
AppSeer: Discovering Flawed Interactions among Android
Components

Vincenzo Chiaramida
University of Illinois at Chicago

Chicago, Illinois, USA
vchiar2@uic.edu

Francesco Pinci
University of Illinois at Chicago

Chicago, Illinois, USA
fpinci2@uic.edu

Ugo Buy
University of Illinois at Chicago

Chicago, Illinois, USA
buy@uic.edu

Rigel Gjomemo
University of Illinois at Chicago

Chicago, Illinois, USA
rgjome1@uic.edu

ABSTRACT

We identify several reliability issues arising from interactions be-
tween components of system-defined Android apps and compo-
nents of third-party apps. These issues are generally caused by
incorrect assumptions that system apps make about the behavior of
third-party apps, resulting in significant vulnerabilities in system
apps. For instance, it is possible for a third-party app to make many
system applications to crash, including the Phone app used to make
and receive phone calls, the Settings app used to configure a mo-
bile device, and several other apps that expose a so-called started
service. Our findings indicate that additional automated tools for
integration testing and static analysis of Android apps are in or-
der. Here we discuss AppSeer, a toolset that automatically detects
vulnerabilities of system apps and third-party apps. Preliminary
precision and recall results for AppSeer are quite encouraging.

CCS CONCEPTS

• Security and privacy -> Malware and itsmitigation;Denial-
of-service attacks; • Software and its engineering -> Software
reliability;

KEYWORDS

Mobile platform security; Denial-of-service attacks; Software test-
ing.

ACM Reference Format:

Vincenzo Chiaramida, Francesco Pinci, Ugo Buy, and Rigel Gjomemo. 2018.
AppSeer: Discovering Flawed Interactions among Android Components.
In Proceedings of the 1st International Workshop on Advances in Mobile App
Analysis (A-Mobile ’18), September 4, 2018, Montpellier, France. ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/3243218.3243225

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
A-Mobile ’18, September 4, 2018, Montpellier, France
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5973-3/18/09. . . $15.00
https://doi.org/10.1145/3243218.3243225

1 INTRODUCTION

Applications running on Android platforms are typically organized
as a set of communicating components. This kind of design not only
supports a high degree of modularity but also allows for interoper-
ability among different apps. Components in a given application
can invoke components in that application as well as components
of other applications.

Here we explore reliability and security issues arising from the
interactions between components in third-party applications and
system-defined applications built in Android. We identify a number
of defects arising from faulty interfaces among components of dif-
ferent apps. We conclude that the development of automated tools
for detecting interface faults among Android components is highly
desirable. Finally, we report on the design and implementation of
AppSeer, a toolset for automatically detecting certain interface
defects among Android components.

We focus specifically on faults affecting two types of app com-
ponents, namely activities and started services. In brief, activities
are components that define the interface to be displayed on a de-
vice’s screen and that manage the interactions between displayed
objects and the user. Started services are components intended to
perform long-running operations, such as synchronizing with a
remote server in the cloud or playing a music segment.

First, we investigate failures that may occur when preconditions
on the execution of system components are not satisfied and yet
the components are invoked by third-party apps. Component in-
vocation occurs through special messages named intents sent by a
calling component to the component being called. We identify two
ways in which a third-party app can cause crucial system apps to
crash including the all-important Phone app, which allows a user to
make and receive phone calls. While the Android OS automatically
restarts the Phone app after a crash, repeating the behavior leading
to the crash will eventually cause the hosting device to shut down
and reboot, which is clearly undesirable.

We detected these faults by identifying automatically activities
and services that system apps expose to third-party apps, and by
checking assumptions that these components implicitly make when
they are called into action via an intent. We then designed and im-
plemented our own apps that invoke system-app components when
their assumptions do not hold, causing those system apps to crash.
We also discovered that new functionality introduced in Android’s

https://doi.org/10.1145/3243218.3243225
https://doi.org/10.1145/3243218.3243225

A-Mobile ’18, September 4, 2018, Montpellier, France V. Chiaramida, F. Pinci, U. Buy and R. Gjomemo

most recent version as of this writing, V8.0 (nicknamed Oreo), po-
tentially makes every app exposing a started service susceptible to
crashes. This is quite problematic because it affects a multitude of
apps that expose a background service. See Section 2 below.

