

Jaton N. Wince, Ph.D.

The Woodlands, TX · (713) 888-7183 · jaton.wince@scienalysis.com

Forensics Engineer | Continuum Mechanics Expert | National Security Technologist

Forensic engineer and continuum mechanics expert with more than 25 years of experience in aerospace, defense, computational science, and forensic engineering. Architect of advanced digital engineering platforms, including GPU-accelerated digital twins and multiphysics material modeling systems applied in safety-critical, mission-critical, and litigation-sensitive environments.

Extensive background in mechanical and materials failure analysis, gas and explosion investigations, blast-structure interaction, biomechanics of traumatic injury, and standards-based forensic evaluation. Experienced in directing complex technical programs, leading multidisciplinary engineering teams, and performing first-principles analysis to support causation assessment, system reliability evaluation, and engineering decision-making.

Formerly supported national security programs requiring Top Secret / SCI eligibility, with a career spanning government laboratories, defense contractors, and commercial engineering practice. Provides objective, technically rigorous analysis for attorneys, insurers, and institutional clients where accuracy, reproducibility, and defensibility are required.

EXPERT WITNESS TESTIMONY

Trial Testimony (Expert): None

Sworn Testimony

- Depositions and examination under oath provided in connection with accident-related matters. Testimony includes expert-retention matters and sworn proceedings in a personal context. Expert witness engagements are identified separately in the case list.

FORENSIC ENGINEERING & LITIGATION CONSULTING EXPERIENCE

(Non-testifying, consulting, and pre-retention engagements)

- Forensic engineering investigations involving gas explosions, pressure-driven failures, structural damage, and mechanical system failures in residential, commercial, and industrial contexts.
- Engineering inspections, failure reconstruction, and causation analysis for litigation support, insurance disputes, and pre-trial technical evaluation.
- Development of inspection protocols, testing plans, and standards-based engineering analyses for counsel in advance of expert designation.
- Biomechanical and injury-mechanics analyses supporting litigation strategy, settlement evaluation, and insurance claim resolution.
- Confidential advisory roles for defense counsel and government contractors involving mechanical, structural, thermal, and materials failure assessment.

These engagements involved engineering analysis and consulting services and did not include sworn testimony unless separately listed above.

ENGINEERING INVESTIGATIONS & TECHNICAL REPORTING (NON-TESTIFYING)

- Gas explosion investigations and blast-effects analysis, including ignition-sequence reconstruction and mechanical system evaluation.
- Structural and building-science evaluations addressing code compliance, remediation scope, and post-loss reconstruction requirements.
- Mechanical systems inspections and failure assessments for pressure vessels, rotating machinery, consumer products, and safety-critical equipment.
- Preparation of formal engineering reports, technical addenda, and standards-based analyses used in litigation, insurance, and regulatory contexts.

TECHNICAL EXPERTISE

- Mechanical Failure Analysis (Gas, Blast, Structural)
- Biomechanics of Traumatic Injury (Brain, Bone, Composite Tissue)
- Blast-Structure Interaction & Overpressure Effects
- Equation-of-State and Constitutive Modeling
- Forensic Simulation & Digital Twin Reconstruction
- Thermo-Mechanical Response of Complex Systems
- Multiphasic Composite Mechanics (Ceramic, Polymeric, Biological, Geomaterial)
- Damage Mechanics, Viscoelasticity, Viscoplasticity, and Anisotropic Redistribution

Biomechanics and AFRL-Based Research

- Dissertation research focused on multiphase composite systems including brain tissue and cortical bone, developing a physics-based ISV model for materials subjected to high strain rate, temperature, and pressure conditions.
- Developed the Wince-Horstemeyer Multiphysics Multiscale Material Model (WHM4), a transformational ISV framework coupling corrected deformation gradients, Lie derivative-based objective rates, and thermodynamically consistent history-dependent evolution equations.
- Integrated AFRL biomechanics experience under the Unitary Warhead and Lethality/Vulnerability Program, modeling lethality response of fixed, mobile, and soft targets.
- Supported advanced constitutive model validation in high-assurance national defense and biomedical applications.

PROFESSIONAL EXPERIENCE

SCIENALYSIS, INC – President

The Woodlands, TX | April 2011 - Present

Founded and lead a specialized engineering firm serving the legal and aerospace sectors, delivering high-precision failure investigations, computational material modeling, and digital twin technologies tailored for litigation-critical and aerospace performance environments.

