
Automated Testing of Classes �

Ugo Buy
University of Illinois at Chicago

EECS Dept. (M/C 154)
851 South Morgan Street
Chicago, IL (USA) 60607
Phone: +1-312-413-2296

buy@eecs.uic.edu

Alessandro Orso
Politecnico di Milano

DEI
P.zza Leonardo Da Vinci, 32

I-20133 Milano, Italy
Phone: +39-02-2399-3638

orso@elet.polimi.it

Mauro Pezz�e
Politecnico di Milano

DEI
P.zza Leonardo Da Vinci, 32

I-20133 Milano, Italy
Phone: +39-02-2399-3523
pezze@elet.polimi.it

ABSTRACT
Programs developed with object technologies have unique
features that often make traditional testing methods inade-
quate. Consider, for instance, the dependence between the
state of an object and the behavior of that object: The out-
come of a method executed by an object often depends on
the state of the object when the method is invoked. It is
therefore crucial that techniques for testing of classes exer-
cise class methods when the method's receiver is in di�erent
states. The state of an object at any given time depends
on the sequence of messages received by the object up to
that time. Thus, methods for testing object-oriented soft-
ware should identify sequences of method invocations that
are likely to uncover potential defects in the code under
test. However, testing methods for traditional software do
not provide this kind of information.

In this paper, we use data
ow analysis, symbolic execution,
and automated deduction to produce sequences of method
invocations exercising a class under test. Since the static
analysis techniques that we use are applied to di�erent sub-
problems, the method proposed in this paper can automat-
ically generate information relevant to testing even when
symbolic execution and automated deduction cannot be com-
pleted successfully.

Keywords
Testing and Analysis, Testing Object-Oriented Software, Class
Testing, Data Flow Analysis, Symbolic Execution.

�This work has been partially supported by the ESPRIT
Project TWO (Test & Warning O�ce - EP n.28940) and
by the Italian Ministero dell'Universit�a e della Ricerca Sci-
enti�ca e Tecnologica (MURST) in the framework of the
MOSAICO (Design Methodologies and Tools of High Per-
formance Systems for Distributed Applications) Project.

ISSTA '00 August 21-25, 2000 Portland, Oregon

1. INTRODUCTION
The object-oriented paradigm plays a prominent role in the
development of many modern software systems. The dif-
ferent structure and behavior of object-oriented software
help in solving or mitigating several problems of procedu-
ral software, but raise new problems that often cannot be
addressed with traditional techniques. In particular, object-
oriented software presents new classes of faults that require
new testing techniques [17]. Despite the widespread use of
the object-oriented paradigm, the many new problems re-
lated to testing of object-oriented systems have not been
adequately investigated. The most interesting studies pub-
lished so far address several important issues, but do not
cover all issues related to testing of object-oriented soft-
ware [5, 8, 12, 22, 25].

Here we focus on the issue of class testing. Major problems
in class testing derive from the presence of instance vari-
ables and their e�ects on the behavior of methods de�ned
in the class. A given method can produce an erroneous re-
sult or a correct one, depending on the value of the receiver's
variables when the method is invoked. It is therefore cru-
cial that techniques for the testing of classes exercise each
method when the method's receiver is in di�erent states.

Existing approaches to class testing are based either on a
speci�cation of the class state or on data
ow analysis. Most
state-based approaches ([1, 5, 25]) tie test case generation to
the existence of suitable class speci�cations. Unfortunately,
we often need to test software whose speci�cations are in-
complete or even nonexistent. The existing techniques for
deriving state information from source code usually make
strong assumptions on the code that can be analyzed. For
example, the method de�ned by Kung et al. [14] can be
applied only to scalar state variables without mutual de-
pendencies. That method does not seem to scale up as the
size of the code under test increases. Data
ow-based ap-
proaches [9, 24] focus mostly on algorithmic rather than
methodological aspects of testing; thus, these approaches
represent an important basis for testing, but do not com-
pletely address the problem of test case generation. In this
paper we show how the results of data
ow analysis de-
�ned by Harrold and Rothermel [9] can be used as part of a
method for generating test cases for classes.

This paper uni�es existing approaches in a coherent frame-
work that combines data
ow analysis, symbolic execution

39

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISSTA '00, Portland, Oregon.
Copyright 2000 ACM 1-58113-266-2/00/0008…$5.00.
ISSTA '00,

and automated deduction in an e�ort to generate method
sequences for structural testing of classes. Our framework
mitigates well-known limitations of the three techniques we
use by restricting their scope of application. In particular,
data
ow analysis is applied only to instance variables of the
class under test (CUT); symbolic execution is applied only
to individual methods, which usually have a simple intra-
procedural control structure; and automated deduction is
used to generate sequences of method invocations. Symbolic
execution and automated deduction techniques can some-
times fail, depending on the code of the CUT. When this
happens, however, our framework can still generate some
relevant sequences of method invocations and produce infor-
mation (e.g., du-pairs, as we explain below) that can help
test engineers identify additional test cases. The applicabil-
ity of symbolic execution and automated deduction can be
increased through user-supplied information, such as loop
invariants. The main advantage of our technique is that
it can discover errors caused by interactions among class
methods. Traditional testing techniques can fail to discover
errors of this kind.

It is quite possible that some of the method sequences we
generate may never be invoked when the program contain-
ing the CUT is executed. This can happen, for instance, if
a generated sequence violates a precondition restricting the
use of the CUT by its clients. These test cases can still be
executed during unit or integration testing through sca�old-
ing. Executing these cases can provide valuable information
about the robustness of the CUT.