Second, we examine vulnerabilities arising from Java constructs,
such as reflection and the class loader. These constructs allow a
third-party app lacking system privileges to modify system data
structures holding information about that app. For instance, an
Android app is identified by a so-called package name, which is
unique throughout the entire Android ecosystem. By cleverly using
the class loader and reflection, we were able to access and modify
an app’s package name stored by the system. The ability for an
app to “impersonate” a different app can be exploited for malicious
purposes to gain access to protected information and resources on
the device, for instance, to start the device’s camera.

Finally, we reported the faults that we discovered along with
app examples to Google, using their company-provided quality
assurance system [3], and to a global vulnerability database [1].
Issues involving activities were assigned CVE-2018-9447; issues
involving services are under active investigation as of this writing.

In summary, this paper makes these contributions:
(1) We introduce techniques and an automated toolset for auto-

matically detecting interface flaws involving Android activi-
ties and started services.

(2) We discovered a defect involving started services and their
clients, which could be different apps from the app that de-
fines the service. The defect causes the application exposing
a started service to crash unless it raises its service to fore-
ground status.

(3) We discovered a number of defects when certain activities in
system apps Phone and Settings are invoked by third-party
apps. These defects will cause Phone and Settings to crash.

(4) We discovered a backdoor way for a third-party app to access
and modify information about the app maintained by the
operating system.

This paper is organized as follows. In Section 2 we summarize
key Android concepts. In Section 3 we discuss our method for
identifying interface issues among Android components and our
automated toolset. In Section 4 we discuss defects that we detected
through our analyses. Finally, in Section 5 we summarize related
work.

2 BACKGROUND ON ANDROID

Android applications consist of one or more components, of which
there are four kinds. The main process is responsible for executing
specific callback methods to manage component lifecyle. Specifi-
cally, an activity is an application component aimed at managing
the app’s user interface and user interactions. A service typically
manages long-running operations, such as playing music or syn-
chronizing with a remote server. Services generally run in the back-
ground; however, a service can raise its status to foreground, for
instance, if it has an effect on the user experience of the device (e.g.,
a music playing service). Background services are good candidates
to be killed by the system in a low memory situation.

Application components can invoke and interact with other com-
ponents through special messages called intents. An explicit intent

is targeted to a specific application by including the application’s
unique package name and the name of a component in that appli-
cation. Alternatively, the Android system can infer the recipient
of an intent through a so-called intent resolution process. In this
case, an implicit intent will include only a generic description of
the target component; a component whose intent filter matches
that description will receive the intent.

An application can start activities and services of other applica-
tions by calling such system methods as startActivity(Intent) and
startService(Intent). These methods will cause the execution of the
onCreate() callback on the target activity or service. The targeted
component will be called into action even though its context may
not be properly initialized, possibly leading to such run-time errors
as null pointer exceptions. This can happen, for instance, if the
component in question is supposed to be called by its hosting appli-
cation after other components have completed execution; however,
the component is also exported to other applications. We discuss
defects arising from this situation, which we call unexpected intents,
in Section 4 below.

When a service is started, the system sets the service to the
background state by default. Android version V8.0 (Oreo) intro-
duced a new method for starting a service in the foreground state,
namely startForegroundService(Intent). However, the target service
will still be started in the background state. It is the service’s re-
sponsibility to raise its status to foreground state by calling method
startForeground() during the execution of such callbacks as onCre-
ate(), onStartCommand() or onHandleIntent(). Failure to do so will
cause the application containing the service to crash. Table 1 below
summarizes four possible scenarios involving the client application
that requests the service to be started and the server application
that defines the service.

Table 1: Starting services—Possible use cases.

Client App Server App Behaviour

startService() onStartCommand() Normal: BG
startService() onStartCommand() +

startForeground()
Normal: FG

startForegroundService() onStartCommand() Server
crash

startForegroundService() onStartCommand() +
startForeground()

Normal: FG

In Case 3 above an application explicitly requests a service in
the foreground but the server app fails to execute startForeground().
After the expiration of a timeout, the service application will freeze
while displaying the infamous Application Not Responding (ANR)
dialog. The system will then proceed to the termination of the
process hosting the server app, closing all the currently active
connections with client apps. The programmatic exploitation of
this mechanism can lead to Denial of Service (DoS) attacks. We
argue that this behaviour is the result of an improper design choice
missing two key aspects:

(1) How the client application can infer if the target service is
ready to be started in the foreground;

AppSeer: Discovering Flawed Interactions among Android Components A-Mobile ’18, September 4, 2018, Montpellier, France

Figure 1: Flow diagram of AppSeer.

