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he Internet is making a significant transition from primarily a network of desktop computers to a network

variety of connected information devices such as personal digital assistants and global positioning system-
based devices. On the other hand, new paradigms such as overlay networks are defining service-based logical
architecture for the network services that make locating content and routing more efficient. Along with Inter-
net2’s proposed service-based routing, overlay networks will create a new set of challenges in the provision
and management of content over the network. However, a lack of proper infrastructure investment incentive
may lead to an environment where network growth may not keep pace with the service requirements. In this
paper, we present an analysis of investment incentives for network infrastructure owners under two different
pricing strategies: congestion-based negative externality pricing and the prevalent flat-rate pricing. We develop
a theoretically motivated gradient-based heuristic to compute maximum capacity that a network provider will
be willing to invest in under different pricing schemes. The heuristic appropriates different capacities to differ-
ent network components based on demand for these components. We then use a simulation model to compare
the impact of dynamic congestion-based pricing with flat-rate pricing on the choice of capacity level by the
infrastructure provider. The simulation model implements the heuristic and ensures that near-optimal level of
capacity is allocated to each network component by checking theoretical optimality conditions. We investigate
the impact of a variety of factors, including the per unit cost of capacity of a network resource, average value of
the users’ requests, average level of users’ tolerance for delay, and the level of exogenous demand for services
on the network. Our results indicate that relationships between these factors are crucial in determining which
of the two pricing schemes results in a higher level of socially optimal network capacity. The simulation results
provide a possible explanation for the evolution of the Internet pricing from time-based to flat-rate pricing.
The results also indicate that regardless of how these factors are related, the average stream of the net benefits
realized under congestion-based pricing tends to be higher than the average net benefits realized under flat-rate
pricing. These central results point to the fallacy of the arguments presented by the supporters of net neutrality
that do not consider the incentives for private investment in network capacity.
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1. Introduction I think only one particular pricing structure will work.
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There will be abundant bandwidth, but it’s all dark
silicon. It’s just so far from fruition. What is going to
take it to fruition? We need an economic model for
that... . Everyone wants it [the Internet] to be free or
flat rate or as close to free as they can get.... What
I'm saying is there should be a marketplace, and it
should be rational. There should be pricing—pricing in
markets that have choice and competition. It’s not that

I'm saying the current structure is inadequate because
it’s either free or flat. It does not approximate cost or
value or competition anywhere near close enough to
be a viable economic model... . My prediction is—and
my advice is—that we should welcome experiments
which attempt to approximate cost and value in the
prices.... —Bob Metcalfe (The inventor of Ethernet)
Interview in IEEE Internet Computing (1997).
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The belief that network congestion is not a long-
term issue is founded on the notion that there is a
large surplus of existing fiberoptic lines. However,
high-speed access that is becoming increasingly
prevalent is generating greater demand for multime-
dia content, virtual reality, telepresence, multiplayer
games, Internet Protocol (IP) voice, video confer-
encing, and other content-rich applications. Indeed,
recent reports indicate that large backbone providers
have, because of an increased international demand,
“have depleted inventories of unsold circuits on many
submarine cables and on some segments of terres-
trial networks” (Telegeography 2006). Other reports
are more moderate, indicating that thanks to an abun-
dant unlit supply on existing networks, most sup-
pliers can respond to demand increases by lighting
wavelengths and fiber pairs on an as-needed basis,
predicting that this incremental approach to regulat-
ing spare circuit inventories may gradually result in
a balanced supply and demand of backbone capacity
(Telegeography 2005). On the other end of the opinion
spectrum, almost alarmist reports state that “Escalat-
ing demand for bandwidth-hungry services, such as
HDTV and online gaming, is gradually leading to a
critical lack of capacity in cable operators” networks.”
(ABI Research 2007).

Perhaps the most appropriate way to look at trends
in supply and demand for Internet capacity infra-
structure (local and backbone) is through the lens of a
“circular model wherein a technology infra-structure
presupposes a sustainable level of traffic to justify
its investment; which depends on sufficient penetra-
tion of client-side facilities; which, in turn, depends
on hardware and software pricing and availabil-
ity, attractive tariffs, and traffic generators requiring
infrastructure technologies to handle the traffic with
reasonable latencies” (Israelsohn 2003). Nevertheless,
as the opening quote indicates, little attention has
been paid to the investment incentives of the infras-
tructure providers to sustain services that require
a significantly higher amount of bandwidth than is
available today.

Believers in unlimited bandwidth at near-zero
prices contend that pricing mechanisms, which man-
age network congestion are irrelevant, because they
deal with a problem that will soon cease to exist.
Moreover, it is stated that such pricing policies would

only provide a disincentive for capital investment
because they discourage usage and are contrary to
customers’ desires for price simplicity (Odlyzko 2000).
Critics of pricing-based network resource allocation
further claim that a lower level of capital investment,
paired with pricing, will result in a segmentation of
the user base with a high level of service given to
those who can afford the service and a very poor
level of service or no service at all to those who can-
not afford the service, or at least a certain level of
service (e.g., Bailey et al. 1995). Many researchers have
refuted the notion of unlimited bandwidth as overly
optimistic (e.g., MacKie-Mason et al. 1995).

The issue of free access has been further compli-
cated by a plethora of new services such as voice-
over IP and Internet-based multimedia transmissions.
The emergence of these services means that indi-
viduals having the same connection may use the
networks quite differently. Internet2 protocol (see
http://www.internet2.edu/) is attempting to include
service-based routing to appropriately reserve band-
width for different services to ensure service quality.
However, this would mean that for “low band-
width” services, such as HTTP, high transmission
rates may not be available. On the network design
side, the idea of a service-based network design
has resulted in the conceptualization of overlay net-
works. The general idea of an overlay network is
to define a network of resources that share a com-
mon set of services. An overlay network defines
a logical network on top of actual network topog-
raphy. Two nodes that are next to each other in
an overlay network may be topologically far apart.
Overlay networks are perhaps best understood in
the context of peer-to-peer (P2P) Internet applica-
tions, which were popularized through file-sharing
applications such as Napster (Napster protocol spec-
ification. http://opennap.sourceforge net/napster.txt),
Gnutella (The gnutella protocol specification. http://
www.clip2.com), and Freenet (Clarke et al. 1999).

However, most of the current P2P designs are not
scalable. For example, in Napster’s case, a central
server stored the index of all of the available files.
A user had to query the central server by using a
file name or other search criteria. The central server
then obtained the IP number and connected the
user to another user machine that had the requested
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file. Thus, while the first generation of P2P systems
used decentralized storage mechanisms, the process
of locating the content was still very centralized. Sev-
eral research groups have independently proposed
a new generation of scalable P2P systems, such as
Tapestry (Zhao et al. 2004), Pastry (Rowstron and
Druschel 2001), Chord (Stoica et al. 2001), and CAN
(Ratnasamy et al. 2001). These systems use a dis-
tributed hash table (DHT) functionality, where files
are associated with a key (produced, for instance, by
hashing the file name), and each node in the system
is responsible for storing a certain range of keys. By
using such a system, essentially, a new logical service
network is generated on top of the actual network
topology, which is usually referred to as an over-
lay network. DHT defines a virtual routing table for
the purpose of a specific service, while actual rout-
ing uses IP routing at the infrastructure level. In other
words, while overlay networks provide a mechanism
to enable users to control their routes by relaying
through overlay nodes, the route between two over-
lay nodes is still governed by the underlying routing
protocol (see Savage et al. 1999).

While the context of P2P networks helps illustrate
the ideas surrounding overlay networks, one of the
key applications for the concept of overlay networks
is in content distribution networks (CDNs) for dis-
tributed resource management and access. Overlay
networks can allow companies to locate their con-
tent close to users. In other words, data can be made
available at the edge of individual networks of a
geographically distributed organization. For example,
synchronized data can be made available in a dis-
tributed fashion instead of invariably loading it from
a central server or by using explicit updating schemes
that may make the data stale. In addition, the com-
putational resources of an organization as a whole
can be tapped to provide businesses with large-scale
computer processing capabilities.

