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Abstract: We develop three auction-based pricing and allocation solution methods for 
the case where a capacity-constrained online service provider offers multiple classes 
of unique, one-time services with differentiated quality. Consumers desire exactly 
one of the many service classes offered. We call such a setting a vertically integrated 
online services market. Examples of these services are webcasting of special events 
over the Internet, provision of video-on-demand, and allocation of grid computing 
resources. We model the pricing and allocation decision faced by firms in such a setting 
as a knapsack problem with an added preference elicitation dimension. We present a 
variety of computational solution approaches based on adaptations of the traditional 
greedy heuristic for knapsack problems. The solution approaches vary in efficacy 
depending on whether bidders are restricted to bid in one service class or allowed to 
bid in multiple service classes, as well as on the overall variability of the demand. In 
the case bidders can bid in multiple classes but are interested in consuming only one 
service class, a direct application of the heuristics developed for the single service 
case results in a nonfair allocation. We develop a novel data structure to eliminate the 
unfair allocation while maintaining the original computation complexity of the simpler 
setting. The paper contributes by presenting a menu of auction clearing mechanisms 
for selling vertically integrated online services.

Key words and phrases: auction-based pricing, online services, service classes, service 
computing, service pricing.

We consider the problem of pricing and providing vertically integrated online ser-
vices delivered through the Internet. A vertically integrated service setting arises 
when consumers may have interest in several similar services, differing perhaps only 
in their quality levels, but are interested in consuming only one service. An example 
of vertically integrated services is the interactive webcasts of concerts, high-profile 
interviews, and sporting events such as international soccer and cricket matches, of-
fered in text, audio, or full audio/video in a variety of bit rates, or even interactive 
format. Typically, vertically integrated products are offered to differentiate and capture 
a wider market base by creating different quality versions of the same product [10, 
20]. For such multimedia content-type services, we assume that the capacity provider 
is also the content owner and distributor. If that is not the case, we can maintain the 
structure of our results by simply assuming that the capacity provider factors in the 
appropriate licensing fees in his or her reserve price.



Auctioning Vertically Integrated Online Services     67

While immense strides have been made in developing and utilizing technical ad-
vancements of such technology, the analysis and understanding of dynamic pricing and 
allocation approaches required to facilitate emerging markets for vertically integrated 
digital services are still in nascent stages.

We consider the case where a consumer would like to purchase only one of multiple 
quality differentiated services that are offered based on his or her preferences and 
budget. Despite recent technological advances, the lack of proper mercantile processes 
and associated preference elicitation mechanisms still precludes multiple quality 
differentiated services being widely offered. Typically, a single (best-effort) level of 
service is the only option available for consumers even when the desired quality of 
service could potentially be delivered in a given service class. Further, the wide un-
certainty in demand for unique one-time services coupled with the lack of economic 
incentives at the provider’s end makes it difficult to justify procuring server capacity 
to serve all customers at the desired service level.

We propose an auction mechanism and develop a series of solution methodolo-
gies that allows a service provider to price and allocate multiple services, each at 
multiple quality levels, in a way that allocates the computational resources fairly to 
its customers.

We expect our approach to be applicable to a variety of other digital service markets. 
These include:

	 1.	 Computational Grids and Peer-to-Peer (P2P) Networks—Consider the case of 
a commercial storage grid operated by Kontiki.com. The grid operator utilizes 
hard drive storage on networked PCs owned by consumers. The total capacity 
available to sell is variable over time and the consumers may have “hard needs” 
for immediate storage as well as some “soft needs” based on anticipated us-
age. The flexibility in consumers’ needs creates a vertically integrated market 
where total storage capacity available is constrained and the total demand at 
a given time establishes an appropriate clearing price. Similarly, consider a 
P2P bandwidth sharing market that can be facilitated by technologies such as 
BitTorrent (www.bittorrent.com). The BitTorrent framework uses a part of a 
consumer’s upstream bandwidth in exchange for downloading shared content. 
An auction-based vertically integrated market may be facilitated in this environ-
ment when a consumer might be willing to share variable amount of upstream 
bandwidth depending on the price [3, 13]. Bapna et al. [1] discuss how the 
bids can be specified in such a setting. The downloaders can bid for different 
bundles of data rates or, in the case of Kontiki.com, different amounts of fixed 
and variable storage they are renting. The capacity constraint corresponds to 
the total amount of storage and bandwidth a sharer is willing to provide to the 
P2P network.

	 2.	 Business-to-Business (B2B) Video-on-Demand (VOD) Content Shelf Space—
The issue of optimally managing the server capacity, or the “content shelf 
space” as it is referred to in the VOD industry, is also very important for firms 
that develop and deploy VOD servers in digital cable markets. Firms in these 
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markets serve as intermediaries between content providers, such as ESPN and 
Disney, and consumers in specialized, high-bandwidth digital cable markets. 
In today’s environment, such firms have to consider what shows to carry in 
HDTV, with its variety of resolution levels and what to carry in SDTV format, 
and what to carry in both formats. This creates the vertically integrated service 
structure in this B2B market. The VOD server’s capacity is the critical link 
in maintaining the desirable service quality level with broadband broadcast 
technologies.

	 3.	 Asynchronous Transfer Mode (ATM) Networks—In an ATM network, quality 
of service refers to specific traffic-handling parameters that are adhered to for 
a given circuit. Essentially, it allows each individual circuit and traffic type to 
receive the support it needs, hence allowing voice, video, and data traffic inte-
gration over a single network. Because of the inherent flexibility provided by 
the virtual circuit concept, managing an ATM network efficiently is a challenge 
because of the enormous number of choices available for setting the various 
operational parameters. Although time- and service-sensitive accounting and 
billing are more appealing to customers, carriers and service providers tend 
to provide “flat rate” ATM services, which typically lead to an inefficient al-
location. Our work can be used to derive an “optimal” bandwidth allocation 
plan together with a pricing system, for real-time delivery of services such as 
videoconferencing and other digital streams.

Table 1 summarizes the two key components of the problem structure for the above-
mentioned examples. Entries in this table exemplify vertically integrated services 
where a service provider offers multiple service quality choices. Users select one of 
these. Each row also specifies the corresponding resource constraint.

We develop a series of computational methods that can be used by providers offering 
vertically integrated service to achieve the following:

	 1.	 a demand collection mechanism that allows the customers (consumers or other 
firms) to bid for the services,

	 2.	 a pricing mechanism that determines the final prices at each service level,
	 3.	 a capacity allocation mechanism that allocates the necessary server resources 

to customers in each service level,
	 4.	 the determination of the service mix to be provided with guaranteed quality 

levels at the server side, and
	 5.	 an optimization mechanism to maximize the total revenue from the available 

service mix for a given server capacity.

We designate (1)–(5) as a real-time computational infrastructure for revenue-
maximizing content providers. For analytical tractability, we assume that there are no 
network delays and last mile problems. For instance, content providers may have cach-
ing arrangements with companies such as Akamai to push their content to the edge of 
the network. Our pricing scheme allocates the available server capacity among various 
competing services requiring different quality metrics. Note that in an environment 
where quality of service is not important, a best-effort model suffices and pricing of 
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services is not an important consideration. We also do not consider a time dimension 
to the demand. These will serve as natural extensions in the future.

We formulate such a resource allocation problem as a knapsack problem with two 
additional constraints. Users have values for the services offered and desire to be 
assigned a single service that consumes an exogenously specified amount of capac-
ity. The total number of services, and the service mix, offered is constrained by the 
server’s overall capacity. The first additional constraint imposes the structure of an 
auction-based pricing mechanism, while the second is an assignment constraint that 
ensures that a consumer is at most allocated one quality level for a given service. The 
structural impact of the auction constraint is that the contribution of an individual item 
to the knapsack is no longer static and independent of the other items. While knapsack 
problems have been applied to a wide variety of scenarios such as capital budgeting, 
cargo loading, and cutting stock, and a variety of efficient heuristics that perform well 
in practice are well known (see, e.g., [5, 15]), the two additional constraints of our 
problem restrict the straightforward application of these techniques.