Our approach uses exclusively structural (i.e., code-based)
analysis techniques. Therefore, we aim at automatically
generating method sequences for class testing, but we do
not address the problem of generating test oracles. The au-
tomatic generation of oracles would require the existence of
program speci�cations, which are seldom available in cur-
rent industrial practice. Given that the generation of or-
acles is orthogonal to the generation of test data, the ap-
proach proposed in this paper can be complemented with
any technique, either automated or manual, for the gener-
ation of oracles. Consequently, we assume that testers us-
ing our framework will de�ne, for each generated methods
sequence, expected values of instance variables and return
parameters. Issues related to the actual execution of test
cases and sca�olding are beyond the scope of this paper.
However, we assume that our generated method sequences
will be executed by a testing system that provides access to
all instance variables of the objects under test.

An implementation of our framework is currently under way.
We have completed prototypes that carry out two out of
three key steps of our approach, namely data
ow analysis
and symbolic execution of C++ code. We are now develop-
ing a prototype for automated deduction and also integrat-
ing the various prototypes into a uni�ed toolset. The toolset
will allow us to evaluate empirically the e�ectiveness of our
method on real-world applications.

The paper is organized as follows. Section 2 describes the
proposed methodology. Section 3 introduces the example
used throughout the paper to illustrate our methodology.
Sections 4, 5, and 6 illustrate the main phases of the pro-

posed technique. Section 7 sketches the overall structure of
the toolset under development. Section 8 surveys related
work. Section 9 outlines future research directions.

2. TEST GENERATION FOR CLASSES
The technique proposed in this paper seeks to reveal state-
dependent failures, that is, failures that manifest themselves
only when an instance is in a certain state before executing
a method. To test for such failures, our technique generates
sequences of method invocations that bring the object under
test to states in which a given method is then exercised. The
underlying idea is quite simple: the execution of a method
is a�ected by the instance variables used by the method
and thus by the methods that determine the values of such
variables. To test methods for state-dependent faults, we
identify pairs of methods that de�ne and use the same in-
stance variable. Once we identify one such pair, we try to
select a complete sequence of method invocations that con-
tains the two methods in the correct order. The identi�ed
sequences represent the test cases for the target class.

Note that we consider the testing of classes in isolation.
Therefore, if the class under test (CUT) belongs to an in-
heritance hierarchy, we perform a
attening of the classes in
the hierarchy prior to the application of the technique. Our
technique is based on three main phases:

Data
ow analysis. This phase de�nes so-called du-pairs.
In brief, these are ordered pairs of mutually related
statements in which the �rst statement de�nes and
the second statement uses the same instance variable.
The du-pairs are de�ned by applying data
ow analysis
to the whole class while focusing on instance variables
only. Thus, the statements comprising a du-pair may
belong to di�erent methods.

Symbolic execution. Here we identify conditions related
to path executions and variable de�nitions. For every
path within each method, we identify the conditions
associated with the execution of the path, the relation-
ship between input and output values of the method
with respect to that path, and the set of variables de-
�ned along the path. This information is obtained by
applying well-tried symbolic execution techniques to
the method's code.

Automated deduction. This phase identi�es complete se-
quences of method invocations that exercise the du-
pairs identi�ed during the �rst phase. Thus, each
method sequence leads to a use of an instance vari-
able through a de�nition of the same variable starting
from an initial state. Such sequences are incrementally
built by applying automated deduction techniques to
method preconditions and postconditions that are out-
put by the second phase.

The main disadvantage of our testing approach is the com-
putational complexity of the techniques that we employ, es-
pecially symbolic execution and automated deduction. How-
ever, we signi�cantly reduce the e�ects of this disadvantage
on the overall e�ectiveness of our approach by applying the

40

three techniques in phases of increasing complexity and by
producing useful results at the end of each phase.

Evidently, our approach is most e�ective when all three tech-
niques can be applied successfully. In this case, we produce
method sequences that exercise all feasible du-pairs in the
CUT. In addition, our analyses will statically identify and
discard all infeasible du-pairs.

If, however, symbolic execution does not succeed for a given
method, our technique will produce at least a set of du-pairs
for the CUT. In this case, testers can either build method
sequences involving this method by hand or manually de�ne
preconditions and postconditions for the method. In the
�rst case, our framework helps developers in establishing
data-
ow coverage for a test set. In the second case, user-
supplied conditions will permit the application of automated
deduction in an e�ort to identify method sequences covering
the du-pairs identi�ed earlier.

When symbolic execution is successful but automated de-
duction fails for a given du-pair, a developer can de�ne
method sequences by using methods' preconditions and post-
conditions. In particular, the preconditions of the two paths
that contain the statements in the du-pair can help identify
class states that cause these statements to be executed. In
addition, the postconditions of each method can help the
developer in de�ning method sequences that will bring an
instance into the states of interest.

Data
ow analysis works on simple variables. When some
instance variables are complex (e.g., arrays, structures, and
recursive types), testers can decide whether to skip the anal-
ysis of such variables, or to identify manually statements
de�ning and using the variables. For instance, if v is a non-
scalar instance variable, e.g. an object, the invocation of
a const method on v can be considered a use of v, while
the invocation of a non-const method on v can be consid-
ered a de�nition.1 An analysis of this kind could be easily
automated. A detailed discussion of this issue is beyond
the scope of this paper, which is focused on unit testing of
classes. We plan to address the issues arising from the use
of class instances as instance variables as part of integration
testing.

In summary, the shortcomings of the techniques that we use
do not prevent the application of our framework, but simply
reduce the number of automatically generated message se-
quences. This means that the presence of unbounded loops
(possibly a�ecting symbolic execution) or complex expres-
sions (possibly a�ecting automated deduction) will only re-
sult in the generation of a partial set of message sequences.
In addition, missing sequences can be easily identi�ed by
analyzing the du-pairs not covered by any sequence, thus
providing the user with information about program compo-
nents that are not adequately tested. Users can decide on
a case-by-case basis whether to provide additional informa-
tion (e.g., information on de�nitions and uses for non-scalar
instance variables or methods' preconditions and postcon-
ditions). Alternatively, a user could complement our tech-
nique with other testing approaches.