As the discussion above indicates, the distributed
content management and provision is going to be a
significant challenge in the near future. One of the key
issues in provisioning content is the capacity man-
agement and infrastructure investment that infras-
tructure providers, such as Internet Service Providers
(ISPs) or even CDNs, need to make. In this paper,
we examine the issue of capital investment incentives

and capacity expansion for an arbitrary computer net-
work that provides a variety of services via a dis-
tributed network. We use an economic theory-based
simulation approach to examine the issue of optimal
network capacity investment with and without pric-
ing. The simulation experiments compare the capac-
ity investment process in a network that manages its
usage through congestion-based pricing to the capac-
ity investment process in a network that uses flat-rate
pricing. Congestion-based pricing is usage-based pric-
ing that is computed based on the negative externality
imposed by a requested service (see Gupta et al. 1996,
for the details of this pricing approach). The negative
externality can be seen as the monetary value of delay
that a given service imposes on the rest of the users in
the system. An outcome of congestion-based pricing
is that users are charged higher amounts for services
when the network components are relatively busy
(congested) and lower amounts for services when the
network components are relatively less congested.

In this paper, our goal is twofold: to develop
a methodology to determine a choice of optimal
capacity by an infrastructure provider under different
pricing schemes; and to perform a sensitivity anal-
ysis on this choice of capacity under varying mar-
ket conditions, i.e., using different costs of capacity
and users’ value for services. The computation of the
optimal distribution of capacity among different net-
work components is a nontrivial task. We develop a
theoretically motivated gradient-based heuristic that
allows us to determine the maximum investment in
the capacity of a network at a given external load.
The heuristic we develop does not provide a guaran-
teed optimal distribution of capacity among various
network components. Therefore we use an iterative
approach to redistribute capacities until the theoreti-
cal conditions for optimality are met within compu-
tational limits. The benefit of our approach is that it
can be used with both congestion-based and flat-rate
pricing approaches.

We conduct simulation experiments with various
external loads and market conditions. The results
show that the ability of a pricing scheme to pro-
vide investment incentives depends on the relation-
ship between the per unit cost of the network capacity
and the average value users place on the services
provided by the network. Other factors such as the
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average users’ cost of time, i.e., the average rate at
which the value of a service decays as user is wait-
ing for its completion, and the level of the avail-
ability of services' have some impact as well. Our
results indicate that claims of congestion-based pric-
ing being “investment unfriendly” are generally not
correct. In particular, our results provide a rationale
for the historical change in pricing approaches from
usage-based pricing to flat-rate pricing and provide
insights for future pricing strategies.

The simulation model investigates capacity expan-
sion incentives under two different overall objectives:
(i) when the infrastructure provider is maximizing
social welfare, ie., the aggregation of revenue and
consumer surplus and (ii) when the infrastructure
provider is maximizing its profits. We show that the
ability of a pricing scheme to motivate higher levels
of socially optimal investment depends on the nature
of the demand for services on the network of inter-
est as well as on certain characteristics of the network
itself. We also show that under congestion-based pric-
ing, enough profits are generated at a socially optimal
capacity level to cover almost the entire investment
in capacity. However, the level of capacity at which
profits are maximized falls short of the socially opti-
mal capacity level. Therefore, a key takeaway is that
treating the computer network as a profit-maximizing
resource may result in an overall lower level of net-
work capacity.

The rest of this paper is organized as follows. In
§2, we present a brief background on pricing meth-
ods for computer and network services. In §3, we
present the heuristic and implementation details of
our approach for expanding the capacity of a network
from an arbitrary level to a socially optimal level with
externality-based pricing. Section 4 presents the sim-
ulation implementation of the theoretical approach
and outlines our experiments. Section 5 presents the
results from the simulation study and the implications
of different pricing schemes on the network expan-
sion. We conclude with directions for future research.

2. Background
The pricing of computing services has been stud-
ied extensively during the last decade by researchers

! As expressed through the total number of servers on the network
offering a particular subset of services.

in diverse areas such as computer science, eco-
nomics, operations research, and management. More-
over, there exists a large body of literature from the
60s, 70s, and 80s, which covers a variety of approaches
to controlling access to a telecommunication, trans-
portation, manufacturing, or computer system. For a
good review of earlier models, we recommend Stid-
ham (1985). More recently considered approaches vary
from the use of dynamic auctions (MacKie-Mason and
Varian 1995) to applications of general equilibrium
theory (Gupta et al. 1997a). Congestion-based pricing
was initially proposed by Naor (1969) as a way to
optimize the use of one computing resource. Mendel-
son and Whang (1990) presented an optimal pricing
scheme in closed form for a system in which the
user possesses information on both delay cost and
expected service time, and is oriented toward self-
interest rather than an overall system optimization.
Stahl and Whinston (1994) independently developed
a similar theoretical model for distributed computing.
Further extension of that work resulted in an opti-
mal pricing model of a networked computing system
by Gupta et al. (1996, 1997a). The common feature of
these models is that the optimal congestion price for
an incoming service request corresponds to the addi-
tional cost of waiting imposed on the job requests that
are currently in the system. The service request will
be submitted only if its utility exceeds this congestion-
based price, and, in turn, the loss of utility that it
imposes on the system. We use and expand this theo-
retical model to study network capacity issues.

The implementation of the congestion pricing
scheme in combination with the newly developed
demand estimation techniques by Gupta et al. (1997c,
2000) is incentive compatible, i.e.,, users are pro-
vided no incentive for behavior that may exploit the
process of information extraction and price setting.
The solution provided by this pricing scheme is nearly
optimal (i.e., results in social welfare-maximizing allo-
cation), because optimal prices are computationally
approximated and adjusted periodically. In addition,
in Gupta et al. (2000), it was shown that users’ private
delay cost can be estimated, using a nonparametric
technique, from observing the users’ choice behav-
ior. The technique involves reverse optimizing users’
decision model and generating optimal parameter



>
[]
S
Q
=
()
<
|_
(%)
—
(0
o
=
o
(%]
Qo
=}
(%]
©
(=
el
e}
=)
5=
—
(]
£
[e]
—
Q
Qo
]
g
©
[0}
O
(]
IS
2
<
2
<
B
<)
2
[}
—
(9}
>
8
3
>
o
<
£
1))
S
=
o
<
D
<
+—
]
—
4
<
D
=
>
Q.
o
o
(]
o
]
<
(5}
p=
o
)
LL
<
4
<
o)
=
>
[=3
[}
(&)

o
=
o
(2}
S
=
'S
=
®
(2}
c
el
0
0
S
=
()
o
@]
—
>
Q
S
o
D
=
+—
(o))
=
©
=
©
(o))
(0)
=
()]
c
L
=1}
[%)]
()
>
O
>
C
©
©
c
()
(%]
()
(2]
(1]
Qo
o
)
5=
(7]
w
T
o
e
=
>
©
(0]
e
=
()]
=
©
=
o
=
)
5=
[%2]
o]
()
=
—
()
=
-—
o
>
C
©
c
o
°
(0]
—
[%2]
o
o
()
o
-
(]
c

Gupta et al.: An Analysis of Incentives for Network Infrastructure Investment Under Different Pricing Strategies

Information Systems Research, Articles in Advance, pp. 1-21, ©2010 INFORMS

ranges. These ranges can then be aggregated using
a quasi-Bayesian update algorithm which, is similar
to the product limit estimate method described in
Kaplan and Meier (1958), and uses some of the prop-
erties of the maximum likelihood method similar to
Harris et al. (1950). Gupta et al. (2000) further show
that such an estimate could be used in pricing without
significant loss in efficiency in terms of realized ben-
efits when comparing the deployment of the pricing
scheme using estimated delay cost versus the deploy-
ment of the same pricing scheme that uses (in real-life
unobservable) actual delay cost for each submission.

More recently, attention has been given to the long-
term problem, in which a firm can modify the levels
of available capacity to reach its objectives. Dewan
and Mendelson (1990), Stidham (1992), and Dewan
(1996) have investigated the issue of capacity expan-
sion for a system consisting of one facility under
a variety of pricing and control structures. In this
paper, we investigate the impact of different pricing
policies on computer networks consisting of multi-
ple servers with the possibility of changing the exist-
ing levels of capacity in unequal amounts using a
gradient-based heuristic. This heuristic computes an
expression for the direction of capacity expansion for
a network using congestion-based pricing based only
on the observable parameters using existing network
management technology.