(2) How the server application can execute startForeground()
only when required.

3 APPROACH AND IMPLEMENTATION

Now we describe our approach and AppSeer.

3.1 Approach

As we mentioned earlier, the new mechanism for starting services
in the foreground makes it difficult for existing apps to know how
to start their services. Furthermore, such confusion may pave the
way for attacks whereby a malicious app can issue requests to start
foreground services and crash legitimate apps. In order to check
if an app is vulnerable to this attack, we developed AppSeer, a
tool that (1) statically analyzes apps and classifies their services
as vulnerable or safe, and (2) tests whether exposed activities and
services can actually crash due either to unexpected intents (e.g.,
resulting in uninitialized objects) or to the foreground service issue.

Overview. AppSeer combines a static analysis phase with a
dynamic testing phase to verify the results of the static analysis. In
particular, given an apk file of an application, AppSeer first extracts
the app’s code and manifest file. An app’s apk file is an archive
containing compiled code, other app resources (e.g., media files),
and the app’s manifest file, which declares all the app components.
Next, AppSeer statically analyzes the code to determine if services
comply with the new service-starting mechanisms by performing
an interprocedural control flow analysis. This analysis yields a
set of potentially-defective services. Finally, in the dynamic phase,
we use the information gathered during static analysis to test the
activities and services identified as vulnerable by generating code
that invokes those activities and services. As a result, we obtain a
set of true positives and false positives of our analysis of services
and activities. Our static analysis is conservative, meaning that
we explore all paths concerning a service component, in order to
avoid false negatives. A high level overview of AppSeer is shown
in Figure 1. Next, we describe its four main components.

Reverse Engineering Component. This component receives
as input the apk file and produces as output the manifest file and
Java sources of the application.We use the Jadx [10] tool to translate
Android bytecodes into Java source code and the apktool tool [9]
to extract the manifest file.

Fetcher. This component is responsible for analyzing the mani-
fest file and extracting the exposed activities and services. In partic-
ular, it checks in the manifest file if an activity has the exported
flag set to true and if there are declared intent-filters associated
with an activity or service. In addition, it also builds a template for
intents that can be sent to the activity or service.

Control FlowAnalyzer (CFA). The CFA is the core component
of AppSeer. It takes as input the code of a service and it determines
whether that service is safe or unsafe. CFA performs a static analysis
of the code to determine if there exist paths from sources (e.g., calls
to onStartCommand()) to sinks (calls to startForeground() or the
end of the service handling methods). If paths exist between a call
to onStartCommand() and startForeground(), then the service
is marked as safe. Otherwise, the service is marked as unsafe. To
perform this analysis, the CFA needs to solve several challenges,
listed below.

Interprocedural Analysis. A service may use helper functions,
each dedicated to a particular task, which may interact with one an-
other in complex ways. The analysis must take this fact into account
and be able to follow paths across multiple function invocations.

Inheritance and polymorphism. Related to the first challenge,
services inherit from the Android Service class and its subclasses.
Developers may also introduce a class hierarchy and polymorphic
functions. The main challenge for static analysis is identifying
precisely the correct function implementation inside a hierarchy.
In addition, to perform correct function name resolution all the
functions along the class hierarchy must be available.

Code Obfuscation. The code obtained by the reverse engineering
step is usually obfuscated. Therefore, different function names in the
original code could be replaced with the same name in obfuscated
code, while relying on overloading resolution rules to keep the
original program behavior. This fact may increase the false positive
rate.

To address these challenges, we use various heuristics. Given an
exposed service Σ, we define the associated class hierarchy H of Σ
as follows:

• H is a sequence of classes: H = {Γ1, Γ2, ..., Γn };
• Γ1 ∈ {Service, IntentService};
• Γn = Σ;
• ∀i ∈ {1, ...,n − 1} : Γi+1 extends Γi ;

A-Mobile ’18, September 4, 2018, Montpellier, France V. Chiaramida, F. Pinci, U. Buy and R. Gjomemo

• H (k) = Γk , meaning that we can extract a specific class from
the hierarchy given its index k , with 1 ≤ k ≤ n .

The first class Γ1 in the hierarchy is either Service or IntentService,
the root superclasses of all service classes. In addition, we associate
each class Γi with a setMi of method declarationsmi, j , each repre-
senting the name of a method and an ordered list of its parameter
types.