Besides developing a novel market model for vertically integrated services, our 
computational infrastructure makes the following three major contributions. First, we 
modify the well-known greedy heuristics for the knapsack problem to account for the 
auction constraint for a nonvertically integrated service setting (where consumers are 
restricted to bidding in only one of the many quality-differentiated service classes). 
Second, we demonstrate that under different marginal valuation conditions, different 
knapsack heuristics perform better. Finally, we observe in the case of vertically inte-
grated services (where consumers are allowed to bid in multiple quality–differentiated 
service classes, but have an interest in consuming no more than a single class) that a 
direct application of the aforementioned heuristics results in a nonfair allocation (e.g., 
an allocation where a bidder may be served in a less preferred class even when he or 

Table 1. Resource-Constrained Vertically Integrated Services Arise in a Variety of 
Settings

	 Nature of vertically
Setting	 integrated services	 Resource constraint

Webcasting of 	 Different bit rate video	 Streaming server’s capacity
live events	 streams, audio streams, 	 to serve simultaneous
	 or textual commentary	 connections

P2P file sharing	 Variable upstream 	 P2P user’s storage and
	 bandwidth a user is 	 bandwidth
	 willing to share	

Video-on-demand 	 Distribution of HDTV,	 Video-on-demand server
content shelf space	 SDTV shows to be 	 streaming capacity
	 carried by syndicators
	 for resale	

ATM networks	 Voice, video, and data 	 Circuit capacity
	 traffic services	
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she has a bid higher than a successful bidder in his or her preferred class). Moreover, 
ensuring that the assignment constraint is binding (i.e., consumer gets service in at 
most one quality) is computationally expensive. To overcome these challenges we 
construct a novel data structure that allows us to adapt the techniques we develop for 
the simpler nonvertically integrated case.

Background

There are three primary types of economic resource allocation mechanisms—capacity 
allocation, posted price, and auctions and negotiations. Capacity allocation mecha-
nisms usually are the most efficient mechanisms if the type of individual customers, 
and thus their needs, can be identified by the controlling entity. In general, posted 
price mechanisms can be considered as the mathematical dual of capacity allocation 
mechanisms [8]. Under this mechanism, the general distribution of customer types is 
known, but individual customer type is not identifiable. In other words, the aggregate 
demand curve is known. Even though posted price mechanisms can dynamically 
compute the prices based on changing demand (see, e.g., [9]), these mechanisms are 
more effective when a relatively long-term demand trend is available.

We use mechanisms based on auctions and negotiations because we are considering 
the allocation of resources for dynamic and unique one-time products and services 
and their associated demands. The demand for such products may not be assessable 
in advance and, thus, computing posted prices may be extremely difficult. While the 
theoretical properties of such mechanisms have been discussed extensively in Bapna 
et al. [1] as well as in Bikhchandani and Mamer [4], we develop tools and techniques 
to implement such mechanisms in real time.

Our work follows Pinker et al.’s [18] call for leveraging the computational power of 
online auctions to auction complex goods and services that would otherwise be sold 
inefficiently using a posted price mechanism. Our context of dynamic and unique 
one-time products and services fits us in the upper right quadrant of Pinker et al. [18, 
p. 1460, figure 1], namely, high coefficient of variation of consumers’ valuations and 
rarity of goods.

Typically, ignorance of what price to post is a reason for negotiating or holding an 
auction. Rothkopf and Harstad [19] provide a behavioral reason for holding auctions 
by asserting that one of the critical reasons for the use of bidding is that the formality 
of the auction process provides legitimacy in a way that the other economic means can-
not. Wang [22] compares auctions with posted prices in a simplified setting under the 
assumptions of the independent private values model. Her central result is that auctions 
are preferable if the marginal revenue curve is steep, or more precisely if the demand 
is inelastic. The nature of the Internet-based services under consideration suggests 
that individuals’ valuations of webcast events are likely to be highly dispersed. For 
instance, a die-hard fan of a particular rock star or a sport such as cricket would have 
a different valuation for a particular webcast than a moderately interested individual, 
whose valuation in turn would be entirely different from a person who is nonchalant 
about the events under consideration. This distribution of valuations might be expected 
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to change drastically across time and events. For instance, the monetary valuation of a 
moderate fan—who does not want to interrupt a day at the office, preferring a textual 
ticker tape relaying running commentary—would not be equal to that of the die-hard 
fan for whom nothing but live audio and video would suffice. Wang [22] confirms the 
intuition that the more dispersed the value of an object or a service to the potential 
buyers, the more auctions are preferred.

Providers currently offer this kind of flexibility in service definition. The question 
is can we structure efficient customer-driven mechanisms that integrate the issues of 
pricing, quality, and service mix? The paper also contributes to the scant literature on 
auctions with variable supply. By this we mean that the total number of goods being 
auctioned is not known ex ante, but is determined as a part of the auction. Part of the 
reason for lack of research in this area perhaps is due to Lengwiler’s [14] negative 
result regarding lack of incentive compatibility in auctions of variable supply. Bapna 
et al. [1] explore the theoretical properties of a variety of market formulations in the 
context of pricing and allocation of unique, one-time digital products in the form of 
data streams. These range from allocatively efficient generalized Vickrey auction 
(GVA) to a multiple Vickrey auction (MVA). While MVA is not incentive compat-
ible, they show that it achieves bounded posterior regret [17] and can be solved in 
real time. Jones et al. [12] used simulation-based approaches to explore allocation in 
combinatorial settings. The interested reader is referred to deVries and Vohra [6] for 
a review of the combinatorial auction literature. We develop solution techniques that 
can be used to implement such a mechanism.

Model Formulation

Assumptions and Scope

For completeness, we first present a general model of allocating capacity under an 
uncertain, widely dispersed, and dynamic demand structure where the content pro-
vider’s objective is to maximize its revenue. This model, derived from Bapna et al. 
[1], focuses on the theoretical properties of a variety of market formulations in the 
context of pricing and allocation of unique, one-time digital products in the form of 
data streams.

We assume that customers have values for services that are unknown to the provider. 
Further, we assume that the provider will use some price-setting mechanism and some 
customers may be excluded from receiving the service based on the prices (too low) 
they are willing to pay. We first examine the general model in detail and subsequently 
discuss specific price-setting mechanisms and their properties.

Let there be i = 1, . . . , I consumers in the market for j = 1, . . . , J different services 
offered by a provider. Let V

ij
 denote customer i’s valuation for service j. Let C repre-

sent the total bandwidth, or capacity, and let C
j
 be the capacity consumed by service 

j. Finally, let x
ij
 represent the decision variables where x

ij
 = 1 if customer i receives 

service j, and x
ij
 = 0 otherwise.
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The General Model

We assume that, given a price-setting mechanism and the negligible marginal cost of 
offering the type of digital services under consideration, a provider’s objective is to 
maximize revenue. Let p

ij
 be the price charged to customer i for a particular service 

j, where p
ij
 is unknown and determined by the price-setting mechanism. The capacity 

allocation, revenue-maximization problem is formulated as

Maximize 

	

z x pij ij
ji

= ∑∑
	

(1)

subject to 

	
p x V i I  j Jij ij ij≤ ∀ = ∀ =1 1,..., , ,...,

	
(2)

	

x i Iij
j

≤ ∀ =∑ 1 1,...,

	
(3)

	

x C Cij j
ji

≤∑∑
	

(4)

	
xij = { }0 1, .

	
(5)

Model Characteristics

Note that this is a special case of the general 0–1 multiple products knapsack problem 
with an additional constraint (2) that represents the participation constraint. Equation 
(2) ensures that if x

ij
 = 1, the price p

ij
 charged to a customer i for service j is less than 

or equal to his or her value for that service V
ij
. Equation (3) ensures that the bidders 

get an allocation in at most one service class. Equation (4) is a typical Knapsack 
capacity constraint.

A unique feature of this model, which prevents the application of conventional 
optimization procedures, is that it requires a price-setting mechanism. Atypically, 
there are two unknown quantities x

ij
 and p

ij
 in the revenue-maximizing objective 

function represented by Equation (1). Furthermore, the customer valuations V
ij
 are 

private information. Therefore, to satisfy the participation constraint, the provider 
has to create a mechanism that reveals this information.