3. Theoretical Background and

a Heuristic for Network

Capacity Expansion
In this section, we present the theoretical back-
ground and develop a gradient-based heuristic for
network capacity expansion. Specifically, this work
extends the Gupta et al. (1997a), however, unlike
Gupta et al. (1997a), we focus on the impact of both
pricing schemes on the long-term management of net-
work involving capacity provision. We derive optimal
capacity expansion vector for a network at a given
exogenous rate to achieve optimal network capac-
ity by employing a theoretically grounded expansion
method for congestion-based pricing. The heuristic
is developed with the objective of maximizing social
welfare, ie., to maximize the sum of systemwide

benefits as reflected by the sum of collected revenues
by the infrastructure provider and users’ surplus.
As Gupta et al. (1997a) show, this social welfare-
maximizing allocation can be supported by dynamic
prices resulting in a “stochastic equilibrium.” Under
stochastic equilibrium, users myopically consume the
socially optimal level of network services. Specifically,
a stochastic equilibrium satisfies three conditions: (i)
user service requests are optimal for each user given
the prices and anticipated waiting times; (ii) the antic-
ipated waiting times are the correct ex ante expected
waiting times given the average flow rates; and (iii)
the aggregate average flow rates are equal to the
welfare-maximizing rates. While the idea of a socially
motivated monopolist with a goal of system benefits
maximization may be considered unrealistic, we use
this method to create a benchmark for more market-
oriented models.

The gradient-based heuristic provides an easy com-
putational approach to increase the capacity of a net-
work’s individual component, while determining the
optimal level of capacity at a given external load.
The general strategy for determining the appropri-
ate allocation of capacity, given a certain level of
demand, is based on a two-step process consisting
of: (i) using the analytical expressions that provide a
vector of directions for capacity expansion for servers
that make up a given network and (ii) moving in the
direction provided by step (i) in a judicious fashion,
keeping the total amount of capacity increment rela-
tively small. Steps (i)—(ii) are repeated until a capac-
ity level is reached where no further gains can be
obtained by expanding the capacity. This gradient-
based heuristic does not necessarily provide the opti-
mal capacity expansion path. However, because the
increments are relatively small and the number of
steps is large, the final reallocation approaches the
capacity allocation among servers that would be
reached via the optimal path as well. We verified
this claim numerically by developing a computational
approach that reallocates the capacity among the dif-
ferent components of the network such that the result-
ing allocation of capacities across these components is
near optimal at every level during the expansion. We
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provide comparison results and a short discussion in
the online Appendix A2.2

Our model of the network
follows:

(i) There are M servers in the network, each server
m (m e {1,..., M}) offers a subset of a total of S
services available on the network.

(ii) Each services (s€{1,...,S}) is available on one
Or more servers.

(iii) The network serves I myopic users that maxi-
mize their net benefits.

(iv) Let V,, denote the instantaneous value to user i
(iefl,...,I}) of service s, i.e., the value of the service
if the service was delivered without delay.

(v) Let 6,, denote user i’s cost of waiting per unit
time for service s.

(vi) Also, let 7, denote the expected throughput
time for service s on server m; it consists of service
time (which depends on service size g,) and time
spent waiting in a server’s queue (w,,).

(vii) Finally, let x,,,, represent the average flow (per
unit of time) of requests by user i and for service s at
server m.

Note that our generic model encompasses the
framework of overlay networks and maps the struc-
ture of CDNs closely.

The social welfare objective function aggregates
all of the benefits realized by the users of the net-
work through services obtained, minus the irrecover-
able deadweight losses (waiting costs suffered by the
users).? It can be written as follows:

W(x, K) = ZZZ[‘/ZS - SiSTsm(qs/ wm(Xml Km))]xisml

is described as

1<i<I; 1<s<S; 1<m<M, (1)

2 Additional information is contained in an online appendix to this
papaer that is available on the Information Systems Research website
(http://isr.pubs.informs.org/ecompanion.html).

3 As stated by Hassin and Haviv (2003), among many others,
“...when a system is considered from a social point of view,
assuming social net welfare maximization, payment transferred
between system constituents has a zero net effect on social welfare
and therefore no effect on the system’s optimization.” Equivalently,
in our model, that is based on the social welfare maximization
assumption, the aggregate systemwide benefits do not include the
monetary payments from users to the service provider because
these payments are merely transfers from one element of the sys-
tem (user) to another (server).

where demand flow x is an element of RM*:
X={xgp:1<i<I,1<s<§,1<m=<M}; K is a vec-
tor of system capacity: K € R¥: {K,:1<m=<M);
and X, represents all flow rates to server m: X,, =
[ 1<i<1,1<s<S5}.

Capacity is defined as the ability of the individ-
ual server to handle the flow of job requests. It is
expressed as the number of data size units per time
unit (e.g., bits per second). This corresponds to the
flow of job requests multiplied by the measurement
of the job’s size.

Gupta et al. (1996, 1997a) show that congestion-
based prices p,, can be computed and regularly
updated for each service s offered on server m,
resulting in the maximization of the objective func-
tion (3). Consequently, our capacity expansion dis-
cussion and analysis will be based on the situation
in which the pricing scheme makes sure that satis-
fied demand flows are welfare-optimizing demand
flows, denoted x*(K), given the fixed level of capac-
ity. When the aggregate level of capacity of network
components changes, then the allocation of the over-
all network capacity to the individual server compo-
nents and the resulting satisfied net demand for all
the server/service combinations will change as well.
Therefore our first goal is to find an approach that
addresses the capacity allocation for the network as its
aggregate capacity expands.

Note that, from Equation (1), dW/dK,, = dW /IK,, +
V.W(dx/dK,,) for all servers m. If demand flow x(K)
is optimized with respect to systemwide capacity K,
then (V,W),_,. =0, and hence

dW[x*(K), K] _ (aw> '
£ (K)

K K. @

m

The envelope theorem, used above, is a result of
the application of the chain rule and the first-order
condition for unconstrained maximization. The term
“envelope” is motivated by the fact that the value
function B(K) = W[x*(K), K] representing optimized
system-wide benefits for any feasible vector K of
system capacity, is given by the upper envelope of
W|x, K].

Having defined systemwide benefits B(K) as the
optimal benefits achieved (through the use of a pricing
mechanism that guarantees optimal demand flows)
for any level of capacity and allocation of system
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wide capacity K. The problem of finding the level and
allocation of capacity K that will maximize the sys-
temwide benefits B(K) can be represented as follows:

max B(K) —¢(Ke), ®)

where e = (1,...,1) € RM, and ¢ represents the per-
unit cost of capacity* at the optimal flow level x*(K).
We use a gradient search method, starting at an arbi-
trary initial vector of capacity K,, and moving in the
direction of the gradient of [B(K) — c(Ke)] in small
steps, recomputing the gradient after each step.’

We can write the individual components of the nor-
malized gradient vector as follows:

. _ (9B/IK,, —c)

_ ) 4
"= VB ce *)

as long as
VBO* — ce > 0. (5)

We now derive an expression for Equation (4) in
terms of observable parameter values. The basic task
is that of finding an expression for the dependency
between the increase in systemwide welfare and the
increase in servers’ capacity VB. Proposition 1 pro-
vides the expression for VB in terms of observable
parameters.

ProrosiTION 1. Each individual component of VB in
Equation (4) can be expressed as

(Zi Zs aisxismqs)
dB/oK,, = R

9Q,,(X,,K,,
- Z Z 8isxism % ’ (6)

m

where the queuing time at server m: w,, is expressed as a
generic function Q,, of the set of all flow rates to server

*1t is assumed that unit cost of capacity remains the same through-
out the expansion regardless of a particular server and its existing
capacity level.

® An alternative would be to find the direction that maximizes the
incremental net benefit/cost ratio; however, starting at an arbitrary
Ky, the first step may require massive reallocations, which would
be impractical given adjustment costs. In contrast, following the
gradient minimizes adjustment costs. Both methods will find the
optimal K* in well-behaved problems. The results of this compari-
son are shown in Online Appendix A2.