With the help of hierarchyH and the set of of method signatures
Mi associated with each class Γi , the CFA scans the Java code,
starting from the source class Γn , and expanding the search along
all possible paths. In particular, upon encountering a functionwhose
invocation matches the declaration of a known function, the CFA
expands the search interprocedurally to the body of that function.

The algorithm for the search is shown in Listing 1. Identifier
cursor denotes a file cursor that navigates the class hierarchy of
a given service component. The source methods are onCreate(),
onStartCommand(), and onHandleIntent() depending on the kind of
service under consideration (i.e., a Service or IntentService instance).
Method MatchDeclaration() is responsible for extracting the signa-
ture of the method invocation and for using the class hierarchy and
the associated method signatures to retrieve the correct method
declaration that matches the invocation.

s e a r ch (MethodDecl)

i f cu r s o r . c u r r e n t C l a s s == H(1) {
/ ∗ t e rm i n a t e a t h i e r a r c h y r o o t ∗ /
return }

/ / t e rm i n a t e b e c a u s e we found t h e s inkMe thod
i f cu r s o r . currentMethod == sinkMethod {

c u r s o r . componentS ta te = SAFE
return }

l e t D = { m | m i s a MethodDecl whose s i g n a t u r e
matches cu r s o r . currentMethod }

/ / c u r s o r . c u r r e n tMe t h o d no t i n c u r s o r . c u r r e n t C l a s s
i f D i s empty {

c u r s o r . h i e ra rchyUp ()
s e a r ch (MethodDecl)
c u r s o r . hierarchyDown ()

}
e l se

for each d in D {
for each method c a l l mc in method d

s e a r ch (mc)
}

Listing 1: Pseudocode of the search algorithm.

To deal with the challenge of obfuscation the CFA expands the
search into every possible (obfuscated) method name. While this
may increase the rate of false positives, our next step of dynamic
evaluation, which tests the results produced by the CFA, identifies
the false positives. In practice we found the number of false positives
to be quite modest relative to true positives.

Dynamic Tester. This component uses the Android Debug
Bridge (ADB), which is part of the Android development kit, to test
the results found by the previous two components. In particular,
the tester uses the fetcher’s results to determine the type of unex-
pected intents to send to exposed activities and to services labeled
as unsafe by the CFA. After sending an intent to an exposed activity
or an unsafe service, the tester scans the so-called logcat (i.e., the

Android console log) to determine if the corresponding activity or
service has crashed.

3.2 Exploitation

In this section, we describe how a malicious application can exploit
these vulnerabilities to crash arbitrary applications on the phone
(DoS attacks).

To send explicit intents to the victim components, the Context
andClass objects of the component are needed. To obtain the former,
an app can call createPackageContext(String, int), which retrieves the
context of the application specified by its package name. To obtain
the Class object we used a combination of Java class loaders and
reflection constructs. In particular, a subclass of ClassLoader, called
PathClassLoader, can be used by a malicious app to load every class
object of the operating system, including objects stored in locations
owned by the root user (e.g., /system/frameworks/services.jar and
apk files). This code will of course have only the privileges granted
to the malicious app, but this will still be enough to send intents to
start services and activities. This method would allow an attacker to
target every vulnerable component of every application at their own
will, making the interaction flaws exploitable. Moreover, the use
of reflection methods on these newly accessible Java class objects
will provide a standard application with a new set of executable
methods that were previously unavailable.

In addition to explicit intents, we also discovered a way to use
implicit intents, which were disabled starting from API version 21,
to start exposed services and activities. By performing a down cast
from abstract class Context to the concrete subclass ContextImpl,
we can access and modify fields of Context objects. In particular,
reflection allows us to modify the field targetSdkVersion that holds
the API level of the malicious app. The run-time modification of
this field will change the target API level of the calling application,
while still allowing the exploitation of constructs introduced in
later versions. Thus, method startForegroundService() introduced in
API level 26 can be invoked even though the application’s target
API version is modified to a value lower than 26. Specifically, by
providing a value less than 21, corresponding to Android Lollipop,
implicit intents will become available again to start a service, pro-
viding yet another way to exploit the interaction flaws we described
earlier.