- **Developed and deployed a proprietary GPU-accelerated micro-continuum mechanics digital twin**, enabling end-to-end, multiscale simulations for IRAD applications with unprecedented accuracy and time-to-solution efficiency.
- **Directed firm-wide strategy and business operations**, securing new contracts, increasing annual revenue by 20%, and expanding presence in high-stakes legal engagements by 30%.
- **Co-led forensic investigations in complex, high-liability engineering cases**, including biomechanics and explosive failure events—translating multi-physics simulation results into admissible technical conclusions for legal proceedings.

- **Led strategic capture and authored advanced technical volumes** for SBIR and commercial solicitations in aerospace and defense-adjacent sectors; despite equipment loss from a major incident, proposals reflected full technical authorship and program-ready architecture.
- **Advanced computational materials R&D**, achieving a 38% improvement in analysis fidelity while reducing project timelines by 30% through precision modeling and automated pipeline optimization.
- **Established academic and industry collaborations**, positioning SCIENALYSIS as a trusted expert resource for structural diagnostics, litigation support, and mission-critical aerospace analysis.
- **Advanced Aerospace & Space Systems Analysis**: Directed spacecraft systems assurance projects, including development of Product Assurance Plans and Radiation Hardness Assurance methodologies, ensuring mission-critical reliability under extreme radiation, thermal, and structural environments [obj].
- **Finite Element Analysis (FEA) Training & Technical Lectures**: Independently authored and delivered FEA lecture series and tutorials on dynamic environments, structural mechanics, and test-assessment workflows, strengthening internal training and customer-facing technical education programs.

Parsons – Lead Systems Engineer

Huntsville, AL | November 2020 - October 2022

Served as lead systems architect and strategic engineering advisor for key national defense programs under the Missile Defense Agency (MDA), advancing operational capability and technical maturity across ground-based intercept and thermal battery platforms.

- **Delivered 30% acceleration in project timelines**, enabling a \$20M cost savings by implementing a system-wide assessment framework for missile defense capabilities.
- **Led mission assurance initiatives** for Ground-Based Interceptor (GBI) and Advanced Thermal Battery systems, contributing to a 20% improvement in reliability and combat-readiness.
- **Directed strategic integration of C5ISR technologies** across defense communications and control architectures; provided executive briefings and technical recommendations to government stakeholders.
- **Advised Integrated Product Teams (IPTs)** and chaired the Specialty Engineering Working Group, setting technical standards and alignment across subsystems.
- **Authored cyber-resilient planning and integration strategy** for future MDA missions—ensuring secure system interconnectivity with evolving communication link infrastructure.
- **Reduced failure rates by 25%** across materials, propulsion, and structural systems through targeted diagnostics, which improved system uptime by 20% and generated \$15M in downtime avoidance.

a.i. Solutions Inc. – Consulting Systems Engineer/Principal Investigator

Huntsville, AL | October 2010 – October 2020

Principal technical lead and strategic advisor supporting high-assurance defense systems with lifecycle engineering, mission assurance, and large-scale systems integration for the Missile Defense Agency and affiliated DoD programs.

- **Served as Principal Investigator** on multiple high-value government contracts, contributing to over \$2B in awarded programs by leading technical volume development, mission-aligned solution design, and field validation strategies.

- **Directed end-to-end production assurance and sustainment** for a \$17.7B missile defense system—delivering a 20% improvement in operational readiness and reducing system downtime by 30%, generating \$10M in annual cost savings.
- **Led field test planning, airborne sensor mission coordination, and system reliability evaluation**, ensuring platform transition to production with optimized maintainability and mission availability.
- **Identified and mitigated manufacturing design risks**, reducing scrap rates by 10%, increasing throughput efficiency by 15%, and saving \$5M annually in material and rework costs.
- **Chaired multi-site Failure Review Boards** and resolved system-level ballistic missile design issues—contributing to a 25% improvement in reliability and \$5M in maintenance cost avoidance.

Additional Experience

Jacobs Technology Inc. – Senior Engineer II

Huntsville, AL | February 2009 – October 2010

- Delivered advanced predictive modeling for NASA propulsion and materials systems. Achieved 18% improvement in simulation accuracy (ANSYS & LS-DYNA) supporting aerospace innovation and material certification.

General Electric (Aviation) – Lead Engineer/Technologist

Cincinnati, OH | March 2007 – February 2009

- Directed mechanical design and simulation (UGX, CATIA, ANSYS, ABAQUS) of advanced aircraft engine components. Enhanced inertia welding process, reducing nonconformance by 90% through system-level redesign.