¢ Further discussion of this expression is in the online Appendix Al.

m: (X, = (x5, 1 <i<1,1<s<S}) and the capacity of
server m:

w, =0, (X,K,), 1<m<M. 7)

Proor. Taking the first derivative of the benefit
function

B(K) =222 Vs = 8isTan (s, 0 (X, Ku))IX,, (8)

with respect to each individual server’s capacity
(K,,), we obtain the equations expressing the relation-
ship between the increases in the systemwide welfare
and the individual server’s capacity. Note that, from
this point on, we will use the expression for a demand
flow for each service s on each machine m, gener-
ated by each user i: x;,, without a superscript “ *,”
assuming that it is clear that these are the welfare-

maximizing flows x7,,:

B g (Gs, W)
K Xl: XS: ;s Xism TK. )

We can represent the total throughput time for
service s at server m, 7, as follows:

b = 2= + 0y, (10)

m

where the first term represents the service time on the
server m for a service s, while the second term repre-
sents the accumulated queuing time on server m. Sub-
stituting the Equations (7) and (10) into Equation (9),
and taking first derivative, with respect to K results in
the expression presented in the Proposition 1. Q.E.D.

We can rewrite the expression (6) as follows to fur-
ther emphasize the fact that its value can be obtained
in the terms of performance parameters measured at
each server:

K Emc(S)K—% - Em(a)me/ (11)
where

Em(a) :Zi Zs 8isxism/2i Zs Xism is the ”per service
request” expected delay cost on server m;
Ec(8) =201 8iXiams/ 2oi 2os Xismqs 18 the weighted
“per capacity/service size unit” delay cost on
server m;
Xy =D i 26 Xism 15 the job flow at server m, aggre-
gated across all users i and services s;
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m=2_i > sXismds is the aggregate computation
cycle flow to server m, which is the average
demand for that server’s capacity per unit
time.

The only part of the expression (11) that cannot be
obtained through measurement is d9Q,,(X,,, K,,)/9K,,.
For the purpose of expanding the capacity of our
simulated network, we approximate queues at all the
servers with an M/G/1 queuing system. Even though
the arrival process to each individual server in real
computer networks is not expected to be Markovian,
this approximation is appropriate for our high-level
simulation model of the computer network as a sys-
tem of parallel queues. In a real-life implementation,
this capacity expansion model could use a compu-
tational approach such as perturbation analysis to
obtain the values of the derivative of waiting time
function with respect to the capacity dw,,/dK,, for
each server m.

By approximating queues at all the servers with an
M/G/1 queuing system, we can express the individ-
ual component of VB entirely in terms of measurable
values as shown Proposition 2.

ProposITION 2. In an M/G/1 queuing system, each
individual component of VB in Equation (4) can be
expressed as follows:

dB m_Zistismqs
R, = Enc O +En(Bwh =S,

Proor. We start with a Pollaczek-Khinchin formula
for average waiting time in an M/G/1 system (Klein-
rock 1975)

(12)

= (21— p)) ' AE(T?), (13)

where A is the aggregate flow of submitted requests
into the system, E(T) is the expected service time and
p is the utilization ratio. For each individual machine
m, the utilization ratio can be written in our nota-
tion as p,, = >; > Xjeu(9,/K,,). Similarly, the second
component of the Pollaczek-Khinchin equation can
be written as A, E(T2) =3, Y. X;...(p2/K2). The aver-
age delay at each individual machine can then be
expressed as

=<2—2;2$jxi5mlz—;> X s (19

i

Rearranging the terms, we get

Zi Zs xismqs2
2K1%1 - 2Km Zi Zs Xism9s

Taking the derivative with respect to K,,, we get

= QL (Xi, Ky) = (15)

I (X, Kin)
T - _<4Km _ZXi:XS:xismqs>
. Zistismqsz (16)
(ZK% _2Km ZiZs xismqs)2 ’
which can be expressed in terms of w,, as
aﬂm(xml Km) _ w; (4Km -2 Zi Zs xismqs) (17)
aKm B Zi Zs xismqsz .

Substituting (17) into (11), we get Equation (12).
Q.E.D.

In the simulation model, we use Equation (12)
to evaluate and expand the network capacities.” To
analyze the system performance across the feasible
systemwide capacity range, we use the following
two-step approach:

(i) Move a small fixed length in the direction com-
puted using Equations (4) and (12) to a new level of
capacity for each component of the network;

(ii) Rerun the simulation at this new level of net-
work capacity, until the stochastic equilibrium is
reached again with the new capacity levels.®

This process is repeated until expanding capacities
do not yield any additional benefits, i.e., we continue
our expansion until we reach a capacity saturation
point at which all congestion is eliminated and adding
additional level of capacity does not have any impact.
Naturally, different objectives, such as social welfare
maximization and profit maximization, will lead to

”Note that the effect of variance of the waiting time on the values
dB/dK,, is captured through a multiplier w? in the second term of
the equation.

8 For comparison purposes, we also use a capacity reallocation
scheme to see the impact of nonoptimal expansion paths generated
by our gradient method. To do so, at each level, we subtract ge/n
from dB/dK, where n is number of servers in the network and ¢ =
(dB/dK)e. This scheme computes the new reallocation at the same
aggregate capacity level. We do this until no further benefits are
generated by reallocation. This approach ensures that the capacity
distribution among the network components is consistent with an
implicit budget constraint.
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Figure 1 Conceptual Model of the Internet

The

the different levels of capacity at which the expansion
process will be stopped.’

In the next section, we will describe the main fea-
tures of our simulation environment.

4. Simulation Model and Description

of Experiments
In this section, we outline the set of simulation exper-
iments designed to determine the impact of a pricing

 We do not compute the optimal step length each time the direction
of capacity expansion is calculated for the following reasons: First,
even if computed, expansion using the optimal step length (varying
from one step to another) may not be feasible because the pro-
cess may be constrained by other external factors such as sched-
uled budget expenditures, contracts with suppliers, movement of
component prices in the market, engineering, and architectural
concerns. Second, if we extended our gradient-based approach to
include determination of the optimal step length with social wel-
fare pricing and used it in our simulation model, the comparisons
of net benefits delivered under different pricing schemes at iden-
tical levels of capacity at each step, as described in the next sec-
tion, would not be possible. Finally, as a matter of practical con-
cern, computation of optimal step length in our simulation model
would involve running additional iterations of simulation model,
drastically increasing the already impressive computational bur-
den. Nonetheless, we develop an iterative approach that reallocates
the capacity, at a given overall network capacity, based on marginal
benefits at each component.

Internet
backbone

Database

Users

scheme on network capacity investment. All the sim-
ulation experiments described here are based on the
conceptual model of the Internet (Figure 1) developed
by Gupta et al. (1997b). This model treats the Internet
infrastructure as a “black box,” where the total delay
is modeled in such a manner that it appears that the
delay is only suffered at the server.!” The users are
connected to the Internet through access providers,
which we can consider as a service in itself. The
access and service providers, such as news, movies,
and videoconferencing, are “directly” connected to
the Internet through a datapipeline of a certain capac-
ity, with this capacity being the bottleneck for the ser-
vice providers. This assumption is consistent with the
situation in which the servers have bandwidth limi-
tations as is the case with CDNSs.

4.1. Comparing System Expansion Under
Congestion Pricing and Flat-Rate Pricing

4.1.1. Congestion Pricing. In the absence of any
usage-based pricing mechanism, as more users
demand services, the quality of the service (in terms
of data transfer rates) suffers.!! Our benchmark model

0 The delay within the backbone can be easily modeled as in Gupta
et al. (1997a).

" Note that some users might decide not to get the service because
of excessive delays. However, users with a negligible delay costs
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Figure 2 Flow Diagram of the Simulation Model

> Start simulation at the initial capacity level K,

Start generating arrivals to the system with
exogenous arrival rate X,

v

¥

—Generate service choice s, service value

—Find lowest total cost server and calculate
total cost

Compute and store predicted waiting

Vs delay &, for each request s by each user

Is service value V; > total cost?
No

Yes

times and rental prices on each server

}

Wait T time units since last update

Yes

User’s request is
not submitted

Submit and
process the request

¥

Update rental prices pg,, and expected waiting
time estimates w,, for all servers m and services s

expansion vector

Collect the performance measures at
each server and use them to compute the

Sufficient number of updates
completed

Increase the capacity
of the system by a fixed
amount in the
optimal direction

assumes that the network service providers are able
to monitor the loads at different servers and that
the access price for a server is a function of the
load imposed on that server. When these prices are
based on the congestion-pricing model of Gupta et al.
(1997a), then the equilibrium flow of a submitted
request to each server is optimized.