1In Standard C++ a const method cannot modify any of
the receiver's instance variables (data members).

3. RUNNING EXAMPLE
We illustrate our technique with the example of class Coin-
Box, which contains a known defect [14]; we automatically
generate test cases that uncover the defect. The fault in the
class results in a failure only when method Vend is invoked
in a particular state. Although this example is quite sim-
ple, its defect may not be revealed with traditional test-case
generation techniques. We show that our technique can au-
tomatically generate a test set that exposes the defect. In
addition, our test set is smaller than the corresponding test
set generated by Kung et al. [14]. Finally, as we show below,
our technique works when the value of an instance variable
depends on the value of other instance variables, while the
technique of Kung et al. does not cope with such cases.

The code for class CoinBox appears in Figure 1. Class Coin-
Box has three instance variables, totalQtrs, curQtrs, and
allowVend. Variable totalQtrs keeps track of all coins col-
lected for items sold by the machine. Variable curQtrs keeps
track of coins entered since the last sale. The vending ma-
chine requires at least two coins before serving a drink. Vari-
able allowVend indicates whether enough coins have been
entered in order for a sale to take place.

class CoinBox f
unsigned totalQtrs;
unsigned curQtrs;
unsigned allowVend;

public:
CoinBox() f

totalQtrs = 0;
allowVend = 0;
curQtrs = 0;

g
void returnQtrs() f

curQtrs = 0;
g
void addQtr() f

curQtrs = curQtrs + 1;
if (curQtrs > 1)

allowVend = 1;
g
void vend() f

if (allowedVend) f
totalQtrs = totalQtrs + curQtrs;
curQtrs = 0;
allowVend = 0;

g
g

g;

Figure 1: Class CoinBox.

Method CoinBox() is a constructor that initializes all three
instance variables to zero. Method addQtr() captures the
action by which a user enters a coin. It increments variable
curQtrs and sets variable allowVend to one if curQtrs is
greater than one. Method vend() models the purchase of an
item by the user: The current value of curQtrs is added to
variable totalQtrs; curQtrs and allowVend are reset to zero.
Method returnQtrs() models the actions by which coins en-
tered by a user are returned to the user before a sale. It
resets curQtrs to zero. Class CoinBox() contains a fault in
that method returnQtrs() does not reset variable allowVend.
As a result, any sequence containing at least two consecutive
invocations of method addQtr() followed by an invocation of
method returnQtrs() brings the object into an inconsistent

41

state. When this happens, method vend() results in a suc-
cessful sale although all entered coins have been returned.

4. DATA FLOW ANALYSIS
In our framework, data
ow analysis is applied to the class
control
ow graph (CCFG) to identify pairs of methods that
de�ne and use the same instance variable. The CCFG of
class CoinBox is shown in Figure 4.

Graph nodes represent single-entry, single-exit regions of ex-
ecutable code. Edges represent possible execution branches
between code regions. The CCFG of a class consists of a
set of Control Flow Graphs (CFGs), one for each method of
the class, connected through an additional class node. This
node captures the fact that the methods can be invoked in
an arbitrary order by other client classes. Each CFG has
an entry node and an exit node, both labeled with the name
of the corresponding method. The additional class node is
labeled with the name of the class, and has an input edge
from the exit node of every method and an output edge to
the entry node of every method. For instance, nodes 13
and 17 in Figure 4 are the entry and exit nodes for method
AddQtr(); the node labeled CoinBox is the class node.

Since single CFGs are chained through the additional class
node in the CCFG, standard interprocedural data
ow anal-
ysis can be applied to the methods of the class. In this way,
we are able to identify both intraprocedural and interpro-
cedural de�nition-use dependencies. Infeasible invocation
sequences are detected later on by symbolic execution and
automated deduction, as we explain below. Interprocedu-
ral analysis is required because methods can invoke other
methods in the CUT. The CCFG representation of a class
and the application of interprocedural data
ow analysis to
instance variables are derived from existing work [9].

Data
ow analysis identi�es du-pairs for instance variables.
A du-pair for an instance variable v consists of two nodes, sd
and su, such that sd and su are both contained in a class C,
sd modi�es (writes) the value of v, su uses (reads) v's value,
and there is a def-clear path from sd to su. We denote the
methods containing sd and su by md and mu, and we write
hsd; su; vi to denote the du-pair. A def-clear path for a du-
pair hsd; su; vi is a path from sd to su that does not contain
additional de�nitions of v. Note that we implicitly assume
that member variables are written (resp., read) only through
accessor methods, since the simple case of a direct de�nition
(resp., use) of an attribute can be trivially handled by any
driver for the class, and does not the require the application
of our technique.

Table 4 shows the du-pairs of class CoinBox. These pairs
were de�ned by means of an approximate conservative al-
gorithm that identi�es and eliminates those infeasible pairs
whose infeasibility can be statically identi�ed [19]. This hap-
pens, for example, when the statements in a du-pair are not
connected with a def-clear path.

A potential weakness of data
ow testing is that sometimes
possible faults may not be revealed by the mere execution of
du-pairs. This can happen, for instance, when the variable
de�nition contained in a du-pair has no e�ect on the ob-
servable output of the program being tested. This problem

variable md (node#) mu (node#) notes

01 curQtrs CoinBox (4) addQtr (14a)
02 curQtrs CoinBox (4) addQtr (15) inf.
03 allowVend CoinBox (3) vend (19)
04 totalQtrs CoinBox (2) vend (20a)
05 curQtrs returnQtrs (11) addQtr (14a)
06 curQtrs returnQtrs (11) addQtr (15) inf.
07 curQtrs returnQtrs (11) vend (20a)
08 curQtrs addQtr (14b) addQtr (14a)
09 curQtrs addQtr (14b) addQtr (15)
10 curQtrs addQtr (14b) vend (20a)
11 allowVend addQtr (16) vend (19)
12 totalQtrs vend (20b) vend (20a)
13 curQtrs vend (21) addQtr (14a)
14 curQtrs vend (21) addQtr (15) inf.
15 curQtrs vend (21) vend (20a) inf.
16 allowVend vend (22) vend (19)
17 curQtrs CoinBox (4) vend (20a)