Given the one-time nature of the services and the associated unknown and widely 
dispersed demand for such services, a posted pricing mechanism may not be optimal 
[22]. Furthermore, because there is a need to reveal the customer’s private valua-
tions V

ij
, an auction mechanism seems to be an appropriate choice for price setting. 

In an auction, a customer i will bid1 B
ij
 ≤ V

ij
, where B

ij
 is customer i’s declared bid 

for service j.
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Auction Mechanisms

In our search for an optimal auction mechanism, we restrict our attention to a special 
class of such mechanisms—direct revelation mechanisms. In direct revelation mecha-
nisms, bidders are asked to announce their valuations directly and the seller commits 
him- or herself to using rules for allocating the object and charging the buyers. The 
direct revelation mechanisms ensure both that the buyers will be willing to participate 
and that each will find it in his or her interest to announce his or her true valuation. 
Nobel laureate William Vickrey [21] proposed one such mechanism. In his seminal 
work, Vickrey noted that when a second-price auction is used—that is, the high bidder 
wins but pays only the price of the second-highest bidder—each bidder has a dominant 
strategy of bidding his or her true valuation, B

ij
 = V

ij
.

In the following section, we formulate the resource allocation and pricing problem 
based on the principles of second-price auctions [21]. The multi-unit version of the 
second-price auctions that we propose has the desirable property of setting a uniform 
price for a given service class and as such is perceived to be fair for a given service 
class encouraging truth-telling behavior.

Second-Price Auction as a Price-Setting Mechanism

Here we consider a multi-unit analog of the second-price sealed-bid Vickrey auction 
for single items (MVA) [21]. The Vickrey auction adopts a uniform pricing scheme 
in which each accepted customer is charged a price equal to the value of the highest 
rejected customer for a particular service j. Let V

j
 represent an ordered list of values 

for service j such that V
1j
 ≥ V

2j
 ... ≥ V

Ij
. Further, let B

j
 represent an ordered list of bids 

for service j such that B
1j
 ≥ B

2j
 ... ≥ B

Ij
.

Under the MVA pricing mechanism, the general model (1–4) can be formulated 
as

Maximize 

	

z x pij j
ji

= ∑∑
	

(1a)

subject to 

	
p x B xj

i
ij i j ij= >



+min ,1 0

	
(2a)

	

x i Iij
j

≤ ∀ =∑ 1 1,...,

	
(3)

	

x C Cij j
ji

≤∑∑
	

(4)

	
xij = { }0 1, .

	
(5)
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The objective function is the same as in the general case except that we drop the 
subscript i from p

ij
 because MVA is a uniform pricing mechanism. The participation 

constraint (2a) ensures that the price accepted for a particular service class is equal to 
the largest rejected bid for that class—hence the term B

i+1, j 
. This equality introduces 

dependencies between the bids of different individuals in the form of positive (one-
sided) externalities. Each new lower value customer who is accepted into a particular 
service class lowers the price for all previously accepted customers of that class.

Nonvertically Integrated Services Solutions

In this section, we examine the base case and assume that a consumer bids in only one 
service class or, alternatively, if a consumer bids in multiple classes, he or she is willing 
to buy in all the classes simultaneously. As mentioned earlier, such a situation exists 
where different service classes reflect different products or customers are explicitly 
asked to bid in only one class. In a webcast application, this would be the case when 
a consumer chooses one of the classes (with a specified bit rate, for example) and 
bids only at that level. Mathematically, assuming that consumers bid in only one class 
implies that the assignment constraint (3) of the MVA model is ignored.

The analysis in this section will serve as a stepping-stone to the analysis of the next 
section, in which the consumer can simultaneously bid at different service levels and 
the system appropriately allocates the service to the consumer in only one of the levels. 
In a webcast application, this means that the consumer can specify a portfolio of bids 
for different bit rates and options of text and audio, but the system will guarantee that 
the consumer only gets one of the options in the fairest possible way.

Enumeration Procedure with Minimal Cardinality Bundle

In the case of a single-service environment, a simple scan procedure along with mini-
mal cardinality bundling as described in Bapna et al. [1]2 can be used to construct 
an algorithm to optimally solve all cases. Table 2 illustrates an example of such an 
approach.

Intuitively, because the bids in a given class are sorted in nonincreasing order, 
accepting an additional consumer’s bid may reduce the price for everyone under 
uniform-pricing approach. This may result in reducing the revenue with an additional 
customer because the additional gains from the customer may be lower than the loss 
due to lower prices for other consumers whose bids were already in the acceptance 
list. The minimal cardinality bundle ensures that when such an instance occurs, the bid 
that reduces the overall revenue is bundled with other bids in the sorted list until there 
is positive revenue gain, if feasible. Then the bids in a bundle are either considered all 
together or none at all. For example, in Table 2, it is not in the provider’s best interest 
to offer service to all customers between 1 and 8. The service provider’s revenue will 
go down by $1 from $9 to $8 if he or she accepts bidder 2 in addition to bidder 1. 
Alternatively, consider the $15 revenue the service provider gets from accepting the 5 
high bidders. Accepting bidder 6 will result in revenue dropping to $12, and accepting 
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bidder 7 will yield total revenue of only $14. It is only after the service provider accepts 
bidder 8 can he or she improve upon accepting just the top 5. In other words, customer 
2 will receive service if and only if customer 3 receives the service and customer 7 
will receive the service if and only if customer 8 receives the service. As shown by 
Bapna et al. [1], a minimal cardinality bundle (i.e., where the customers are bundled 
in such a way that together their marginal revenue contribution is positive) allows the 
use of a simple scan procedure to decide revenue-maximizing allocation.

However, when capacity has to be allocated among several different services, the 
knapsack structure of the problem becomes apparent, and so does the issue of fairness3 
between service classes. It is trivial to see that the fairness is guaranteed within a class 
under the assumption that the bidder bids in at most one service class and Vickrey 
prices. The knapsack structure of the multiple-service case indicates that a decision 
maker has to decide which services to offer and how many customers receive each of 
the services at what price. Before we discuss the solution techniques, it is useful to 
review the preprocessing steps—that is, collecting, sorting, and bundling of the bids 
in each service class. The idea behind applying these preprocessing steps is that if it 
is not optimal to consider a bid in a certain service class (by virtue of its causing a 
decrease in revenue) when that class is, hypothetically, the only service class, then 
that bid will not be considered when multiple service classes are being offered. Be-
cause the computational costs of solving the knapsack problem are dependent on the 
number of bids, preprocessing helps reduce such costs. Thus, an essential step is to 
apply the simple scan procedure along with minimal cardinality bundling of Bapna 
et al. [1] to each individual service class to obtain a revised, truncated row bid matrix. 
The combined effect of bundling and truncation gives us a ranked i ] × j matrix that 
contains “bundles” derived from the individual bids, where i ] represents the truncated 
set of bids containing only those bids that can potentially have a positive marginal 
impact on total revenue.

It is well known that the knapsack problem is NP (nondeterministic polynomial-
time)‑hard. However, in our framework, it is reasonable to expect that the number of 
consumers bidding will far outnumber the number of different service classes that a 
provider offers—that is, I >> J. Combining this with the special structure of the bid 
(knapsack elements) values in each service class allows us to construct some fast 
solution techniques, including a polynomial optimal solution technique.

Using the special value dependence structure due to MVA, we can construct an 
enumerative polynomial mechanism for optimally computing the allocation and 
prices. However, the computational costs of such a technique may be unacceptable for 
real-time applications in electronic markets. Therefore, we further explore heuristics 
in order to provide a decision maker with a portfolio of fast solution techniques that 
trade off accuracy and computational time.

Heuristic Solution Techniques

We begin by considering the most popular approach to knapsack problems—namely, 
the greedy algorithm—which is based on choosing the elements in nonincreasing 
value-to-weight (bids-to-capacity) ratio [15]. The heuristic is intuitively appealing 
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since it essentially prioritizes elements such that the elements that provide the highest 
value at the lowest cost are included first. Technically, the heuristic exploits the fact 
that the solution x\ of the continuous relaxation of the problem has only one fractional 
variable. To obtain a feasible solution, we just set this fractional variable to 0. It is 
well known that in the worst case, this procedure can be arbitrarily bad. For instance, 
suppose we have two objects, a (say, a text-based baseball score subscription) with a 
value and weight of 1 and b (say, a video-streaming baseball service) with a value and 
weight of 100 and a knapsack capacity of 100. Since the V/C ratios are both 1.0, the 
greedy algorithm might arbitrarily choose object a resulting in a greedy solution with 
a knapsack value of z′ (the knapsack value by applying a heuristic) that is 100 times 
worse than the optimal. We can reduce this worst-case performance ratio to 1/2 if we 
choose the greater of z′ and z(x\ = {b}), the value considering the critical object alone. 
This worst-case scenario would arise if both objects were equally valued.