Figure 2 provides a flow diagram of the simula-
tion model. We can interpret X, as the arrival rate to
the system that would occur if there were free access
and zero expected waiting times (i.e., the hypothetical
noncongested arrival rate or the demand for network
services). The realized arrival rate into the system,
being price and delay sensitive, is always less than X,,.

factor §; when compared to their service value will try to obtain the
service regardless of the delays. Thus, with no pricing mechanism,
in the periods of high demand for the system’s service, the users
with the lowest value of time relative to their service value may
crowd out the access to the services for users whose service value
diminishes more rapidly with time.

Desired region of capacity
expansion covered?

Terminate simulation and
collect all results

In the simulation model, a service s is character-
ized by the load it imposes on a server (data pipeline).
Upon the arrival of a potential service request, the type
of service is identified. Then, the current prices for
all servers m that offer the service s: p,,, and the pre-
dicted average waiting times w,, are obtained. Prices
and expected waiting times are updated each passage
of the fixed interval of time. Users’ values and delay
costs are generated from normal distributions such
that the mean delay costs are less than 1% of the mean
job value. Users evaluate the aggregate expected cost
of a service (i.e., delay cost + the service cost) against
their value for that service. If the total cost of a service
is higher than the value for that service, the user exits
the system; otherwise, the user submits the request to
the system.'?

A user’s request is sent to the server that was cho-
sen as the least costly server. If the server queue is

12 Realistically, this work would be done by a smart agent executing
on the user’s machine.
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empty, the request is immediately processed. How-
ever, if there are other job requests in the server
queue, then the requests are handled in a first-in-first-
out (FIFO) manner.

4.1.2. Flat-Rate Pricing. The results of the capac-
ity expansion experiments under congestion-based
pricing are compared with results of the capacity
expansion experiments under zero pricing. In this
set of experiments, users do not face any monetary
charges for the individual submission of their service
requests, but they still decide whether or not to sub-
mit a request based on the expected waiting time, and
associated cost of waiting. This scheme is represen-
tative of all flat-rate pricing schemes.!* The flow dia-
gram for the flat-rate pricing case is identical to the
one shown in Figure 2. The only difference in the exe-
cution of the simulation experiment is that no prices
for individual submissions are being computed and
stored at servers. Consequently, the total cost for a
service includes only the cost of waiting.

4.2. Amount and Direction of Capacity Increments
In the first set of experiments, the capacity of the
whole system is increased by a small, fixed amount
in each successive simulation run. A small, fixed
amount does not correspond to the vector of constant
length in a Euclidean n-dimensional space as out-
lined in the description of the theoretical model, but

BIn reality, servers as defined in this paper execute arriv-
ing requests simultaneously, processing units of different service
requests in some variation of round robin scheme. However, the
total throughput time is still the sum of the service time and the
time spent waiting for the service to be executed. For the jobs arriv-
ing early, FIFO assumption will result in under-reported waiting
times while for jobs arriving later, this same assumption will result
in over-reported waiting times. However, for the average waiting
times, these assumptions will not result in significant bias.

“Note that, in our welfare maximization analysis, the size of the
upfront flat fee does not matter, because as pointed out in foot-
note 3, all payment transfers between system constituents have zero
net effect. Assumption of the zero flat fee simply guarantees that
exogenous arrival rate will be the same under both mechanisms.
One could conceivably imagine a set of experiments where the
exogenous arrival rate is lower (implying nonzero flat fee) and indi-
vidual submission decisions are still based on the trade-off between
request valuation and the delay cost. However, those experiments
would result in the flow rates that cannot result in systemwide net
benefits that are higher than under zero pricing. Therefore, zero
pricing represents the best possible benchmark comparison.

it does provide for an accurate performance compari-
son of systems operating under two different pricing
schemes at identical levels of systemwide capaci-
ties. In the congestion-based pricing case, the portion
of the increase given to each individual server was
determined by using a modification of the gradient
method, which is explained in the previous section.
Essentially, we move in the direction of the gradient of
B and we adjust the stepsize so the aggregate change
in capacity is fixed to 6 = VB/||VB]||.

This method could be described as a modi-
fied gradient approach with variable stepsize. After
increasing the capacity, the simulation is run again
until the job request flows reach the level that max-
imizes the sum of net benefits generated on the
network for the new level of network capacity.
We construct the entire capacity expansion path by
repeating the procedure until no additional benefits
are derived from increasing the capacity. Note that we
are purposely setting the unit capacity cost to zero
in the expansion vector calculation during this exper-
iment to observe the expansion process across the
entire meaningful range of systemwide capacity lev-
els. The issue of capacity cost is not ignored though.
It is addressed by including the capacity cost curve
in the expansion path graphs as shown in §5, and by
performing the additional set of computations using
the budget constraints.

As mentioned in §3, the direction of increase at
the individual component level is not usually opti-
mal unless a budget constraint is used.'® To compare
how well our simple gradient approach performs
with respect to an “optimal” allocation, we develop
an iterative approach that reallocates capacities until
the marginal benefits at each network component are
similar. The comparison of the results using our mod-
ified gradient-based approach, with and without real-
location, reveals that at the level of capacity, which
has the maximum amount of net benefits realized, the
difference in performance between these two methods
is minor.

15 A budget constraint approach requires significant additional com-
putational burden. In addition, in a large system with reasonable
balanced design, the benefits gained by putting additional con-
straint may not be significant.
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We have also conducted a second set of capacity
expansion experiments, this time keeping the incre-
ment fixed in a Euclidean sense. The simple gradient
method with a fixed Euclidean stepsize is quasi-
optimal, provided the adjustment costs are quadratic
and dominate budget concerns.'® While this approach
resulted in varying lengths of systemwide capacity
increments, the overall expansion curve closely corre-
sponded to the one obtained in the experiments when
increments were of a fixed size."”

Experiments were also conducted under a flat pric-
ing regime. In this case, we use another simple heuris-
tic for expanding capacity. Essentially, we apportion
a fixed capacity increment to all of the servers based
on the square of the waiting times experienced at
each server, recognizing that the dependency between
increases in benefits and increases in capacity on
each server is still approximately proportionate to that
measure in our gradient expression, as indicated in
Equation 12.

4.3. Simulated Network Elements and Services
The results presented here are based on a model with
50 servers'® and 100 services. A server can provide
several of the 100 services, and a service can be pro-
vided on up to 25 servers. For the purpose of the
capacity expansion experiment, the initial capacity of
the whole system was set to be very low, at 6.4 Mbps,
where each of the 50 servers received an identical
amount of capacity, 0.128 Mbps. Even though the
servers are homogenous in terms of size, they are not
homogenous with respect to the number and size of
services offered. A sample of the service directory is
provided in Table 1.

To address the impact of more severe differences
of initial capacity distribution, another set of exper-
iments was conducted, with the majority of the ini-
tial level of capacity apportioned to only one server.
These results showed no qualitative difference from

16 A full optimization would entail finding the optimal stepsize at
each level.

7For the purpose of review, we provide these results in Online
Appendix A5.

8The word “server” as used in this section, refers to the data
pipeline bottleneck, and its capacity is the bandwidth of that
bottleneck.