Table 1: Du-pairs for class CoinBox . Node num-

bers refer to the CCFG of Figure 4. Entry inf. in-

dicates infeasible pairs statically identi�ed by data-

ow analysis.

is related to the presence, in the code, of chains of de�-
nitions and uses that propagate the erroneous value from
the faulty de�nition to the output. To reveal this kind of
faults, not only the faulty de�nition has to be exercised, but
the whole chain has to be traversed by a given test case.
D�usterwald, Gupta, and So�a propose a technique for ad-
dressing this problem, which is based on the use of software
slicing techniques [6]. In our case, the added complexity of
such a technique is probably unnecessary because (1) we ap-
ply data
ow analysis only to the instance variables of the
CUT, thus decreasing the chances that chains will occur,
and (2) we assume that all instance variables are compared
with their expected values at the end of each test case, thus
decreasing the chances for an erroneous value to be over-
looked.

Data
ow analysis does not handle easily dynamic or non-
scalar data types; this technology is traditionally considered
more suitable for intraprocedural than interprocedural anal-
ysis. With our technique, data
ow analysis is applied only
to the instance variables of a class, which are typically fairly
simple. Moreover, data
ow analysis is applied to methods
within a single class. Thus, we mitigate the most relevant
problems of interprocedural analysis, namely aliasing and
parameter passing. Finally, data
ow analysis can provide
useful information even if applied only to a subset of class in-
stance variables, say, by ignoring non-scalar attributes (i.e.,
instance variables) or by manually identifying their de�ni-
tions and uses.

5. SYMBOLIC EXECUTION
The du-pairs computed with data
ow analysis indicate
which methods determine the values of instance variables
later used by other methods. To determine a set of test
cases, we need to identify for each du-pair a feasible se-
quence of paths through methods that contain the de�ni-
tion and use of the variable contained in the du-pair, if such
an invocation sequence exists. The sequence cannot contain
additional de�nitions of the variable between the de�nition
and the use indicated by the du-pair. To compute such se-

42

01 entry CoinBox()

02 totalQtrs=0

03 allowVend=0

04 curQtrs=0

09 exit CoinBox()

CoinBox

10 entry void ReturnQtrs()

11 curQtrs=0

12 exit ReturnQtrs()

13 entry void AddQtr()

14a tmp=curQtrs + 1

14b curQtrs=tmp

15 if(curQtrs>1)

16 allowVend=1

T

17 exit AddQtr()

F

18 entry void Vend()

19 if(allowVend)

20a tmp=totalQtrs+curQtrs

T

23 exit Vend()

F

20b totalQtrs=tmp

21 curQtrs=0

22 allowVend=0

Figure 2: The CCFG for class CoinBox.

quences of execution paths, we need the following data for
each path within each method: (1) the conditions associated
with the execution of the path, (2) the relationship between
input and output values of the method with respect to the
path, and (3) the set of variables de�ned along the path. In
addition, for each method we need to evaluate the conditions
associated with the execution of paths leading to de�nitions
and uses within the method (i.e., path conditions), as iden-
ti�ed by data
ow analysis. All the above information is
computed through symbolic execution of each method of
the CUT.

It is well-known that symbolic execution may fail to compute
execution conditions for a path, because of the presence of
unsolvable constraints or unbounded loops. We apply sym-
bolic execution to single methods, which are usually proce-
dures with a simple control structure [24]. Moreover, the
failure of symbolic execution on a method does not a�ect
the possibility of analyzing other methods, and can be over-
come by additional information such as invariants added by
the user [3, 4].

In general, path conditions are expressed as a set of propo-
sitional formulas involving the values of method parameters
and class attributes before method execution, after method
execution, or both. The condition associated with the exe-

cution of a path, the set of variables de�ned along the path,
and the relationship between input and output values of the
method for the given path are expressed as follows:

< precondition >) (< attrib >0=< symbExpr >)�

def=f< setOfDefAttr >g

Here precondition is a predicate on attributes and parame-
ters of the method; this predicate indicates the conditions on
the execution of the considered path through the method. In
addition, symbExpr is a symbolic expression that indicates
the value of an attribute computed by executing the path
through the method. This expression involves parameters
of the method, values associated with the attributes when
the method is invoked, and the return value (if there is one).
In symbExpr, the return value is indicated with the special
identi�er return0. Finally, setOfDefAttr indicates the set of
attributes de�ned along the path. The conditions on the
execution of de�nitions and uses within methods are path
conditions denoted by PCD and PCU.

Table 5 shows the conditions for executing the paths of all
methods of class CoinBox, the set of variables de�ned along
each path, and the relationship between input and output
values of each method along each path. For sake of read-

43

ability, we do not explicitly write any postcondition of the
kind v0i = vi if vi is not included in the def set for the
method path. For the considered example all conditions
can be computed automatically without requiring users to
provide additional information. The PCD and PCU used
to compute test cases relevant for the example are shown in
Section 6.

CoinBox
(true)) totalQtrs0 = 0
def=ftotalQtrs, curQtrs0 = 0

curQtrs, allowV end0 = 0
allowVendg

addQtr
(curQtrs > 0)) curQtrs0 = curQtrs+ 1
def=fcurQtrs, allowV end0 = 1

allowVendg
(curQtrs == 0)) curQtrs0 = 1
def=fcurQtrsg

vend
(allowV end 6= 0)) totalQtrs0 = totalQtrs+ curQtrs

def=ftotalQtrs, curQtrs0 = 0
curQtrs, allowV end0 = 0
allowVendg

(allowV end == 0)) allowV end0 = 0
def=fg

returnQtrs
(true)) curQtrs0 = 0
def=fcurQtrsg

Table 2: execution conditions computed with sym-

bolic execution for class CoinBox.