US Air Force Research Laboratory – Mechanical Engineer & Systems Safety Engineer

Eglin AFB, FL | August 2002 – March 2007

- Conducted advanced penetration mechanics and systems safety analysis for defense systems. Improved predictive models with $\geq 80\%$ statistical accuracy; developed safety protocols resulting in zero mishaps across directorate-level programs.

Mississippi State University Engineering Research Center – Associate Research Engineer

Starkville, MS | January 2001 – August 2002

- Pioneered computational mechanics research using DYNA 3D to advance structural analysis and materials modeling for federal infrastructure and defense applications.

EDUCATION

Ph.D., Engineering

Liberty University, Lynchburg, VA | Conferred May 2025

Dissertation: A Unified Multiphase Composite Material Model: An Advanced Computational Continuum-Micro Mechanics Framework

M.S. / B.S., Mechanical Engineering – Mississippi State University

Certifications & Security Clearance

- Department of Defense Secret & Top Secret Security/SCI Clearance (Formerly Held)
- Department of Defense Secret Clearance (Active)

- Level III DAWIA Certification in Systems Planning, Research, Development, and Engineering
- Level II DAWIA Certification in Program Management
- Level II DAWIA Certification in Test and Evaluation
- Materials Science and Engineering Certification – Mississippi State University
- Nondestructive Testing Level II Certification
- ASME Geometric Dimensioning and Tolerancing Professional Certification

Specialized Training

- Damage and Fracture Investigation – Liberty University College of Engineering
- Coarse Grain Molecular Dynamics Development and Optimization – John Hopkins University
- Computational Material Science & Engineering – Penn State University
- Transmission Electron Microscope and Dynamic Mechanical Analyzer Training – Mississippi State University
- GE Aviation Edison School of Engineering: Jet Engine Mechanical Design Fundamentals
- Lean Six Sigma (Green Belt) - GE Aviation
- Lean Six Sigma (Green Belt) - National Aeronautical & Space Administration
- Project Management & Leadership - GE Aviation
- Operations & Risk Management – US Air Force Safety Center
- System Safety Management Course – US Air Force Safety Center
- Practical System Safety Course - Southern California Safety Institute
- Safety Course for Explosive Firing Site and Laboratory Personnel - Energetic Materials Research and Testing Center
- Applied Explosive Science – US Air Force Research Laboratory Munitions Directorate
- Computational Continuum Mechanics – US Air Force Research Laboratory Munitions Directorate

STRATEGIC & TECHNICAL COMPETENCY AREAS

Leadership & Program Management

Executive Program & Project Management · Earned Value Management (EVMS) · Stakeholder Engagement · Government Advisory · Technical Proposal Development

Technical & Domain Expertise

Multiphysics & Multiscale Material Modeling · Digital Twin Systems · GPU-Accelerated Simulation · Space & Missile Defense Architecture · Failure Investigation · Forensic Engineering Analysis · Satellite & Aerospace Systems Integration

Simulation & Engineering Tools

PHYNEX · ANSYS · LS-DYNA · ABAQUS · UGX · CATIA · MATLAB · Python

Governance & Compliance

Model-Based Systems Engineering (MBSE) · Cybersecurity-Integrated Systems Design · Technical Readiness Strategy · DoD Top Secret/SCI Clearance · Legal-forensic negotiation · Insurance claim substantiation · Expert witness reporting

AWARDS & DISTINCTIONS

- **ASME Meritorious Research Award** – Recognized for advancing the field of computational mechanics and material modeling in high-impact applications.

- **Missile Defense Agency Contractor of the Year (Honor Roll)** – Acknowledged for outstanding contributions to national defense systems engineering and mission assurance.
- **U.S. Air Force Research Lab Commander Challenge Cup Award** – Awarded for innovation and excellence in applied systems research and safety engineering.
- **U.S. Air Force Volunteer of the Year & Angel Star Medallion** – Honored for exemplary service and leadership in community-based engineering and outreach initiatives.
- **American Society of Mechanical Engineers (ASME) – Research Recognition** – Commended for breakthrough work integrating simulation and forensic analysis methodologies.