Table 1 A Sample of the Service Directory Used in the Experiments

Server number
(total number of 0 1 2 3 4 5 6 48 49
services offered) (28) (40) (29) (21) (22) (34) (29) (24) (27)

Service 0 available 0
Service 1 available 0
Service 2 available 0
Service 3 available 0
Service 4 available 0
Service 98 available 0
Service 99 available 0

oo coo—-oco
O o= 20O
co ocoocoocoo
co o—-o0o =
oo coo—-o0co
co oo —=o =
co o —=o

SCoocoococo —

the experiment runs with a balanced starting sce-
nario.”” Therefore the simulation model seems to be
robust against the starting bias in reaching the opti-
mal level of capacity. The size of each service is ran-
domly generated to be in the range of 10 Kb-15 Mb.
The mean size of a service is 2.4 Mb. The service direc-
tory and the network configuration were kept con-
stant for all experiments.

5. Simulation Results and

Interpretation
We have conducted simulation runs at exogenous
arrival rates of X, =50, 100, 200, and 500 requests per
second for the system under (i) the flat-rate pricing
policy and (ii) the congestion-based pricing policy. At
each capacity level, we executed multiple runs using
differently seeded, random values for all exogenous
arrival rates. We report the average value of benefits
in the steady state, where benefits represent the aggre-
gate amount of the values of a job currently in the sys-
tem minus the total current delay costs, as expressed
in (3). The benefit value reported at each capacity
level is an average value during the last 2,000 update
periods. Our results proved to be very robust with
optimal levels of capacity experiencing no fluctuation
under all four exogenous job arrival rates. The current
analysis builds on and extends the findings presented
by Gupta et al. (1997a) by comparing the impact of
congestion-based pricing and flat-rate pricing in the
long-term scenario that involves not only the policies
for management of the network under a given level

YFor the interested reader, we provide these results in online
Appendix A6.
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Figure 3 Benefits Generated ($/Second) Under Both Pricing Schemes for the Exogenous Arrival Rate of 100 Requests/Second
Exogenous arrival rate x = 100 requests/sec
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Systemwide network capacity (Mbps)

Note. Capacity is expressed in Megabits/second.

of systems capacity, but also the policies for expan-
sion of the network and the impact of management
decisions as it grows to match the demand.

5.1. Benefits Generated Through

Congestion-Based and Flat-Rate

Pricing as the Network Expands
As a measure of the network performance, we used
the average benefits (per time unit) realized as a result
of the new amount of capacity added to the system.”
Figure 3 shows the results of the simulation runs
for the arrival rate of 100 requests per second. We
conducted this analysis at various exogenous arrival
rates (50, 200, and 500 requests/second) to simulate
different load conditions. The results are provided
in Online Appendix A3. These results indicate that
implications of our findings are robust under a wide
array of exogenous load conditions. Also included
in these graphs are two straight lines reflecting dif-
ferent levels of capacity cost. The steeper line illus-
trates the case where the per unit cost of capacity

% Average benefits were measured once network has reached
steady state, characterized by very low fluctuation in prices, flow
rates, and expected waiting times at all servers.

equals the average value of the users’ request for ser-
vice. The cost line representing half of the original
per unit capacity cost is also provided. The thin line
represents the growth of realized systemwide bene-
fits under congestion-based pricing as we increase the
systemwide capacity. The benefits are growing in a
concave fashion, reaching a point (a certain amount of
capacity) after which additional expansion costs more
than the value of the additional benefits. These points
are marked as A and A’ for the two per unit cost lines,
respectively. Notice the impact of the per unit cost of
capacity on the maximal level* of systemwide capac-
ity in the flat-rate pricing case. The optimal capacity is
either zero (point B) when the per unit cost of capac-
ity equals the average value of the users’ request, or
at a level slightly exceeding the entire average exoge-
nous demand” when the per unit cost of capacity is
twice as low (point B).

This result shows that the impact of a pricing
scheme on the maximal level of capacity expansion

2 We designate the maximal level where the new benefits or profits
are maximized using either of the expansion approaches—with or
without reallocation.

2 Note that 100 arrivals/sec * 2.4 Mb = 240 Mbps.
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depends on the infrastructure cost; this impact is sum-
marized in the following observation

OBSERVATION 1. Flat-rate pricing results in a higher
level of capacity than the benchmark congestion-
based pricing strategy only when the per unit price
of capacity is low compared to the user’s valuation
of services. Congestion-based pricing may make pos-
sible the deployment of systems in an earlier phase
of the underlying technology development, with a
higher price/performance ratio.

Interestingly, Observation 1 provides a rationale for
a widely adopted usage-based (time-based) pricing
prevalent in the early stages of Internet evolution
when the cost of technology was relatively high and
the service valuation relatively low. Figure 3 also
compares the performances of both pricing schemes
with respect to the amounts of net benefits deliv-
ered, which are the differences between systemwide
benefits and systemwide capacity costs and are rep-
resented by vertical, dashed lines at maximal capac-
ity points. The system under congestion-based pricing
performs better, i.e., has a higher sum of net bene-
fits than the system under the flat-rate pricing policy.
Better performance under congestion-based pricing is
also noticeable at every other level of systemwide
network capacity, where simulation runs were con-
ducted. This can be summarized in Observation 2.

OBsERVATION 2. Congestion-based pricing delivers
an equal or higher systemwide amount of net benefits
than the flat-rate pricing at any given system capacity
level.

Note that a huge gap between benefits delivered
under the two pricing schemes exists for a large
range of systemwide capacities (between 40 Mbps
and 220 Mbps in Figure 3, for example). This gap
is a consequence of slow growth in benefits with
respect to capacity under flat-rate pricing. In other
words, a very small marginal increase in benefits
occurs as long as the systems capacity is below the
average exogenous demand. We noted a large dif-
ference in submission rates, queue lengths, and average
delays in the flat-rate priced network for lower levels
of capacity as compared to the congestion-priced net-
work. For a given level of capacity (lower than the
average exogenous demand), submission rates, cor-
responding queue lengths, and waiting times were
much higher under flat-rate pricing. To investigate the

importance of the average delay cost factor, we con-
ducted a series of experiments with the average delay
cost factor increased by a factor of 10. The results of
this experiment indicate that, under flat-rate pricing,
a larger average delay cost causes changes to the
shape of the expansion curve. It approaches a linear
shape, with the marginal benefits realized through the
capacity increase at earlier stages larger than in the
original case. Submission rates, corresponding queue
lengths, and average delays drop significantly, result-
ing in higher benefits. Under congestion-based pric-
ing, however, the shape of the curve does not ehibit
large changes.?® These findings can be summarized as
follows.

OBSERVATION 3. At a given demand/capacity ratio,
the size of the performance gap (the difference in the
level of delivered system benefits) between the two
pricing schemes depend on the users’ average toler-
ance for delay. The gap tends to decrease as the aver-
age tolerance for delay decreases, i.e., when customers
become more sensitive to delay.

The important managerial insight is that, as the
network performance expectations increase over time,
users are more likely to choose alternatives that can
provide higher performance even at higher prices.
Observation 3 can be explained by the fact that, even
without the congestion-based pricing mechanism, a
lower delay tolerance tends to eliminate low-valued
jobs from the queues, freeing up remaining band-
width for the higher-valued jobs. Still, we observed
that a large portion of the performance gap remains
between benefits realized under flat-rate pricing and
congestion-based pricing, even if tolerance for delay
is very low (i.e., delay cost is very high). This gap can
be explained by the fact that congestion-based pricing
considers the cost of the externality that a user’s traf-
fic imposes on other network users. Therefore, a user
implicitly submits a request only if the value of her
request exceeds the increased cost of delay imposed
on the other users. Overall, the results show that the
congestion-based pricing is much more successful in
balancing the load among servers, and ensuring that
the aggregate capacity of the system is serving the job
requests with a higher value to their users.

» Benefits realized at every level of systemwide capacity did exhibit
a slight decrease when compared to the original lower delay cost
case.
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Figure 4

Levels of Optimal Capacities (Mbps) Under Both Pricing Schemes as per Unit Cost of Capacity Drops

Optimal capacities under zero pricing and congestion-based pricing
arrival rate: 100 service requests/second
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Ratio of per unit capacity cost and the average value of users’ service request

Figure 4 shows the dependence between the maxi-
mal level of capacity and the ratio of per unit cost of
capacity and the average value of the user’s request,
for both pricing schemes. Under congestion-based
pricing, the maximal capacity levels monotonously
increase as the per unit cost of capacity decreases rela-
tive to the average value of the users’ service requests.
Under flat-rate pricing, the level of maximal capacity
is zero as long as the per unit cost of capacity exceeds
the average value of the users’ service requests. When
the per unit cost of capacity drops below the average
value of the users’ requests, the maximal level of sys-
temwide capacity jumps to a level that can satisfy the
entire average potential demand, exceeding the max-
imal capacity levels under congestion-based pricing.