Class CoinBox is a server that can be analyzed indepen-
dently from its clients. In general the computation of class
conditions can require some knowledge about the behavior
of classes whose methods are used by the CUT. We can pro-
vide such information by means of suitable stubs that will
be needed for module testing or simply as assertions that
specify the behavior of the server classes.

6. GENERATION OF CALL SEQUENCES
Sequence generation uses information produced with sym-
bolic execution to construct sequences of method invocations
that exercise the du-pairs identi�ed during data
ow anal-
ysis. In brief, a method sequence for a du-pair must begin
with a class constructor and must end with the method, mu,
that executes the use statement (i.e., su) in the du-pair. In
addition, the sequence must contain the method, md, that
executes the de�nition statement (i.e., sd) in the du-pair and
a def-clear path from sd to su.

In formal terms, given a du-pair d = hsd; su; vi, a feasi-
ble method sequence exercising d is a sequence of meth-
ods (m1;m2; : : : ;mn) subject to the following constraints.
First, m1 must be a constructor for the CUT. Second, the
execution of mn must result in the execution of statement
su, which uses v. Third, when the sequence is executed,
statement sd, which de�nes variable v, must be executed at
least once. Letmi, with i 2 [1; n], be the last method whose
execution results in the execution of sd. It must be the case
that mi = md. Fourth, for each j 2 [i+ 1; n] the execution
of mj must not contain any additional de�nitions of v.2

2In the case ofmn, this constraint can be relaxed by allowing
de�nitions of v, provided that such de�nitions occur after su
is executed.

Given a du-pair d = hsd; su; vi, we generate a method se-
quence for d in reverse order by starting from the method
mu that contains statement su and by applying a set of
backward-chained deductions. In brief, our initial goal is
PCU, the preconditions upon which methodmu executes su.
If there is a method mk, whose postconditions imply PCU,
then the method is prepended to the front of the sequence. If
no such method is found, we look for a method whose post-
conditions do not contradict PCU, and we prepend such a
method, mk, to the sequence. The condition to be satis�ed
by the resulting sequence is de�ned as follows: (1) The cur-
rent condition is simpli�ed by eliminating those clauses (if
there are any) that are satis�ed by mk's postconditions; (2)
the union of the simpli�ed condition and mk's preconditions
is taken; (3) the resulting condition is further simpli�ed, if
this is possible.

In general, given a condition P , there can be multiple meth-
ods whose postconditions either imply P or do not contra-
dict P . Consequently, we represent the deductive process for
a given du-pair d = hsd; su; vi as a tree. Each tree node cor-
responds to a pair consisting of a method and a condition,
that is, a predicate on the instance variables of the class and
on the parameters of the method. The root of the tree cor-
responds to method mu and condition PCU in conjunctive
normal form. The �rst objective of tree construction is to
include a node corresponding to md in the tree. The meth-
ods corresponding to the nodes on the path from the root
to md must not execute any de�nitions of variable v. An
additional objective is to include a node corresponding to a
class constructor in the subtree rooted atmd. The deductive
process ends when this goal is satis�ed.

We explore the tree for a du-pair d in depth-�rst fashion,
starting from the root. As stated above, given a node ni
corresponding to method mi and condition Pi, the children
of ni correspond to methods whose postconditions do not
contradict any of the conjuncts in Pi. If there are no such
methods, the node cannot be expanded and tree exploration
is continued by considering another node yet to be expanded.
Tree exploration may end for one of several reasons:

1. Nodes corresponding tomd and a class constructor are
found in the tree. In this case, the node, nc, that cor-
responds to the constructor is a leaf and the path from
the root to nc de�nes a feasible method sequence for
du-pair d in reverse order. The portion of the method
sequence from md to mu de�nes a def-clear execution
path because of the way in which we build the tree.
Also, the sequence begins with a class constructor and
ends with method mu. Thus, the search for a feasible
method sequence is completed successfully.

2. The tree does not contain nodes to be expanded or a
feasible method sequence. In this case, the du-pair is
deemed infeasible.

3. The depth of the tree reaches a given threshold before
a feasible sequence is found. In this case, our analysis
is inconclusive and we report this fact to the user.

Our technique for the construction of the tree is based on
the use of automated deduction. Even if automated de-

44

duction techniques, such as constraint solving, may fail in
coping with complex expressions, nowadays there are several
e�cient constraint solvers applicable to large sets of expres-
sions (see, for instance, [20, 23]). In addition, failures of the
constraint solver can be overcome by requiring a manual gen-
eration of message sequences. To date, we have de�ned an
algorithm for performing the backward chaining and logical
inference. We are currently investigating two possible alter-
natives for the implementation of the algorithm. The �rst
one is based on the use of the PVS reasoning system [20].
The second one is based on the use of the Omega C++ li-
brary, which is a complete system for simplifying and verify-
ing Presburger formulas (i.e., linear constraints over integer
variables) [21].

We use several heuristics in order to improve the e�ciency
of our tree construction. First, we reduce tree size by prun-
ing subtrees whose roots have conditions that imply a pre-
decessor's condition. This is achieved by avoiding further
exploration of such roots, unless they correspond to either
method md or a constructor, whose inclusion in the tree rep-
resents a goal of tree construction. Second, we insert a node
corresponding to the method responsible for the de�nition
(i.e.,md) as soon as possible and as a unique successor. Also,
when exploring the successors ofmd, we insert a constructor
in the tree as soon as possible.

When constructing a method invocation sequence, the case
of sd and su belonging to the same method is handled in
three possible ways.

1. Statements sd and su are executed in this order along
every possible path traversing the method. In this
case, the sequence consists of a constructor followed
by mu =md.