Under our formulation, we have to operationalize the value-to-weight ratio of bids 
that are not independent of each other, unlike in traditional knapsack settings. For 
example, with MVA, each accepted lower bid lowers the price for all preceding higher 
bids, but could aggregate to higher revenue. Because the impact of each bid is not 
solely dependent on the bid itself, we develop an alternative version of the traditional 
knapsack value-to-weight (V/C) ratio–based greedy heuristic. The alternate heuristic 
considers the marginal revenue (MR) contribution of each bundle, and uses the MR-
to-weight (MR/C) ratio, in contrast to the traditional value-to-weight ratio.

An interesting property of the well-documented V/C ratio–based greedy heuristic 
is that it guarantees fairness between classes. By design, the heuristic picks up the 
highest V/C value among all of the candidate classes, and cannot allocate to a lower-
valued bidder in a class, while not allocating to a higher one. In contrast, the MR/C 
procedure that we develop does not guarantee a fair allocation because the marginal 
value depends on the difference in price that an additional bid imposes and the number 
of bids that were higher than the current bid under consideration. In other words, it is 
possible that for a given set of bids in two different classes, we may have a situation 
where (V

1
/C

1
) > (V

2
/C

2
) but (MR

1
/C

1
) < (MR

2
/C

2
). In such a situation, it is guaranteed 

that revenue generated by using the MR/C technique will be equal to or higher than 
the revenue being generated by the V/C technique. However, it is easy to see that 
MR/C may not be fair; for example, in the aforementioned case, if the capacity is 
exhausted after including the second bid (using MR/C), then the first bid does not 
get in even though the bid itself specified higher willingness to pay for every unit of 
capacity consumed. We explain the nuances of using MR/C (see [15] for V/C), and 
then perform a comparative analysis of these two versions of the greedy heuristic in 
the next subsection. Our objective is to see under what conditions of demand distribu-
tions should a seller adopt one of these two versions.

The Iterative Greedy Approach

In this subsection, we focus on providing details of the MR-greedy and a forward-
moving approach that improves the performance of MR-greedy. We also outline the 
necessary preprocessing steps that are necessary to avoid incorporating the bids that 
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provide nonpositive marginal revenues in the solution. As we will see below, both 
the preprocessing steps and the forward-moving approach to improve the heuristic 
performance are also applicable to the more traditional V/C-greedy procedure that we 
adapt to the uniform pricing environment.

Let us refer back to Table 2. A typical greedy procedure in a typical knapsack setting 
would ignore customer 2’s bid and move on to customer 3 if marginal revenue was the 
value metric. However, the MVA structure imposes an additional ordering constraint 
that forbids us from doing that. To smooth the effect of nonmonotonic MR values of 
individual bids, Bapna et al. [1] use bundles of individual bids, thereby providing a 
positive MR contribution whenever possible. The value of creating bundles is ampli-
fied in the multiple service cases while applying greedy or greedy-like procedures to 
solve the knapsack problem.

It is instructive to pause and differentiate between a general knapsack greedy algo-
rithm and the implementation of greedy under our formulation. Let a current element 
be defined as the smallest indexed element in a service class that has not been included 
in the knapsack. Then the greedy procedure in our formulation selects the largest mar-
ginal revenue from the current elements in all the service classes. This is, again, due 
to the dependency of bids in a service class and the resulting restriction that a higher 
indexed element in a service class cannot be included unless all of the lower indexed 
elements have been included. Therefore, as opposed to the greedy implementation in 
a general knapsack problem where all the elements are considered in nonincreasing 
value-to-weight ratio, in our framework, the highest available MR-to-capacity ratios 
in all of the service classes are considered in each step. In other words, in each step, 
there are a maximum of J elements from which the highest MR-to-capacity is included 
in the knapsack.

Let x\
g
 denote the solution obtained from procedure greedy. The question arises, “can 

we improve on procedure greedy?” While the worst-case scenario is well known for 
a general knapsack problem, it is unlikely to occur in our scenario where, by design, 
each service requirement is much smaller than the knapsack size. In addition, since the 
value of items already in the knapsack is changing as more service requests are added 
in a nonlinear manner, the tough cases where a greedy procedure will not perform well 
have different characteristics. In the next section, we illustrate these worst-cases both 
analytically and numerically. Based on the characteristics of these worst-cases, we 
provide an improvement of marginal revenue–based greedy (MR-greedy) technique. 
A pseudocode for MR-greedy is provided in Figure 1.

Worst-Case Scenarios

Without loss of generality, suppose there are two service classes, each with an individual 
capacity requirement of 1. The tough cases will occur if the bid pattern presented in 
Panel A of Table 3 is observed for any δ > 2e, where δ, e are infinitesimal fractions 
and K is a large integer. The associated MRs that the procedure greedy would utilize 
are presented in Table 3, Panel B.

In this case, if we have N units of capacity, then the optimal solution is NK/2 whereas 
the greedy solution is K + (N – 1)δ, which tends toward K as δ → 0. Thus the MR-
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greedy bound is 2/N. Intuitively, the worst case occurs when the sorted bids have a 
structure where marginal revenue is small for a few bids at the beginning of the list in 
a given class (as compared to other classes) followed by a large number of bids with 
high marginal revenue. Such a case may happen when, for example, there is a sudden 
drop in a bid for a given class and then all the other bids are the same (as represented 
in Table 3, Panel A). The drop in the bid creates small marginal revenue initially since 
the price for everyone who is currently winning drops due to the uniform Vickrey 
pricing rule. Note that the marginal revenue may be zero in the worst case; that is, 
no other bids may be considered in that particular class as long as there are bids with 
positive marginal revenues in other classes. However, if the rest of the bids in the class 
are the same as the “offending” bid, the subsequent marginal revenues will be equal 
to those bids themselves, which may be quite high (because price will no longer be 
changing). The structure of the worst case provides an intuitive solution to improve 
on the basic greedy heuristic that is described in the next subsection.

Improving the Basic Greedy Solution

What if we were to utilize a procedure where after running the greedy, we modify 
the greedy solution by including one more element in each class than the greedy 
solution and then run greedy with the remaining capacity? Let us call this procedure 
greedy_plus_1. Note that this addresses the problem of getting stuck in a given class 
by “peeking” ahead. Intuitively, a greedy_plus_n procedure can be derived from the 
worst-case behavior of greedy approaches to the knapsack problem described above. 
In such cases, n is the number of items that are included beyond the best solution 

procedure greedy ( capacity, i ] )

begin

	 x\ = ∅	 // initialize vector representing solution of accepted bids to NULL
	 i ] = ∅		 // initialize vector representing number of bidders accepted in each   
			   class to NULL
	 do

		  begin

			   find the bid bundle that has the highest value to weight ratio
			   x\ = update_solution( current_bundle )

			   update_ i ]

			   update_capacity_consumed

		  end

	 while  capacity_available

end

Figure 1. Pseudocode for Procedure Greedy
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obtained so far. The last item(s) may also have been arbitrarily left out in preference for 
an equivalent MR/weight ratio bid having a higher value. It is straightforward to show 
that the worst-case bound of this procedure improves to 3/N.4 Note that, although for 
the greedy approach, the worst-case bound is still infinitely bad, for the greedy_plus_n 
approach, our tough cases are the worst cases and, hence, represent worst-case bounds. 
Figure 2 provides the pseudo-code for the greedy_plus_n approach.

The greedy_plus_n procedure essentially iterates through the various service classes, 
fixing the number of bids accepted for class j, and then reapplying greedy with the 
reduced capacity to the remaining classes (j ] – j), until there is no improvement. 
Proposition 1 presents its worst-case time complexity:

Proposition 1: In the worst case, greedy_plus_n takes O(I3) time, where I is the 
total number of consumers who place a bid.