The results in Figure 4 clearly demonstrate one
of the key points of this paper: In a network of
diverse servers offering a variety of services, the impact
of congestion-based pricing on the incentives for net-
work capacity investment will depend on the relationship
between the per unit cost and the average value of the
users’ service requests. If that ratio is high, congestion-
based pricing will enable the existence of a network
that simply would not be built with flat-rate pricing.
However, if that ratio is sufficiently low, the imple-
mentation of flat-rate pricing will result in a higher
level of capacity. Finally, as the per unit cost of capac-
ity approaches levels negligible in comparison to the
average value it delivers, the choice of the pricing
scheme becomes irrelevant. Under this scenario, the
amount of capacity that could be built at a very low
cost is so large that the congestion can be eliminated,

resulting in zero prices for individual submissions.
These findings can be summarized as follows.
OsBservATION 4. The optimal level of systemwide
capacity is higher under flat-rate pricing when the
per unit cost of the capacity is lower than the
average value of the users’ requests. When that
price/performance threshold is reached, i.e., the cost
of capacity is equal to the average valuation; building
a large system will be the optimal strategy under flat-
rate pricing. Congestion-based pricing will result in
an earlier deployment and a more gradual expansion
of a system. In other words, until the users start plac-
ing a high value on a service relative to the cost of
its delivery, congestion-based pricing is necessary to
provide investment incentives. However, once a high
valuation is attached to the network usage as com-
pared to capacity costs, fixed price access provides
sufficient incentives to expand the network capacity.
Observation 4 provides additional economic
rationale for the movement of Internet access pricing
from usage-based pricing to flat-rate pricing. As
enough network capacity was facilitated, and as
the users” value of network services increased with
respect to capacity costs, usage-based pricing became
less desirable because the simpler flat-rate pricing
could provide appropriate investment incentives.?*

# Figure 3 shows that benefits generated under congestion-based
pricing are never inferior to those guaranteed under zero pricing.
However, as capacity levels increase, the difference becomes neg-
ligible, and easily offset by other positive factors tied to flat-rate
charging (not accounted for in our model), such as simplicity and
convenience.
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Figure 5 Optimal Benefits ($/second) Under Both Pricing Schemes as the Unit Cost of Capacity Drops
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It is tempting to think that the price/performance
ratio of telecommunication technology is such that it
corresponds to the right-hand side of Figure 4, with
flat-rate pricing providing more incentive to expand.
This conclusion is valid if we assume that while the
cost of the network capacity is dropping, the con-
sumer’s valuation of transmissions per unit of time
remains the same. However, if the user’s diminish-
ing marginal value of quality and the frequency of
completed transmissions is taken into account, the
assumption may not hold. For example, the same
service can be offered with increasing levels of quality
(implying greater size in units of processing capacity),
which results in greater valuation of that service to
the user (such as better resolution of a video seg-
ment, or higher fidelity of an audio transmission).
However, this growth in service’s value to the user
may be smaller compared to the growth in its size,
and underlying required capacity needed to facilitate
its increased size. Also, the rate of bandwidth usage
by network users is increasing even for applications
that are functionally the same; for example, more peo-
ple use rich text e-mails now than earlier. Even if
we assume that the current level of per unit cost of
the capacity compared to the average value of the
user’s request is low (possibly very low), resulting
in a higher level of capacity under flat-rate pricing,
the performance question still remains. As we stated
in Observation 2, congestion-based pricing always
delivers higher systemwide net benefits at any given

system capacity level, including the maximal capacity
level.

Figure 5 shows the levels of net benefits delivered
at the maximal capacity levels under both pricing
schemes, as we gradually decrease the ratio between
the cost of capacity and the average value of the users’
request. This chart indicates that, while congestion-
based pricing is not consistently more investment-
friendly when compared with flat-rate pricing, it
generally outperforms flat-rate pricing with respect
to the amount of net benefits delivered. As the per
unit cost of capacity decreases relative to the aver-
age value of users’ requests, that difference becomes
smaller. This observation indicates that a significant
reduction in the cost of network resources renders the
choice of access pricing schemes irrelevant. However,
we emphasize again that while the absolute per unit
of the capacity cost of network equipment and infras-
tructure is dropping at a fast rate, it is less clear
whether such a cost relative to the users’ perceived
value of services, that such a network delivers is fol-
lowing the same trend.

5.2. Profits Generated Through Congestion-Based
Pricing as the Network Expands

It appears that there is a discrepancy between our

results and the present state of private and public net-

works, if one assumes that at present the per unit cost

of network capacity is such that the ratio between this

cost and the average value of the users’ request is
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Figure 6 Net Benefits and Net Profits ($/sec.) Under Congestion-Based Pricing and Original Unit Capacity Cost for the Exogenous Arrival Rate of
100 Requests/sec.
0.04 - Exogenous arrival rate x = 100 requests/sec
0.03 +
0.02 +
o
]
& 0.01
[2]
5 & &8 8 § §-8 8 8 § § 8 8 8
= o S 0 © - X T—_ © (o} o 0 ] o [5}
5] _001 4 — [9V) [s2} n © ~ [ee] ‘C_> : g ‘ﬂ_‘ :r_)
o
m
—-0.02 +
0,034+ Net benefits generated under congestion-based pricing
Net profits generated under congestion-based pricing
-0.04 -

Systemwide network capacity (Mbps)

Note. Capacity is expressed in Mbits/sec.

low. According to our results, regardless of the pric-
ing scheme, the optimal strategy is to expand net-
works to a level where there is very little congestion,
and most requests are served with a small amount
of delay. However, there is no proof that many net-
works, private or public, are at a capacity level where
there is very little congestion. Nonetheless, we do
see a major effort by telecommunication companies to
expand the reach of broadband access. Furthermore,
we would like to point out that it is not very real-
istic to assume that maximizing social net benefits is
the objective for network service providers (exclud-
ing private corporate networks designed to serve the
internal population of users to the maximum bene-
fit of the company).” Therefore, in this subsection,
we address the issue of capacity expansion with
profit maximization as the objective. Figure 6 shows
the profits and net benefits under congestion-based
pricing as the network capacity expands. We con-
ducted this analysis at various exogenous arrival rates
(50, 200, and 500 requests per second) to simulate dif-
ferent load conditions. The results are provided in the
online Appendix A4. These results indicate that impli-
cations of our findings are robust and none of the

P Even in those cases, providers of network and other informa-
tion technology (IT) services are often required to behave as profit
centers.

results and implications change under a wide array
of exogenous load conditions.

Regardless of the level of network traffic, two obser-
vations can be made. First, at the net benefit, maxi-
mizing level of capacity, net profits are close to zero,*
suggesting that if a benevolent monopolist was to
expand the network to the optimal level, most of the
expansion cost could be covered by the profits gen-
erated through congestion-based pricing. Second, it
is apparent that profits reach their maximum at a
much lower level of capacity, which points to the
fact that a profit-maximizing monopolist using this
pricing scheme and capacity expansion policy will
underinvest. This simulation result is consistent with
the analytical result by Mendelson (1985), where it
was shown that the optimal capacity of one com-
puting resource would be lower if it is treated as
a profit center as opposed to a net value-maximizing
resource. Still, we cannot fully claim the generality of
our simulation results, because the capacity expansion
path (i.e., the distribution of capacities at each expan-
sion stage) was the one motivated by the net benefits
maximization. However, while the profit-maximizing
capacity distribution at each stage may be different