2. Statements sd and su are executed in this order along
some path(s) traversing the method (i.e., only under a
given precondition). In this case, PCU becomes that
precondition, and we follow the general method for
tree construction (by taking into account that md has
already been inserted in the sequence).

3. Statements sd and su are never executed in this order
along any paths traversing the method. In this case, we
follow the general approach and a feasible sequence (if
there are any) will necessarily contain two invocations
of mu = md.

To illustrate our technique for tree construction, we show
the process for automatically building the sequence of invo-
cations for du-pair #7 from Table 4.

variable: curQtrs
de�nition: returnQtrs, node 11
use: Vend, node 20a
PCD: true
PCU : allowVend 6= 0

The method sequence automatically produced for this du-
pair corresponds to the test case that reveals the defect

in class CoinBox. The set of method sequences automati-
cally generated for all du-pairs of this example can be found
in [18].

The tree generation process for du-pair #7 starts with the
invocation of method Vend that uses the value of variable
curQtrs, and the corresponding PCU: \allowV end 6= 0".
Method Vend is the root of the tree and its PCU is the asso-
ciated condition. Examining the postconditions of method
invocations reported in Table 5, we can see that it is al-
ready possible to add md (i.e., method returnQtrs) to the
tree. In fact, the postcondition of method returnQtrs does
not contradict condition PCU.

According to the heuristics discussed above, method return-
Qtrs is added to the tree as the only successor of the root
(node 1 in Figure 6). The condition of the new node is
obtained by removing the conjuncts implied by the post-
conditions of the new method invocation and by adding the
corresponding preconditions. In this case, the condition of
the new node is the same as that of its predecessor, because
(1) the postconditions of returnQtrs do not satisfy any of
the conjuncts (only one in this case) composing the root's
condition, and (2) method returnQtrs does not have any
preconditions. Even if node 1's condition implies its prede-
cessor's condition we do not rule it out, since it corresponds
to method md.

Next, we explore the subtree rooted in node 1. Because
this node adds method md to the tree, we now need to
complete the generated sequence with a subsequence end-
ing in a constructor and satisfying node 1's condition. The
constructor's postconditions (\totalQtrs0 = 0; curQtrs0 =
0;allowV end0 = 0") contradict the condition associated
with the node (\allowV end 6= 0"). Thus, we cannot add
the constructor as a direct successor of node 1, and we must
consider alternative methods. The postconditions of both
paths in method addQtr and of method ReturnQtrs do not
contradict the condition of node 1. Thus, we de�ne three
successors for node 1, namely nodes 2, 3, and 4. The condi-
tions of the three new nodes are shown in Figure 6. In each
case, node conditions are de�ned as follows.

Node 2 : The invocation of method addQtr, correspond-
ing to node 2, has postconditions \totalQtrs0 = totalQtrs;
curQtrs0 = curQtrs + 1; allowV end0 = 1" and precondi-
tion \curQtrs > 0". Therefore, we eliminate from the con-
dition of node 2 the conjunct \allowV end 6= 0", which is
implied by the postconditions of addQtr. Although node 1
has no additional conjuncts, we must still add the corre-
sponding precondition of addQtr to the conditions of node 2.
The resulting condition for node 2 consists of one conjunct,
\curQtrs > 0".

Node 3 : The invocation of method addQtr, correspond-
ing to node 3, has postconditions \totalQtrs0 = totalQtrs;
curQtrs0 = 1" and precondition \curQtrs = 0". The post-
conditions do not satisfy any of the conjuncts (only one in
this case) composing the condition associated with node 1.
Therefore, this condition is carried over to node 3, in ad-
dition to the preconditions of the addQtr invocation that
we are considering. The resulting condition for node 3 is
\allowV end 6= 0 ^ curQtrs = 0".

45

Node 4 : The invocation of method returnQtrs correspond-
ing to node 4 has postconditions \totalQtrs0 = totalQtrs;
curQtrs0 = 1" and no preconditions. As with node 3,
node 4's postconditions do not imply any of the conjuncts
of the condition associated with node 1. Since no pre-
conditions are added, the resulting condition for node 4 is
\allowV end 6= 0".

The conditions of nodes 3 and 4 contain (i.e., imply) their
parent's condition. Intuitively, this means that the execu-
tion of the methods corresponding to nodes 3 and 4 will not
help a Coinbox instance in reaching a state satisfying the
condition that we are considering (i.e., the condition for ex-
ecuting the de�nition statement in du-pair #7). Thus, we
do not explore nodes 3 and 4 any further. We indicate this
fact by crossing out these nodes in Figure 6.

Next, we expand node 2, the only open node left. Similar
to the case of node 1, we cannot add the constructor as a
direct successor of node 2 because one of the constructor's
postconditions (\curQtrs0 = 0") contradicts the condition
associated with node 2 (\curQtrs > 0"). However, the post-
conditions of both invocations of method addQtr and of one
of two possible invocations of method Vend do not contra-
dict node 2's condition. Thus, we de�ne node 2 to have
children nodes 5, 6, and 7 corresponding to these three in-
vocations. These three nodes are explored next.

The conditions of nodes 5 and 7 imply node 2's condition.
Similar to nodes 3 and 4, nodes 5 and 7 are not further
explored. However, the condition associated with node 6
(\curQtrs = 0") is not contradicted by the constructor's
postconditions. Therefore we can add to the tree a node (i.e.,
node 8) that corresponds to an invocation of the constructor.
This ends the construction of the tree. Note that conditions
associated with the node that represents the constructor (if
there are any) express constraints on the constructor's ar-
guments.

The resulting method sequence is:

CoinBox(), addQtr(), addQtr(), returnQtrs(), vend()

This sequence reveals the CoinBox error that we discussed
earlier.