4 EVALUATION

To evaluate AppSeer, we studied both third-party and system ap-
plications, and we found that every analyzed application suffers
from one or more of the interface flaws we discovered. Since one
vulnerable component is enough to crash the entire application,
we distinguish between apps that successfully protect all their ac-
tivities and services through the Android permission mechanism
and apps in which at least one component can be freely invoked
by other applications. We reported all our findings to the Android
Security Team through the Google IssueTracker platform. The inter-
action flaws caused by the vulnerable activities were recognized
with the assignment of the CVE-2018-9447, while the foreground
service defect was under active investigation as of this writing.

AppSeer: Discovering Flawed Interactions among Android Components A-Mobile ’18, September 4, 2018, Montpellier, France

4.1 Results on Third-Party Apps

We analyzed the top 30 free applications available on Google Play,
the official Android app store. Among the 27 applications that
exposed at least one service, we made the following observations:

• Only 3 applications protect all their services through
SIGNATURE level permissions. These permissions are only
granted to applications published from companies sharing
the same signature certificate;
• 24 applications expose at least one vulnerable service that
can be started by external applications.

Overall we analyzed 120 total services. We found that only 3
services were labelled and confirmed to be safe according to the on-
StartCommand() + startForeground() pattern. These services belong
to popular applications like Facebook, Facebook Messenger and
Telegram. However, these apps also exposed vulnerable services.
Thus, these apps are not completely safe. In fact, only the 3 apps
that protect all their services with SIGNATURE level permissions
should be considered safe, because a malicious application cannot
acquire such permissions.

The testing phase of AppSeer revealed no false positives on
the third-party apps. False positives are possible if two conditions
are met: (1) the CFA finds paths from such service methods as
onCreate() and onStartCommand() to startForeground(), and (2) the
service takes longer than 5 seconds to reach startForeground() at
run-time. In practice, Condition 2 is quite unlikely to occur. Given
the absence also of false negatives, we report 100% precision and
recall on third-party apps, which is quite encouraging.

4.2 Results on System Apps

Surprisingly, we found that system apps are also vulnerable to
DoS attacks exploiting interaction flaws on activities and services.
Regarding activities, we found 195 total exposed activities that fall
into three groups:

(1) Activities requiring no permissions to be started (172 activi-
ties);

(2) Activities requiring NORMAL or DANGEROUS level permissions
(6 activities); and

(3) Activities requiring SIGNATURE level permissions (17 activi-
ties).

The absence of the required preconditions leads to the killing
of the target application in 14 cases for Group 1 activities and in
4 cases for Group 3 activities. This means that 14 activities can be
crashed by a malicious app with an unexpected intent and without
any permissions.

Regarding services, we focused on 10 of the most popular system
applications including Camera, Contacts, Google Photo, Google
Maps, Google Music, Phone, and Settings. We made the following
observations:

• The Camera app does not export any service;
• Only the Contacts and Settings apps protect all their ser-
vices through permissions. These are usually SIGNATURE
level permissions, except for Contacts, which also uses one
DANGEROUS permission;

• The remaining 7 system apps expose at least one service that
can be started with either no permissions or with NORMAL
level permissions (granted automatically).

On the whole, the CFA found 64 unsafe services. The testing
phase found 60 true positives and 4 false positives, yielding a preci-
sion of 93.75%. The reason is that some system apps (e.g., Music)
use multiple Android processes. In such cases, failure to call start-
Foreground() by a service does not crash the host application. Recall
remains at 100% by the absence of false negatives. We note that
the use of DANGEROUS level permissions (as the Contacts app does)
is risky because these permissions are often granted by device
users [7].

4.3 Case Study: Phone App

We now describe a proof of concept that demonstrates how the ter-
mination of a system app can significantly harm a device. Suppose
that the Phone app is under attack. This app has various relevant
responsibilities, including managing outgoing and incoming phone
calls and sending and receiving SMS messages.

Our study found that the Phone app suffers from both activity and
service interaction defects. Indeed, sending an unexpected intent to
one of its activities generates aNullPointerException due to amissing
object initialization, causing the Phone app to crash. Moreover, the
app exposes four services vulnerable to the foreground services
interaction defect; one such service does not require any permission
to be started. Thus, a malicious application could attack either the
vulnerable activity or the vulnerable service.

The process running the Phone app is called com.android.phone.
When this process is unexpectedly terminated, the cellular network
signal is immediately lost and every ongoing phone call is automati-
cally closed. Next, Android restarts the process by default, restoring
the signal and eventually restarting the phone call. To attack the
Phone app, a malicious app with the READ_PHONE_STATE permis-
sion can detect if a phone call is currently active in the device.

