result from
oblique impacts with other objects, non-uniform braking, steering over-correction, etc.

In this section we will consider the kinetic energy associated with yaw motion and attempt to illustrate
how the concept of rotational energy can be used in our analyses. We will also attempt to justify a
simplification that is often used by accident reconstructionists.

For an object in rotational motion, as mentioned above in Eq 8 the kinetic energy can be calculated as

15
KEp = Elw
In this equation the term “I” represents the object’s mass moment of inertia, a property of a given
vehicle which accounts for the way in which the mass of the object is distributed. The w term
represents the speed of rotation.

Properties like weight, center of mass location, and mass moments of inertia are available for individual
models of automobiles. Contents of the vehicle, including passengers and driver, must also be
accounted for and these properties adjusted accordingly in order to maintain accuracy in the
calculations.

In general after a collision, if a car has rotational motion there will likely be translational motion as well,
which means there will be both translational and rotational kinetic energy involved.
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