Proof: First, note that for a given value of n the worst case for greedy_plus_n, from 
the perspective of complexity, occurs when the solution is to include all bidders; how-
ever, each application of greedy_plus_n improves the solution by including exactly 
one more element. In other words, each iteration adds at least two more bidders to the 
best solution: one by design5 and one to improve the existing solution. Therefore, a 
maximum of I/2 iterations of greedy are required—that is, for a given n, greedy_plus_n 
takes O(I2) time since greedy takes O(I) time.

Table 3. Worst-Case Scenario Analysis

Panel A: Tough case bids

	 Bids

Class	 1	 2	 3	 4	 5

1	 K	 K	 K/2 + e	 K/2	 K/2	 …
2	 d	 d	 d	 d	 d	 …

Panel B: MRs for tough case 

	 Marginal revenues

Class 	 1	 2	 3	 4

1	 K	 2ε	 K/2 – 2e	 K/2	 …
2	 d	 d	 d	 d	 …

Notes: The bidding pattern observed in Panel A, will lead to the set of marginal revenues depicted 
in Table 3b. Because d > 2e, the boldface figure in Panel B represents a hump that acts as a barrier 
for simple greedy procedure. This suggests that in the best case the greedy procedure can only 
lead to a revenue that is some tiny fraction greater than K. On the other hand a greedy_plus_1 
algorithm will overcome the “hump” and lead to a revenue of 3/2K if the capacity was 3 or more 
generally NK/2 if the capacity is N.
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Next, the maximum number of iterations due to incrementing n are of the order of 
I. Therefore, in the worst case, the overall algorithm is guaranteed to stop in O(I3) 
time. Q.E.D.

To illustrate the solution using greedy_plus_n, consider the following example:

Numerical Example: The provider offers three different kinds of service classes—A, 
B, and C. Assume, for expositional simplicity, all classes to have an equal weight of 
unity. The total available capacity is nine units. Table 4 displays the complete solution 
process, including starting (sorted) bids, MRs, ranked and bundled i ] × j matrix with 
MRs, greedy solution, and the solutions achieved by the application on greedy_plus_1. 
In Table 4, the notation ab is used to denote a bundle with value-to-weight ratio a, 
and cardinality b. The boldface figures in the table indicate the consumers chosen by 
greedy and the italicized boldface figures indicate the elements that are fixed during 
the application of greedy_plus_1.

To start with, 4 bundles are created: 1 for service A, 2 for service B, and 1 for service 
C. The application of greedy results in choosing 1 customer for service A, 3 for service 

procedure greedy_plus_n(capacity)

begin

	 x\ = x\g // Begin with the greedy solution

	 x\temp = ∅

	 do

		  for ctr = 1 to j ] // iterate through all service classes

		  begin

		  	 x\temp = x\i+1,ctr // force the next bundle in the current class to the  
				    solution

			   capacity = compute_remaining_capacity(x\ , ctr) //update capacity
			   x\temp = greedy(capacity, j ] - ctr) //solve greedy with remaining  
				    capacity and remaining classes
			   if  z(x\temp) > z(x\)  //if new solution better than existing solution,  
				    update solution

			   begin

				    improvement=1
				    x\ = x\temp

			   end

		  end

	 while improvement  //iterate until there is improvement

Figure 2. Pseudocode for Procedure Greedy_plus_n
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B, and 5 for service C with the picking order of A1‑B1‑C1‑B2‑B3-C2-C3-C4-C5. 
This yields the total revenue of 23.5. In our implementation, heuristic greedy_plus_n 
is applied to all of the service classes based on the solution obtained in the previous 
step. Therefore, in this case, greedy_plus_1 is applied to each service class one-by-
one. First, we take the number of customers chosen in service class A by the greedy, 
add one additional customer, and reduce the available capacity by the space taken up 
by these elements. Then, greedy is applied to rest of the customers with the adjusted 
capacity for the knapsack. The same process is repeated for service classes B and C. 
In this case, customers 1 and 2 in service class A are chosen first. Since customer 2 
is a bundle of 3 customers, the total available capacity is reduced to 5 units. When 
we apply greedy for rest of the customers, the solution is to choose 7 customers for 
service class A and 1 each from service classes B and C with the greedy picking order 
of B1-C1-A5-A6-A7. The resulting revenue is 26.5—that is, higher than greedy. Next 
we apply greedy_plus_1 to service class B, again starting from the greedy solution. 
The revenue from this is also greater than greedy. Finally we apply greedy_plus_1 to 
class C, which also results in higher revenue than greedy. However, the best solution 
from overall application of greedy_plus_1 is obtained when we apply it to class A. 
Therefore, at this stage, that solution is designated best solution so far for successive 
application of greedy_plus_1 or higher order of n.

In our example, the solution obtained by application of greedy_plus_1 to service 
class A is the optimal solution; however, in general, that may not be the case. Let the 
current solution obtained after the application of greedy_plus_1 be denoted by x\

c
. 

Because of the nonmonotonic nature of the marginal revenue curves for each of the 
service classes, we cannot be sure that it is sufficient to eliminate the optimality gap by 
including just one extra item into a service class. Horowitz and Sahni [11] describe a 
forward move consisting of inserting the largest possible set of new consecutive items 
into the current solution. When such a forward move is exhausted, the current solu-
tion obtained is compared with the best solution so far and a choice is made whether 
to make further forward moves or to backtrack. Using a similar approach, we further 
exploit the special structure of our problem, to create procedure greedy_plus_n, which 
is essentially the same as greedy_plus_1, with x\

temp
 = x\

i+k,ctr
 in Figure 2.

In general, because optimality of a given solution cannot be verified, several stopping 
criteria can be used. Furthermore, several other observations can be used to minimize 
computational load. While discussing the implementation details is beyond the scope 
of this paper, we present some observations.

First, note that if a fixed customer set at any point is a subset of a previously obtained 
solution, then fixing those elements and applying greedy for the rest of the capacity 
will duplicate the previously obtained solution. Therefore, such steps can be skipped. 
For example, if we tried to do another iteration of greedy_plus_1 on the solution 
obtained above, we will start with service class B (because all customers of service 
class A have already been chosen). Based on the current solution, we will fix the first 
2 customers in class B and apply greedy for the rest of the customers with a capacity 
of 7. The resulting solution will exactly be the same as obtained by the application of 
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greedy to all the customers and capacity. This is no surprise because B1 and B2 were 
part of the original greedy solution and hence choosing them and applying greedy to 
the rest of the customers and capacity reproduces the result. Thus, keeping a record 
of best solutions chosen at different stages of computation can reduce the number of 
steps in greedy_plus_n substantially.

In terms of stopping criteria, we chose a minimalist approach where if the application 
of greedy_plus_k+1 does not produce a better result, we stop. In other words, sup-
pose the best solution so far was obtained by applying an iteration of greedy_plus_1. 
We then apply another iteration of greedy_plus_1 with the new solution; if that does 
not improve the solution, we next apply greedy_plus_2 where 2 additional customers 
are chosen in each class. If greedy_plus_2 does not produce a better result, we stop; 
otherwise we continue.

Optimality Gap

In this subsection, we present some results for the performance of greedy and greedy_
plus_n as compared to the enumerative polynomial optimal solution technique men-
tioned in the subsection “Enumeration Procedure with Minimal Cardinality Bundle.” 
First, we present the performance of these heuristics as a function of problem size. 
The experiments were conducted with the following set of parameters. We tested with 
three service classes (J = 3). The number of initial bids in each class was kept the same, 
e.g., 20, 40, ..., in each class (I = 20, 40, ...). Capacity ratio C

1
 (e.g., video): C

2
 (e.g., 

audio): C
3
 (e.g., text) was fixed to be 4:2:1, with total capacity kept at five times the 

initial number of bids in a class. For example, if I = 20, then C = 100. Bidders’ valu-
ations are drawn from a uniform distribution. Our usage of the uniform distribution 
for the bidder’s valuation is consistent with the emerging experimental standard in 
combinatorial auction research, the Combinatorial Auctions Test Suite (CATS) database 
(see www.cs.ubc.ca/~kevinlb/CATS/). In addition, our settings are similar to other 
work that is designing futuristic markets. For instance, almost identical experimental 
settings for a knapsack Vickrey formulation, but in the context of sequential auctions 
of capacity, can be found in Ng et al. [16].