PUBLICATIONS

- Wince, J. N. (2025). *A Unified Multiphase Composite Material Model: An Advanced Computational Continuum-Micro Mechanics Framework* [Doctoral dissertation, Liberty University]. Liberty University Digital Commons. <https://digitalcommons.liberty.edu/doctoral/7131/>
- Wince, J. and Schneider, J., 2002. "Determining the Material Properties for Aluminum 6061-T6 for Implementation in the Johnson and Cook Constitutive Equation for Predicting Dynamic Material Behavior," *ASME Southeastern Region XI Technical Conference*, Vol. 1, No. 1, pp. 12.1–12.5.
- Wince, J., 2002. *Modeling Chip Formation in Orthogonal Metal Cutting Using Finite Element Analysis*, Master's Thesis, Mississippi State University.
- Wince, J., 2004. *Heat Transfer Analysis of High-Speed Penetrator Payload and Fuze*, AFRL Munitions Directorate.
- Wince, J., 2004. *Validation of Material Constants for the Johnson and Cook Constitutive Equation and the Mie-Gruneisen Equations of State*, AFRL Munitions Directorate.
- Wince, J., 2006. *Response of Structural Components of Fixed and Mobile Targets*, DoD HPCMP Modernization Plan.
- Wince, J. and Vaughan, D., 2006. "Development of High-Fidelity Physics-Based Fast Running Model for Progressive Collapse Assessment of Above Ground Fixed Structures," *AIAA Missile Sciences Conference*.
- Darden, J., Earhart, E., Strong, H., Wince, J., Becht, D., Chilcoat, T., 2010. "Experimental Characterization and Analytical Comparison of Rolling Element Bearing Radial Stiffness," *JANNAF Joint Subcommittee Meeting*.

Pending Submissions

- Wince, J. N., Cho, H., Atwater, M., Zegeye, E., Conyers, H., and Horstemeyer, M. F.
Title: A Unified Multiphase Composite Material Model
Target Journal: *Acta Mechanica*
Objective: To formalize and validate a thermodynamically consistent constitutive model that captures the nonlinear behavior of multiphase composite systems spanning metals, polymers, ceramics, geomaterials, and biological tissues.
- Wince, J. N., Cho, H., Atwater, M., Zegeye, E., Conyers, H., Cariappa, K., and Horstemeyer, M. F.
Title: A Pressure, Temperature, and Rate-Dependent Elastic Modulus Model
Target Journal: *Acta Materialia*
Objective: To develop and validate an equation-of-state-driven model for the elastic modulus as a function of pressure, temperature, and strain rate in polymers, biomaterials (brain, bones & ligaments), and geological media.

- Wince, J. N., Cho, H., Atwater, M., Zegeye, E., Conyers, H., and Horstemeyer, M. F.
Title: An Elastic, Viscoelastic, Viscoplastic Damage Model for Complex Materials
Target Journal: *Mechanics of Materials*
Objective: To present a multiscale damage mechanics model combining elasticity, viscoelasticity, viscoplasticity, and void nucleation/coalescence for high-fidelity stress-strain predictions under complex thermomechanical histories.
- Wince, J. N., Cho, H., Atwater, M., Zegeye, E., Conyers, H., and Horstemeyer, M. F.
Title: Advanced WHM4 Multiphysics Multiscale Modeling of Additively Manufactured Materials: Predicting Anisotropic Damage and Multistage Fatigue Behavior
Target Journal: *Computational Mechanics*
Objective: To advance the WHM4 model by capturing failure mechanisms in additively manufactured materials under multiaxial, cyclic loading.
- Wince, J. N., Hammi, Y., Tabiei, A., and Horstemeyer, M. F.
Title: Real-Time Predictive Digital Twin Implementation for Industrial Applications via WHM4-Based Multiphysics-Multiscale Framework
Target Journal: *Journal of Intelligent Manufacturing*
Objective: To demonstrate real-time digital twin deployment using WHM4 for predictive performance modeling across industrial systems.
- Wince, J. N., Hammi, Y., Tabiei, A., and Horstemeyer, M. F.
Title: Machine Learning-Enhanced WHM4 Framework for High-Fidelity Predictive Modeling of Material Response Under Extreme Environments (Ballistic, Space, Hypervelocity Impact)
Target Journal: *Acta Mechanica*
Objective: To fuse WHM4 with ML surrogates for rapid high-accuracy predictions of material behavior in high-energy environments.

Patents and Intellectual Property

- **Provisional Patent Filed – PHYNEX**
Title: PHYNEX: A Unified Physics-Informed Hybrid Neural Platform for Multiphysics Materials Characterization, Simulation, and ICME-Based Performance Prediction
Serial No.: 63/843,379 | *Filing Date:* July 14, 2025
Inventor: Dr. Jaton Wince
USPTO Confirmation No.: 7334
Status: On file with USPTO under 35 USC 111(b)

DISCLOSURE STATEMENT

- This CV distinguishes between expert witness testimony and engineering consulting experience in accordance with Rule 26 and accepted expert-disclosure practice.
- Pipeline matters, Expert Institute intake reviews, “selected” but unretained engagements, and pro se analyses are not represented as expert witness testimony.