Next, a malicious app can start the vulnerable service as a fore-
ground service and crash the Phone app. When the phone call is
restarted, the malicious app can repeat the same steps to crash
Phone again, in an infinite loop. The system will try to handle all
the consecutive crashes of the Phone app by displaying an ANR
dialog window every time that the application is killed. However,
this process will rapidly drain all the CPU capabilities of the device,
eventually leading to a soft reboot of the system.

4.4 Considerations

Our work uncovered a new set of vulnerable components both in
third-party apps and in system apps. The analysis executed using
AppSeer has been proven to be correct in the quasi-totality of cases.
An interesting exception is represented by those applications that
use two different processes for specific jobs (like managing the UI
and performing heavy computations), like the system app Google
Play Music. The analysis of this application detected six vulnerable
exposed services. However, the testing phase revealed four false
positives.

By further analyzing the Google Play Music app, we discovered
that these four services are explicitly executed in a second pro-
cess that does not manage the UI, thanks to the android:process

A-Mobile ’18, September 4, 2018, Montpellier, France V. Chiaramida, F. Pinci, U. Buy and R. Gjomemo

attribute in the manifest file. The process hosting the services is
still affected by the foreground services vulnerability; however, the
crash dialog is not visible. (Android calls it a background ANR.)
Moreover, these services are immediately restarted after they are
killed. The result is that the process responsible for the UI of the
application is not affected, leaving the entire app still visible on
the screen, while the process involved in computations is crashed
and immediately restarted without major consequences on the
user experience. We rarely observed this behaviour in third-party
applications.

The component interaction flaws that we detected beg the ques-
tion of remedial actions that might sidestep these defects. App
failures caused by unexpected intents can be corrected by making
components that receive these intents internal in the defining app,
rather than exported. Access to system structures describing an
app could be stopped by changing the behavior of the class loader
in the Android ecosystem. The issue caused by the startForeground-
Service() call has no simple solution. In Oreo, an exported service
cannot determine whether it was started with a regular startSer-
vice() call or a startForegroundService() call. If a service could make
this determination, it would have at least the ability to raise itself
to foreground status, depending on how it was called.

5 RELATEDWORK

The reliability and security of the Android OS have been the sub-
ject of extensive investigations in the past decade [5–7, 12, 13]. In
general, Google has addressed these issues by modifying Android
as the system evolved from one API level to the next. The cur-
rently released version, corresponding to API level 27, is far more
robust and reliable than earlier versions. However, Android users
and original equipment manufacturers often delay upgrading their
devices to new system versions by several months or years. As of
this writing a large minority of Android devices (about 38%) are still
running Lollipop (API Level 22), which was released in November
2014, according to the official Google site [2]. Thus, detected defects
and vulnerabilities are still affecting a large portion of devices in
circulation. For sake of brevity here we report only on a few existing
approaches to reliability and security analysis of Android apps.

Fratantonio et al. [8] report on a vulnerability allowing a mali-
cious app to modify the settings of a device by placing an overlay
over the display of another app. The user of the device could be
tricked into changing the device’s settings. Google limited the abil-
ity to place overlays over dialogues and over specific activities in
the Settings app. However, the permission to apply overlays to most
application displays is still present, which could lead to further vul-
nerabilities. Wang et al. [11] obtain similar results to ours, disabling
system’s apps and causing soft reboots, by passing malicious ob-
jects to system methods executing code holding a mutual exclusion
lock. Their work applies to Android Version 5.1 (Lollipop); Google
has since modified the system services that execute the code in
question; devices running the most recent Android versions are not
susceptible to this vulnerability.

6 CONCLUSIONS

We explored interactions between third-party apps and system apps
in Android, while focusing on activities and started services. Our

automated approach first identifies components that an app exposes
to client apps. We next examined the ways in which client apps
can invoke exposed components in system apps and in third-party
apps. Finally, we analyzed the behavior of exposed components and
we flagged components as being potentially unsafe.

An advantage of our approach is its accuracy. AppSeer identified
various vulnerable components in popular third-party apps and
system apps. We tested the components in question at run-time to
determine whether the components in question were indeed unsafe.
Only about 6% of system apps deemed to be unsafe turned out to
be safe when we tested them at run-time. In the future, we plan to
extended our analyses to additional Android components.