The reported results are the mean of five replications with each setting with the same 
input parameters for corresponding runs with different solution procedures. Figure 3 
graphically illustrates the improvement by applying the greedy_plus_n as compared 
to the greedy solution. In most cases, greedy_plus_n improves the greedy solution 
substantially. Overall, the average optimality gap using the greedy was about 2 percent 
as compared to 0.5 percent with greedy_plus_n.

Therefore, on average, greedy_plus_n produced 400 percent better performance 
with only a 50 percent increase in computational time. The worst-case performance 
of greedy during the 250 experiments was a 9.6 percent optimality gap versus 1.86 
percent for greedy_plus_n. Given the real-time computation requirements of electronic 
markets, the amount of computational time required is an important factor. Figure 4 
compares the performance of the three approaches with respect to computational time 
as problem size increases.
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Figure 3. Greedy Versus Greedy_plus_n

Figure 4. Comparison of Computational Times

For large problems, even the pseudo-polynomial optimal computation can take many 
minutes on a typical PC. For instance, a 3,000-bid problem took almost 11 minutes to 
solve optimally as opposed to 1.5 seconds using the greedy_plus_n heuristic.

MR/C- Versus V/C-Greedy Heuristic

Continuing our heuristic analysis as per Chellappa and Kumar [5] and Martello and 
Toth [15], we examine a second strain of greedy heuristics based on an adaptation of 
the more traditional V/C procedure. Before running this procedure in our environment, 
we need to apply the same bundling preprocessing step to avoid selecting bids that add 
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Table 5. Bundling with V/C Solution Process

Bundled bids

A	 12.0	 5.53	 2.5	 2.5	 2.5
B	 6.0	 6.0	 4.0	 2.52	 1.9	 1.52

C	 4.0	 3.0	 2.0	 1.32	 1.1	 1.1	 1.1

Greedy solution (boldface figures) = 21.5

A	 9.0	 0.3333	 2.5	 2.5	 2.5
B	 6.0	 2.0	 1.0	 0.252	 1.9	 0.32

C	 3.0	 1.0	 0.5	 0.52	 1.1	 1.1	 1.1

Note: Bundle sizes are denoted as superscripts.

nonpositive marginal revenues to the knapsack, due to the uniform pricing feature. 
The procedure then selects the bids in order of their V/C ratio. To illustrate, we use the 
same example shown in Table 5. The top panel shows the bundled bids which serve 
as inputs to the V/C heuristic. The bottom panel shows the resulting selection of bids 
upon application of the heuristic. As with the MR strain, here we can also apply the 
forward-moving approach greedy_plus_n to improve the solutions.

We test the relative performance of the two versions of the greedy heuristics under 
varying distributions of the demand. In the context of online services such as text 
or audio or video content streaming, we would expect that newer or niche services 
would have higher variability in demand. We expect that as variability in the demand 
increases, the pure revenue-driven MR/C approach should outperform the V/C ap-
proach and the seller would be better off using an MR-based greedy heuristic. As the 
market matures and the variability reduces, the seller would be better off using the 
V/C-based greedy heuristic. Intuitively, we would expect higher variability to cause 
higher nonmonotonicity in the MR curve, and consequently the MR bundling would 
have a bigger impact in smoothening that out.

Figure 5 presents results from simulations where we test the impact of demand 
variability. The y‑axis is the difference in revenue in percentage terms between MR/C 
and V/C algorithms keeping everything else constant. We simulate the demand vari-
ability in a single class by drawing bids from distributions with a fixed mean value 
but different variances. The relative valuations in different classes are chosen to depict 
three different conditions:

	 1.	 Constant marginal value of capacity—This is the case where the mean bid 
value to capacity ratio of each class is held constant. The performance in this 
case is depicted by the line labeled “constant” in Figure 5.

	 2.	 Increasing marginal value of capacity—Although rare, this may happen where 
higher-capacity services deliver significantly higher value for customers. This 
is simulated by assigning the lowest mean bid value-to-capacity ratio for the 
smallest class and the highest mean bid value-to-capacity ratio for the largest 
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class. The performance in this case is depicted by the line labeled “increasing” 
in Figure 5.

	 3.	 Decreasing marginal value of capacity—This is the most common economic 
scenario. Here the customers have higher valuations for higher classes but not 
in proportion to the increased resource requirement. This is simulated by as-
signing the lowest mean bid value-to-capacity ratio for the largest class and the 
highest mean bid value-to-capacity ratio for the smallest class. The performance 
in this case is depicted by the line labeled “decreasing” in Figure 5.

The results indicate that under constant marginal valuations between the classes 
(constant V/C ratio), the MR-based heuristic is initially outperformed by the V/C 
heuristic until a crossover point is reached, beyond which the enhanced variability 
adversely affects the V/C-based greedy. Also, note that in case of diminishing marginal 
valuations between the service classes (case 3), V/C dominates MR.

Vertically Integrated Services Solutions

In this section, we relax the assumption that a consumer places a bid in only one 
service class. If the provider is selling multiple versions of the same service, such as 
text only, audio, audio and video at different bit rates, it is reasonable to assume that 
while a consumer may ultimately consume only one service, he or she may have, 
and indeed reveal, valuations for more than one service. We assume that the consum-
ers’ marginal valuations with respect to capacity requirement of a service are either 
monotonically nonincreasing or monotonically nondecreasing per unit of capacity. The 
first is a classical case where marginal value of a higher service class is decreasing, 
for example, with increasingly higher levels of audio quality. The latter is the case 
where higher service classes constitute the addition of services in two or more classes 
providing positive externalities. This situation results in total valuation for a higher 
level of service being higher than the addition of individual lower-level services. We 

Figure 5. MR/C Versus V/C Greedy Under Varying Demand Variability and Marginal Value 
of Capacity
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do not consider the case where consumer marginal valuations are nonmonotonic in 
nature. Such multimodal distribution of the valuations would be rare and insignificant 
occurrences. Furthermore, if these are unimodal (for example, first increasing and 
then decreasing), then they could be modeled and solved as convex combination of 
the above two cases. Recall that this relaxation enforces the assignment constraint 
(3) of our MVA formulation.

The presence of the assignment constraint increases the complexity of the problem 
significantly because a direct application of the heuristics is not feasible. The com-
plexity arises when a consumer who has already temporarily received allocation in 
a given service class becomes eligible to be considered in a higher class. In such a 
case, the prior allocation needs to be recomputed, removing the concerned bidder’s 
bid from the lower class. Formally, considering a consumer for service in class j [ ≠ j 
when the customer is currently winning in class j involves backtracking in class j 
to remove that bidder from consideration in that class. That in turn may change the 
current level of the marginal (price-setting) bids in class j, with the possibility that 
resulting allocation may be infeasible, revenue reducing, or both. Worse, the forward 
move involving class j [ may prove to be nonrewarding at the current or subsequent 
stage and the bid in class may indeed be back in play. From the point of view of the 
solution techniques, depending on the valuation structure of the bidders, this may or 
may not involve rebundling in the affected classes. 

The Case of Monotonically Nondecreasing Per-Unit Quality 
Valuations

Of the two valuations structures under consideration, this represents the case when 
consumers have positive marginal valuations of the multiple service classes. This is 
an indirect manifestation of positive externalities in such markets. Recall that despite 
bids in multiple service classes made by the consumer, he or she is interested in 
consuming a single service. For convenience, let us define the “margins of capacity” 
as that capacity in the allocation process where some classes of services may not be 
available due to lack of available capacity, however, allocation in other classes may 
be feasible due to smaller capacity requirement.

Proposition 2: It is Pareto efficient to consider only the bid in the highest service 
class made by a consumer bidding in multiple classes, given monotonically 
nondecreasing marginal valuations, except at the margins of capacity, when the 
next-lower-class feasible bid should be considered.