% For our four arrival rates 97.7%, 80.5%, 88.3%, and 92% of capac-
ity costs were covered by profits, respectively.
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from the one obtained in our simulation, our experi-
ments with the variety of expansion heuristics show
that the shape of the expansion path does not change
much as we change the capacity distribution methods.
Clearly, profit-maximizing objective may not optimize
load balancing for the total cost minimizers. A profit-
maximizing firm, for example, may provide higher
capacity reducing users’ delay costs, and can there-
fore charge higher prices as compared to socially opti-
mal prices. This, of course, assumes that return on
investment (i.e., the aggregate savings in delay cost
because of higher capacity, which can be extracted
as higher prices) is higher than the cost of capital.
Therefore we can no longer model this as a short-term
problem independent of the investment costs. From
another perspective, when a profit-maximizing entity
is using the congestion pricing to maximize its prof-
its, the equivalence trade-off between cost of delay
and prices they can charge is inherently reached by
under investing. Structurally, if we assume that users’
decision problem is the same (i.e.,, minimization of
total cost), the profit-maximization problem will still
have to use the delay costs because of the additional
constraints for individual rationality constraint (i.e.,
Vie = 2 (Pom + 0:5Tem) Xism). This would result in struc-
turally similar optimal prices as derived by Gupta
et al. (1996). Intuitively, one of two cases could take
place for higher profits to emerge: (i) the load on the
machines is higher as compared to the socially opti-
mal loads, which implies (comparative statically) that
the capacity is lower as compared to the one resulting
from the socially optimal prices; or (ii) if the capacity
with the profit maximization is the same as the capac-
ity with socially optimal prices, then the higher prices
could be charged until the resulting prices reduce
the load, and thereby providing higher net benefits
to the users. We computationally solve the profit-
maximizing problem in our simulations. In other
words, we provide conditions so that equal or higher
capacities can be supported with profit maximiza-
tion. The result of these computational solutions seem
to result in the first condition presented above, i.e.,
profit-maximization strategy results in higher loads
on machines and lower capacity.

Essentially, our analysis models a situation where
the network provider is primarily motivated by the
maximization of value in the day-to-day operations

and load balancing of its system. On other hand, more
strategic capacity expansion decisions are made with
profit maximization (or loss minimization) in mind.
To model the profit-maximization problem in this
context, we need to make assumptions about invest-
ment costs, which we want to express as a result in
terms of value/cost ratio of technology allowing, in
our opinion, for stronger managerial interpretations.

We summarize our findings in the following obser-
vation.

OBSERVATION 5. Profit-maximizing network expan-
sion will result in a choice of systemwide capacity
that is below the socially optimal systemwide capac-
ity level.

There were no profits generated under our model
of flat-rate pricing policy, because we do not model
the choice of the optimal periodical fee for network
users. However, Zhang et al. (1998) show that even
the best flat-rate pricing policies will generate a lower
level of profits compared to congestion-based pricing
at a fixed level of capacity. This observation, may lead
to a conclusion that the profit-maximizing capacity
under flat-rate pricing may also be lower. However,
the shape of profit function needs to be observed, and
in our future work, we plan to provide an analysis of
the impact of profit-maximizing flat-rate strategy on
capacity expansion.

6. Conclusions, Limitations, and
Recommendations for

Future Research
Comparing two pricing policies and studying their
impact on the level of capital investment in a sim-
ulated network economy provides a performance
benchmark for the resource distribution on large pub-
lic networks. We compared the investment policies
under different pricing schemes and investment crite-
ria such as profit maximization. The prevailing wis-
dom on network infrastructure investment is that
implementation of congestion-based pricing is detri-
mental for future investment, regardless of the demand
characteristics of network users and their valuation of
network services. The firms providing the network
infrastructure are affected by a complex competi-
tive telecommunications and network services land-
scape that are not addressed in the context our
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model. Nonetheless, our simulation results provide
a nuanced view of the picture. In particular, if the
overall goal is to maximize social welfare, while our
results support the prevailing wisdom when relative
cost of capacity is low with respect to the value of
services, we find that congestion-based pricing policy
can result in a more robust capacity investment if the
relative cost of capacity is high as compared to the
value of services.

We derived an analytical expression for the opti-
mal expansion of network resources using measurable
performance parameters. We believe that the rational
approach to the management and expansion of a com-
pany’s internal computing resources would be far
more beneficial than the common approaches toward
investment in computing resources that rarely involve
formal and precise cost-benefit analysis. Addition-
ally, most of the current IT investment policies are
based on prompting users to self-report their need for
more resources, and, in turn, are inherently incentive
incompatible. Our approach provides decision makers
with a much better view of the companywide need
for computational facilities.”” However, a significant
amount of additional research has to be performed
before generally applicable guidelines for internal net-
work expansion can be developed.

Our simulation results provide interesting insights
into the evolution of Internet access pricing. For
example, the usage-based pricing yielded to current
flat-rate pricing. Our results suggest that this change
in pricing practices occurs as people’s value for net-
work us in comparison to access costs decreased,
and flat-rate pricing began to provide enough incen-
tives for capacity expansion for basic Internet access.
Interestingly, our results suggest that if users” value
for network usage in comparison to capacity costs
increases, because of the much higher amount of
capacity needed to deliver more interactive services,
the same flat-rate pricing might be a roadblock in
providing a higher level of capacity. One practical
insight that network and network service managers
can derive from our findings is that it may be advis-
able to have pay-per-use or other usage-based pric-
ing on top of basic access for high bandwidth access

7 To learn more about the incentive compatibility of our pricing
mechanism, see Gupta et al. (2000).

rather than higher flat-rate pricing. Such an approach
can provide enough capital to cover an investment,
and, in turn, may have the desired effect of higher ser-
vice valuations by providing more services resulting
in positive externalities.

Note that the socially optimal capacity provides the
optimal service quality from an economic perspec-
tive. Deviation from the socially optimal capacities
will result either in lowered welfare because of dis-
proportional deterioration of service quality, resulting
from under provision of capacity, or lowered welfare
because of disproportionally lower gains in benefits
because of overprovision of capacity. Our analysis of
a profit-maximizing network provider only applies
to settings where the users are atomistic and do not
have the market power and technical sophistication to
affect and monitor the network performance. Ganesh
et al. (2007) have proposed an algorithm for the atom-
istic users that is analogous to the “fictitious play” in
game theory, in which users respond to the congestion
prices by choosing the arrival rate on the basis of the
predicted price in each time slot. However, as opposed
to our approach, their model does not account for the
waiting cost. In addition, the rate of convergence of
the expectation to predicted price is dependent on the
number of time slots, which could be extremely large
with a reasonable-sized network, and its users such
as the ones simulated here.

Another interesting setting would be to consider
network users as the part of a group (such as a large
organization). In such a setting, a profit-maximizing
network provider may not be able to under provi-
sion the capacity because of the penalties that may be
imposed because of service level agreements (SLAs).
This analysis is beyond the scope of this paper; how-
ever, Sen et al. (2008) provide an excellent analy-
sis of design and monitoring of SLAs in stochastic
environments.

Finally, we pointed out the influence of several fac-
tors at the most desirable levels of network capacity.
Especially, we emphasized the importance of relative
valuation of services compared to the cost of provid-
ing them, and a relative tolerance for the delay in
receiving these services. We hope that these observa-
tions can provide motivation for careful monitoring of
changes and trends in these factors when planning the
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future buildup and deployment of private and public
networks, regardless of which pricing scheme is used.

Our approach and the model on which it is based
does have limitations in its ability to provide a
full range of managerial and policy implications.
While our setting shows how incremental investments
would be different in two specific pricing contexts, it
still leaves a lot of important questions unanswered.
For instance, content providers (as opposed to ISPs)
have their own incentives to reduce latency, as well as
charge customer premium pricing for improved ser-
vice levels. In addition, as mentioned earlier, when
the users are not atomistic and have market power,
a different set of capacity investment strategies may
have to be adopted by profit-maximizing service
providers. We believe a variety of modeling and
methodological approaches need to be employed to
build a complete set of tool chest and managerial
insights for this important class of problems.

We plan to investigate several research issues in
the future. First, we would investigate a much richer
realm of gradient estimation techniques to compute
the optimality direction of capacity expansion. We
will also test our analytical expression under differ-
ent network specifications, e.g., by varying the num-
ber and availability of services, and monitoring how
these changes affect the assumptions made to obtain
the analytical solutions. Finally, this research will not
be complete without an investigation of the impact of
competitive pricing.
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