7. THE TOOLSET
We are currently developing a toolset that automates our
approach to class testing. We intend to use the toolset for
extensive experiments aimed at assessing the e�ectiveness
of the approach. Preliminary versions of two key proto-
types for data
ow analysis and symbolic execution have
been completed. The construction of the toolset is taking
place within ESPRIT project TWO 3, of which Politecnico
di Milano is an active participant. For our experiments we
will use mostly software supplied by our industrial partners
in project TWO. This software includes aeronautical appli-
cations, automatic machine control systems, and automotive
control systems.

3ESPRIT Project TWO (Test & Warning O�ce - EP
n.28940).

Vend()
0

1
ReturnQtrs()

(allowVend != 0)

(allowVend != 0)

AddQtr() AddQtr()

(curQtrs > 0) (curQtrs > 0)(curQtrs == 0)

Vend()

(allowVend == 0)

5 6 7

2
ReturnQtrs()

3 4
AddQtr()AddQtr()

(curQtrs > 0)

(allowVend != 0)

(allowVend != 0)
(allowVend != 0)
(curQtrs == 0) &&

CoinBox()

8

(true)

Figure 3: Tree for du-pair #7.

To date, we have conducted a preliminary examination of
the code provided by our partners and discovered that most
of the code satis�es the assumptions of our three methods for
code analysis: about �fty percent of the classes we received
use only discrete instance variables; statements involving
non-scalar instance variables can be easily represented in
terms of de�nitions and uses of such variables; most exe-
cution conditions can be solved with exisiting automated
constraint solvers. For these reasons, we expect that test
case generation will be completed successfully (i.e., with the
generation of method sequences) for at least a meaningful
subset of the classes supplied by our partners. In this section
we brie
y survey the architecture of the toolset, including
the current state of development of each component of the
toolset.

CCFG generator
The CCFG generator parses the source code of a class and
generates the corresponding CCFG. A �rst prototype based
on a commercial C++ parser produced by the Edison De-
sign Group [7] is being tested. The current version of the
prototype parses the full Standard C++ language. All con-
structs but exception handling are also represented in the
corresponding CCFG. We are currently investigating CCFG
extensions to model the behavior of exception handling con-
structs with respect to the
ow of control.

Data flow analyzer
The data
ow analyzer identi�es du-pairs for instance vari-
ables of the CUT starting from the CCFG output by the
CCFGGenerator. The current prototype implements a poly-
nomial conservative approximation algorithm [19].

Symbolic executor
The symbolic executor computes conditions for path execu-
tion and variable de�nitions. In particular, it computes the
conditions associated with the execution of paths within a
method, the relationship between inputs and outputs of a
method, the set of variables de�ned along each path, and the
conditions associated with the execution of paths leading to
de�nitions and uses within a method. The current prototype
uses a symbolic executor developed by the European consor-
tium LAW for avionics applications. The symbolic executor
works for Safer C, the subset of C used for safety critical

46

applications [10]. We have re�ned the symbolic executor in
order to handle C++ extensions to C.

Sequence generator
This tool will generate method sequences using automated
reasoning. The technique is based on the solution of the con-
straints generated with symbolic execution on paths de�ned
by data
ow analysis. We plan to take advantage of the de-
ductive power of existing theorem provers, such as PVS [20,
23], in order to perform some of the deductions required for
the generation of method sequences.

8. RELATED WORK
The problem of testing object-oriented software has been
addressed by many other authors. However, only a few au-
thors address the speci�c problem of test case generation
for classes. All the existing techniques generate sets of mes-
sage sequences starting from some kind of description of the
CUT. Most techniques generate message sequences from for-
mal class speci�cations [2, 5, 13, 15, 25]. For example, the
ASTOOT system described by Doong and Frankl generates
automatically both method sequences and oracles from al-
gebraic speci�cations [5]. ASTOOT cleverly exploits rewrite
rules induced by program speci�cations in order to manip-
ulate message sequences.

Our techique is code-based rather than speci�cation-based.
To our knowledge, the only other technique for generating
test cases from code was de�ned by Kung et al. [14]. That
technique generates message sequences for class testing from
a state-based model extracted from source code. The inter-
mediate state-based model is a set of �nite state machines,
one machine for each instance variable. These state ma-
chines are built through a combination of symbolic execution
and deductive techniques. Subsequently, message sequences
are generated through an exhaustive search of the various
state machines.

As with our method, the approach of Kung et al.'s works
well when instance variables are scalar and when symbolic
execution can be completed successfully [14]. However, their
technique fails to produce any useful information when these
assumptions do not hold. This is in contrast with our ap-
proach, which always produces information useful to testers
as we explain in Section 2. An additional disadvantage of
their approach is that it does not consider possible depen-
dencies among instance variables in the preconditions on
method execution. For instance, if a precondition on the ex-
ecution of a given path includes even a very simple predicate
of the form (x < y), where x and y are instance variables,
their approach fails to take this predicate into account when
constructing method sequences. Our approach takes into
account all predicates appearing in methods' preconditions
and postconditions when performing sequence generation.

Some authors tackle the issue of class test automation from
a di�erent viewpoint, mostly concerned with the problems
related to the generation of sca�olding code [16, 11]. Those
approaches start from the tester's knowledge of the source
code and seek to generate automatically drivers and stubs
for the CUT. Because these techniques are concerned with
the automation of the execution of tests, rather than their
generation, they are complementary to the technique pre-
sented in this paper.

9. CONCLUSIONS
In this paper we reported on an approach for the automatic
generation of test cases for testing of classes. The results of
our investigations are quite promising. Our approach seems
to be quite powerful in that the test cases we generate au-
tomatically can detect faults due to the combined e�ects of
method invocations on the object state. Here we explained
in detail how we detect one such fault in the CoinBox exam-
ple. An additional advantage when dealing with large classes
is that our approach can work incrementally by �rst generat-
ing a subset of test cases; a developer can then provide addi-
tional speci�cations (e.g., preconditions and postconditions)
in order to complete the test case generation process. Fi-
nally, our approach is a generative technique. Consequently,
it does not require code instrumentation to ensure the ade-
quacy of the generated test cases since coverage is granted
by construction.