In the future we plan to continue investigating vulnerabilities
arising from interactions among Android components. We are es-
pecially interested in exploring Kotlin [4], a new language for pro-
gramming Android applications, and its effects on component inter-
actions. In addition, we intend to expand the capabilities of AppSeer
to detect additional component interface issues for Android.

ACKNOWLEDGMENT

We thank the anonymous referees of our original submission for
their valuable comments and suggestions, which helped us improve
the content and presentation of our final version.

REFERENCES

[1] 2018. Common Vulnerabilities and Exposures. https://cve.mitre.org/cve/. Online;
accessed 2 July 2018.

[2] 2018. Distribution Dashboard. https://developer.android.com/about/dashboards/.
Online; accessed on 5 July 2018.

[3] 2018. Google Bughunter University. https://sites.google.com/site/
bughunteruniversity/. Online; accessed on 2 July 2018.

[4] 2018. Kotlin Language Documentation. https://kotlinlang.org/docs/kotlin-docs.
pdf. [Online; accessed July-2018].

[5] Elias Athanasopoulos, Vasileios P Kemerlis, Georgios Portokalidis, and Angelos D
Keromytis. 2016. NaClDroid: Native Code Isolation for Android Applications. In
European Symposium on Research in Computer Security. Springer, 422–439.

[6] Michael Backes, Sven Bugiel, Derr Erik, Patrick McDaniel, Damien Octeau, and
Sebastian (2016) Weisgerber. 2016. On Demystifying the Android Application
Framework: Re-Visiting Android Permission Specification Analysis. In Proceed-
ings of the 25th USENIX Security Symposium. USENIX Association, Berkeley, CA,
1101–1118.

[7] Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel Haney, Erika Chin, and
David Wagner. 2012. Android permissions: User attention, comprehension, and
behavior. In Proceedings of the Eighth Symposium on Usable Privacy and Security.
ACM, 3.

[8] Yanick Fratantonio, Chenxiong Qian, Simon Chung, and Wenke Lee. 2017. Cloak
and Dagger: From Two Permissions to Complete Control of the UI Feedback
Loop. In Proceedings of the IEEE Symposium on Security and Privacy. San Jose,
CA.

[9] Wisniewski Ryszard and Tumbleson Connor. 2012. Apktool - A tool for reverse
engineering 3rd party, closed, binary Android apps. https://ibotpeaches.github.
io/Apktool/. [Online; accessed March-2018].

[10] Skylot. 2013. Jadx - Dex to Java decompiler. https://ibotpeaches.github.io/
Apktool/. [Online; accessed March-2018].

[11] Kai Wang, Yuqing Zhang, and Peng Liu. 2016. Call Me Back! Attacks on
System Server and System Apps in Android Through Synchronous Callback.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security (CCS ’16). ACM, New York, NY, USA, 92–103. http:
//doi.acm.org/10.1145/2976749.2978342

[12] Lok Kwong Yan and Heng Yin. 2012. DroidScope: Seamlessly Reconstruct-
ing the OS and Dalvik Semantic Views for Dynamic Android Malware Analy-
sis. In Presented as part of the 21st USENIX Security Symposium (USENIX Secu-
rity 12). USENIX, Bellevue, WA, 569–584. https://www.usenix.org/conference/
usenixsecurity12/technical-sessions/presentation/yan

[13] Suleiman Y Yerima, Sakir Sezer, Gavin McWilliams, and Igor Muttik. 2013. A new
Android malware detection approach using Bayesian classification. In Advanced
Information Networking and Applications (AINA), 2013 IEEE 27th International
Conference on. IEEE, 121–128.

https://cve.mitre.org/cve/
https://developer.android.com/about/dashboards/
https://sites.google.com/site/bughunteruniversity/
https://sites.google.com/site/bughunteruniversity/
https://kotlinlang.org/docs/kotlin-docs.pdf
https://kotlinlang.org/docs/kotlin-docs.pdf
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
http://doi.acm.org/10.1145/2976749.2978342
http://doi.acm.org/10.1145/2976749.2978342
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/yan
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/yan

	Abstract
	1 Introduction
	2 Background on Android
	3 Approach and Implementation
	3.1 Approach
	3.2 Exploitation

	4 Evaluation
	4.1 Results on third-party apps
	4.2 Results on system apps
	4.3 Case study: Phone app
	4.4 Considerations

	5 Related Work
	6 Conclusions
	References