Proof: Such a strategy is optimal from the seller’s point of view since the bid in the 
highest service class also represents the highest per unit capacity bid made by the bid-
der under consideration. It is also optimal from the bidder’s perspective since this bid 
maximizes the consumer’s surplus. The only exception to this rule is the case when 
at the margins of capacity, if a higher-class (higher-capacity) bid is infeasible, then 
the next-lower-class feasible (nonwinning in any other class and within capacity) bid 
should be considered. Such a bid would only be accepted if it had a positive marginal 
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revenue contribution in that next lower class. The above argument extends until all 
successively lower-class bids are exhausted or infeasible. Q.E.D.

Note that the policy of considering a bidder’s highest-class bid, except at the margins 
of capacity, has the added benefit that our entire solution approach developed for the 
nonvertically integrated services directly carries over. In particular, there is no need 
for rebundling since a non-highest-class bid will only be considered at the margins 
of capacity. 

The Case of Monotonically Nonincreasing Per-Unit Valuations

This scenario arises when the provider’s extra effort in offering a higher-quality service 
is not proportionally matched in valuations by the consumer. For instance, in order to 
jump from audio only to video may require more than doubling the capacity require-
ment; however, customers may have valuations of less than double the amount for 
audio. Mathematically, this case can be represented by the situation when ∀ classes j, j′, 
where c

j
 ≥ c

j′ ⇒ B
j
 ≥ B

j′, but (B
j 
/c

j
) ≤ (B

j′/cj′). Such a bid structure creates a significantly 
trickier problem. In this case, assignment constraint (3) of our formulation becomes 
binding, and we have to consider all the bids made by a consumer but allocate at most 
one. In addition, from a mechanism design perspective, we want to ensure a fair and 
efficient allocation. By efficient we mean that the buyers get the highest service level 
that their preferences allow them. By fair we mean that no one with a less revealed 
valuation can get a service if a higher revealed valuation person has been denied. 

An Efficient Optimal Procedure with Fair Allocation

Fairness is a very significant issue when bidders have a choice of bidding in multiple 
service classes with Vickrey pricing in each service class. If fairness is not enforced 
under revenue maximization, a bidder bidding in a single class M could get preference 
over a consumer who bid higher for class M but has bid in multiple classes with a 
higher bid/capacity ratio in a lower class. This would constitute an allocation that will 
give rise to negative consumer sentiments along the dimensions of envy and unfairness. 
Since such an allocation will weaken any incentives to bid in multiple classes and will 
make the mechanism’s performance unpredictable, we create an envy-free mechanism. 
When the V/C rankings are used to pick the allocation ordering, we guarantee that 
bidders will get the highest service level that their preferences allow them. Such an 
allocation is fair in the sense that no one with a lower revealed valuation can get a 
service if a higher revealed valuation person has not gotten it.

This fairness implementation comes at a cost. Table 6 presents an example where 
a revenue-maximizing allocation is such that John’s allocation is not envy-free. Even 
though he had higher valuation than Mary in the high class, he ended up getting the 
low class in the revenue-maximizing allocation. However, the envy-free allocation 
presented in the table results in lower revenue that can be considered as the cost of 
fairness.
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Table 6. Fair Allocation and Pricing Is Significantly Different from  
Revenue-Maximizing Allocation

Class	 2	 1
Capacity	 1	 2

Bidder	 Bids

John	 6	 9
Mary	 5	 6
X	 3	 
Y	 	  4.5

		  Revenue-maximizing
	 Fair solution	 solution

Class	 2	 1	 2	 1

John		  9	 6
Mary	  	 6	  	 6
Price		  4.5	 5	 4.5
Quantity		  2	 1	 1
Revenue		  $9.00 		  $9.50 

Cost of fairness	 $0.50 

Note: The table shows that under the fair allocation, John and Mary win Class 1 and pay $4.5 
each, whereas under the revenue-maximizing allocation, John wins class 2 and pays $5, whereas 
Mary wins class 1 and pays $4.5.

We develop a fair solution procedure that is a simple extension of the optimal enu-
merative procedure as discussed in the “Enumeration Procedure with Minimal Cardi-
nality Bundle” subsection, with added bookkeeping. We exhaustively consider every 
combination of each bidder in each class as the price-setting bidder, and enforce the 
fairness constraint by separately calculating the revenue of a given allocation using a 
downward sweep from the highest service level to the lowest. A bidder once allocated 
in the higher class is subsequently removed from consideration in the lower classes. 
This does not increase the computational complexity of the procedure.

In general, to measure the cost of fairness of this enumerative procedure, we have 
to compare its results with an optimal revenue-maximizing allocation. For this 
purpose, we use a brute force enumerative approach, which obviously suffers from 
combinatorial explosion as the number of bidders grows. This brute force revenue-
maximization procedure in itself has no value to the seller. It violates fairness, and 
is only valuable to measure the cost of fairness. It does, however, limit the range of 
computational experiments we can conduct. A brute force enumeration to calculate 
the revenue-maximizing allocation with 14 bidders in 3 classes requires 414 iterations 
(bidders could win in any one class or not at all), assuming each bidder bids in each 
class. Our analysis, conducted using 111 randomly generated auctions, showed that 
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the revenue-maximizing allocation yielded, on average, 4 percent (standard deviation 
of 16 percent) more revenue than the optimal fair allocation.

A Greedy Heuristic for Fair Allocations: Creating Pseudoclasses

Aiming at solving the allocation problem in real time, we now consider the develop-
ment of greedy heuristics based on the V/C ratio that also guarantee fair allocations. We 
exploit the special structure of the problem to address the issue of allocation in different 
classes by a greedy procedure, even in the presence of the assignment constraint. The 
key property that allows us to efficiently solve this problem lies in the realization that 
the underlying commodity that is being allocated is the same for all classes—that is, 
the capacity—and it can be arbitrarily divided across classes.

We create a novel decomposition that involves generating pseudoclasses for all of the 
higher classes beyond the base class for any vertically integrated classes. The capacity 
requirement for a pseudoclass is the difference of capacity requirement between the 
corresponding higher class and its base class. For instance, if there were three original 
service classes L, M, and N, with capacity requirements of C

L
, C

M
, and C

N
, we would 

create 3C
2
 additional pseudoclasses, say P

LM
, P

MN
, P

LN
, with the capacity requirements 

of C
M

‑C
L
, C

N
‑C

M
, and C

N
‑C

L
,
 
respectively.

Intuitively, pseudoclasses allow us to retain the allocated bids in lower-capacity 
classes when a bidder becomes eligible to be considered in higher-capacity classes 
without having to remove the bids in lower-capacity classes and recompute the al-
location. In other words, no reallocation needs to be performed because the natural 
fairness of the V/C heuristic is maintained within a given class. For all the other classes 
(with higher capacity requirements), we put the bidder in appropriate pseudoclasses. 
Since the V/C ratio in a given pseudoclass is kept the same as it would have been in 
the original higher capacity class, a particular bid is considered in exactly the same 
sequence as it would have been with no pseudoclasses. However, having pseudoclasses 
allows us to allocate only the additional capacity required for a bidder with vertically 
integrated preferences and does not require backtracking to remove the original al-
location. To our knowledge, no one has considered exploiting the underlying nature 
of the product to solve the problem in this manner and this data structure constitutes 
an important novel contribution of this research.

A bidder bidding in all three original classes (say B
L
, B

M
, and B

N
) would have 

entries in the base class L with consideration ratio of (B
L 
/C

L 
), no entries in classes 

M, N, and entries in classes P
LM

, P
MN

 with consideration ratios of (B
M 

/C
M 

) and (B
N 
/

C
N 
), respectively. Another bidder bidding in, say, only classes L and N would have 

entries in base class L and class P
LN

. This decomposition of the problem allows direct 
application of the V/C-based greedy algorithm for resource allocation because of the 
property described in Proposition 3.

Proposition 3: Let a vertically integrated set of services be depicted by j ≡ {1,2, ..., 
J}, and let there exist a set of JC

2
 pseudoclasses created as the difference of 

requirements for each pair of classes, depicted as P ≡ {P
MN

, M < N; M, N ∈ j}. 
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Then, if allocations are made from smaller classes to larger classes using a V/C 
greedy procedure, and a customer is allocated capacity in pseudoclass P

MN
, the 

customer must have allocation either in class M or another pseudoclass P
LM

, 
where L < M.