The applicability of the approach has been initially evalu-
ated by examining a large set of case studies provided by
our industrial partners. In particular, we checked manually
the frequency of occurrences of constructs that cannot be
analyzed automatically using our framework. Although dif-
�cult to quantify, the results of these informal investigations
are quite promising: most of the code we examined does not
contain constructs that would prevent the application of our
techniques. Empirical studies with available toolset compo-
nents con�rm our preliminary observations. We intend to
conduct much more extensive experiments as soon as we
complete our tool for the automatic generation of method
sequences. The goal of our experiments is to evaluate quan-
titatively the industrial applicability of our framework.

We are also investigating the possibility of extending our
framework to the case of classes containing instance vari-
ables that are objects. In order to manage object instance
variables, we must re�ne our notion of def and use sets for
these variables. This extension will allow us to transition
smoothly from unit to integration testing of classes.

10. REFERENCES
[1] S. Barbey, D. Buchs, and C. P�eraire. A theory of

speci�cation-based testing for object-oriented
software. In Proceedings of EDCC2 (European
Dependable Computing Conference), Taormina (Italy),
October 1996, Lecture Notes in Computer Science
1150, pages 303{320. Springer-Verlag, 1996.

[2] H. Y. Chen, T. H.Tse, F. T.Chan, and T. Y.Chen. In
black and white: an integrated approach to class-level
testing of object-oriented programs. ACM
Transactions on Software Engineering and
Methodology, 7(3):250{295, July 1998.

[3] M. Clerici and L. Mera. Esecuzione simbolica per
l'analisi di sistemi critici. Laurea's thesis, Politecnico
di Milano, 1999. (in Italian).

[4] A. Coen-Porisini, F. De Paoli, C. Ghezzi, and
D. Mandrioli. Software speci�cation via symbolic
execution. IEEE Transaction on Software
Engineering, SE-17(9):884{899, September 1991.

47

[5] R.-K. Doong and P. G. Frankl. The ASTOOT
approach to testing object-oriented programs. ACM
Transactions on Software Engineering and
Methodology, 3(2):101{130, April 1994.

[6] E. D�usterwald, R. Gupta, and M. L. So�a. Rigorous
data
ow testing through output in
uences. In
Proceedings of the Second Irvine Software Symposium,
pages 131{145, Irvine (California), March 1992.

[7] Edison Design Group. http://www.edg.com, August
1999.

[8] M. J. Harrold, J. D. McGregor, and K. J. Fitzpatrick.
Incremental Testing of Object-Oriented Class
Structures. In Proceedings of the 14th International
Conference on Software Engineering, pages 68{80,
Melbourne (Australia), May 1992.

[9] M. J. Harrold and G. Rothermel. Performing data
ow
testing on classes. In 2nd ACM-SIGSOFT Symposium
on the foundations of software engineering, pages
154{163, New Orleans, LA (USA), December 1994.

[10] L. Hatton. Safer C : Developing Software for
High-integrity and Safety-critical Systems.
McGraw-Hill, 1995.

[11] D. Ho�man and P. Strooper. ClassBench: A
framework for automated class testing. Software
Practice and Experience, 27(5):573{597, May 1997.

[12] P. Jorgensen and C. Erickson. Object-oriented
integration testing. Communications of the ACM,
37(9):30{38, September 1994.

[13] S. Kirani. Speci�cation and Veri�cation of
Object-Oriented Programs. PhD thesis, University of
Minnesota, Minneapolis (Minnesota), December 1994.

[14] D. Kung, J. Gao, P. Hsia, Y. Toyoshima, C. Chen,
Y.-S. Kim, and Y.-K. Song. Developing and
oject-oriented software testing and maintenance
environment. Communications of the ACM,
38(10):75{86, October 1995.

[15] J. D. McGregor. Constructing functional test cases
using incrementally de�ned state machines. In
Proceedings of the 11th International Conference on
Testing Computer Software, Washington DC (USA),
June 1994.

[16] G. C. Murphy, P. Townsend, and P. S. Wong.
Experiences with cluster and class testing.
Communications of the ACM, 37(9):39{47, September
1994.

[17] A. Orso. Integration Testing of Object-Oriented
Software. PhD thesis, Politecnico di Milano, Milano,
Italy, 1998.

[18] A. Orso. A framework for testing object-oriented
classes. Technical report, Politecnico di Milano, 1999.

[19] A. Orso, F. Saini, and N. Trevisan. Un algoritmo per
il calcolo di coppie de�nizione-uso interprocedurali.
Technical report, Politecnico di Milano, 1999. (in
Italian).

[20] S. Owre, J. Rushby, N. Shankar, and F. von Henke.
Formal veri�cation for fault-tolerant architectures:
Prolegomena to the design of PVS. IEEE
Transactions on Software Engineering, 21(2):107{125,
February 1995.

[21] W. Pugh. The Omega test: a fast and practical integer
programming algorithm for dependence analysis.
Communications of the ACM, 8:102{114, August 1992.

[22] G. Rothermel and M. J. Harrold. Selecting regression
tests for object-oriented software. In International
Conference on Software Maintenance (ICSM94),
pages 14{25, Victoria, British Columbia (Canada),
September 1994.

[23] J. Rushby, S. Owre, and N. Shankar. Subtypes for
speci�cations: Predicate subtyping in PVS. IEEE
Transactions on Software Engineering, 24(9):709{720,
September 1998.

[24] A. L. Souter, L. L. Pollock, and D. Hisley. Inter-class
def-use analysis with partial class representations. In
Proceedings of the ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and
Engineering PASTE'99, Toulouse (France), September
1999.

[25] C. D. Turner and D. J. Robson. The state-based
testing of object-oriented programs. In International
Conference on Software Maintenance, pages 302{310,
Montr�eal, Quebec (Canada), September 1993. IEEE
Society Press.

48