Proof: Note that, for the case under discussion B
L
 ≤ B

M
 ≤ B

N 
and (B

L 
/C

L 
) ≥ (B

M 
/C

M 
) ≥ 

(B
N 
/C

N 
) ∀ classes L < M < N.

Now, consider the pseudoclass P
MN

. The customer’s consideration order is decided 
in this class by the ratio (B

N 
/C

N 
). If the customer is being allocated capacity in this 

pseudoclass then the allocation based on (B
M 

/C
M 

) had to be considered earlier because 
(B

M 
/C

M 
) ≥ (B

N 
/C

N 
). This implies that if the customer’s base class was M (i.e., he or 

she did not bid in any class lower than M) then he or she must have been allocated in 
class M, or if the base class was lower than M, then he or she must have an allocation 
in some other pseudoclass P

LM
 with the consideration ratio of (B

M 
/C

M 
). Q.E.D.

As per Proposition 3, we treat the pseudoclasses as any other class, except for the 
fact that bidders winning in the pseudoclass must have a supporting bid allocated in 
a base class. Note that if the available capacity is less than the capacity for the base 
class but greater than the capacity requirement of some pseudoclasses, infeasible 
allocations may result. However, this is easily taken care of by deleting the series 
of bids of consumers whose base class and pseudoclasses are not feasible as avail-
able capacity reduces. While the V/C-greedy approach does not require the explicit 
knowledge of whether a consumer is winning in the lower classes or not because of 
Proposition 3, it is convenient to keep track of this for the computation of revenue-
maximizing results.

We thus create an enhanced data structure that allows us to keep explicit account 
of the status, winning or nonwinning, of each bidder in each of the classes he or she 
bids. Recall that in the simpler one bid per bidder case, all we needed to know was the 
marginal price–setting bid in each class, and all bids greater than or equal to that bid 
in the class were also part of the solution (with ties at the margin of capacity resolved 
by lottery). However, for vertically integrated services, we need an expanded data 
structure for our preprocessing and bundling procedures of the form expandedBundle 
{valueWeightRatio, memberBidders{bidderNo, inBundleSolution}, inSolution}. The 
initial ordering of bids in each service class is designed to keep track of the identity 
of the bidder (bidderNo). Moreover, each bundle definition now tracks not just the 
cardinality of the bundle, along with the value-to-weight ratio, but also the composi-
tion of the bundle.

Optimality Gap of the Revised Greedy Approach with  
Pseudoclasses

Overall, the fairness requirement affected the development of the greedy heuristic 
for the vertically integrated case in two ways. First, we were forced to consider only 
the V/C strain of the heuristic. Second, fairness restrained us from making forward 
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search moves of the form presented in greedy_plus_n of the fourth section. Despite 
these limitations, the numerical experiments we conducted show that the heuristic 
generally performs very well when applied to cases where bidders bid in multiple 
classes to ultimately win in only one service class, and where they have diminishing 
marginal valuations.

We simulated 175 auction instances. A maximum bid per unit capacity was set at 
7 and for all bidders we tossed a coin to determine whether they bid in a class or not. 
Valuations were generated for 3 classes, with bids drawn uniformly and satisfying 
B

L
 ≤ B

M
 ≤ B

N 
and (B

L 
/C

L 
) ≥ (B

M  
/C

M 
) ≥ (B

N  
/C

N 
) ∀ classes L < M < N, where B

L
, B

M
, 

and B
N
 represent the bids in the three classes and C

L
, C

M
, and C

N 
the capacities. The 

respective capacities for the classes were 2, 3, 5. This led to 3 pseudoclasses C
23

, C
35

, 
C

25
 with weights of 1, 2, 3, respectively.

We examine the optimality gap between the greedy technique and the enumerative 
optimal fair allocation described above. Figure 6 graphically illustrates this gap as a 
function of the problem size.

Overall, the average optimality gap using the greedy was about 13 percent with 
a standard deviation of 6.9 percent. The worst-case performance of greedy during 
the experiments was a 30 percent optimality gap. Observe that the optimality gap is 
trendless and indicates that the performance of the heuristic is not adversely affected 
by the problem size.

Conclusions and Directions of Future Research

This paper addresses an important problem of developing a computational infra-
structure for preference elicitation, resource allocation, and pricing in the context 
of vertically integrated services offered on the Internet. Examples of such services 
include the selling of webcast or bandwidth streams and computing resources to a set 

Figure 6. Optimality Gap for Vertically Integrated Services with Expanded Greedy Heuristic
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of buyers who have heterogeneous preferences for the various quality levels, but wish 
to consume a single service class. We design an asset allocation mechanism modeled 
after second-price auctions that jointly solves the pricing and allocation problems in 
a capacity-constrained environment. The resulting formulation for the latter case has 
characteristics of a nonlinear knapsack problem as well as a quadratic assignment 
problem—both NP-hard problems.

The paper also contributes to the scant literature on auctions with variable supply. 
By this we mean that the total number of goods being auctioned is not known ex ante, 
but is determined as a part of the auction. Part of the reason for lack of research in 
this area perhaps is due to Lengwiler’s [14] negative result regarding lack of incentive 
compatibility in auctions of variable supply. We show that there are other ways to limit 
the manipulability of the mechanism. In particular, by deriving conditions required 
to achieve posterior regret-freeness, as well as by ensuring fairness in allocation, we 
show that sellers will find it in their interest to use a uniform pricing scheme, such 
as the MVA.

Another significant contribution of this work is to combine an innovative formula-
tion (considering marginal revenue for knapsack) with a data structure that allows us 
to use techniques such as greedy_plus_n for this complex combinatorial allocation 
problem. The combinatorial aspect arises in the case of vertically integrated services 
where a bidder bids in multiple classes but wants to be served in only one. In verti-
cally integrated services, uniform price mechanism alone is not sufficient for fair 
allocation, and we evaluate the cost of providing fair allocation, without which the 
market itself may break down. Mathematically, it is equivalent to adding an assign-
ment constraint to a knapsack problem, making the problem even more complex. We 
develop an innovative data structure that decomposes the service classes by creating 
pseudo–service classes, and the traditional value-to-cost ratio heuristic for knapsack 
problems can then be employed directly to provide good solutions to the problem. 
Future work in this area will look at the revenue-maximizing and efficiency properties 
of alternative auction mechanisms as well as continuous versus call-based clearing 
schemes. In addition, demand and capacity here may have a time dimension, as in 
the grid computing setting of Bapna et al [2]. This, coupled with the consideration of 
network delays, will serve as a natural extension of the current work.
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Notes

1. Recall, while many, but not all, of the types of services described have a time dimension 
we assume a call auction setting and do not consider the time dimension in the current work.

2. A minimal cardinality bundle is a bundle that starts at the first customer index where the 
customer’s marginal revenue became less than or equal to zero and ends at the first customer 
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index where the marginal revenue becomes positive. Note that such bundles can be created as 
a part of data preprocessing.

3. We operationalize fairness based on Foley’s [7] characterization of an envy-free alloca-
tion. A fair allocation scheme is defined as one in which there is no instance wherein, for the 
purposes of revenue maximization, a consumer with a lower revealed valuation for a given 
service can get allocated while there exists another, with a higher revealed valuation, for the 
same service who is denied.

4. Assume that the valuations have the following pattern for two classes:

	 Class/Bids	 1	 2	 3	 4	 5

	 1	 K	 K	 K/2	 K/3	 K/3	 ...
	 2	 d	 d	 d	 d	 d	 ...

The marginal valuations will be

	 Class/MR	 1	 2	 3	 4

	 1	 K	 0	 0	 K/3	 ...

	 2	 d	 d	 d	 d	 ...

The optimal revenue here is NK/3. A greedy and greedy_plus_1 heuristic will both produce the 
revenue of K + δ(N – 1). For arbitrarily small δ (i.e., δ → 0), we get the revenue of K. There-
fore, the worst-case bound is K/(NK/3) = 3/N. Note that the worst case for greedy occurs if we 
replace the valuation of K/3 above by K/2 and is 2/N. However, greedy_plus_1 will produce 
the optimal revenue in that case.

5. As would be the case with greedy_plus_1, that is, when n = 1.
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