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Abstract 
The chief use of probabilistic methods is to assess risk and 
opportunity, making them most applicable to situations of 
significant uncertainty. Hence, the cardinal sin unique to 
probabilistic analysis is to underestimate the range of 
outcomes. Unfortunately, the situations of the greatest 
uncertainty are also the ones where poor judgment is most 
likely to create unreliable results and dangerous decisions. The 
best judgment in probabilistic analysis is that which 
recognizes the full range of uncertainty by carefully framing 
the problem and by avoiding pitfalls which artificially reduce 
the range of results.  

 
Introduction  
Probabilistic analysis has become an essential tool1 of the 
practicing reservoir engineer and reserve evaluator because its 
benefits are undisputed and well-documented.2,3,4,5 They 
include the following: 
� Probabilistic analysis forces the practitioner to think 

more completely, thoroughly, and thus clearly about the 
issues at hand.  

� Probabilistic analysis can reveal the drivers of value or 
risk more clearly, making it possible to focus on risk 
mitigation efforts, data acquisition, further analysis and 
upside potentials.  

� The results of a probabilistic study give a decision-maker 
more information about upside and downside uncertainty 
to inform his business decisions, future plans and 
portfolio analysis.  

� Probabilistic analysis communicates the uncertainty 
unambiguously (to those conversant in the terms  
of statistics).  

The first two uses add the greatest value. It is only in the 
framing, interrogation and audit of the model that the user 
obtains these advantages. Moreover, those benefits must be 
actively pursued in the process in order to obtain a meaningful 

quantitative result. Without judicious implementation of the 
model, the quantified results may mislead and endanger the 
decision-maker with unmerited confidence.  

Much effort has been spent on discussion of input 
distributions to the probabilistic analysis, i.e., the form and 
range of the uncertain variables. Unfortunately, these 
considerations are dwarfed in importance by the architecture 
of the model. Model architecture represents the way the model 
is set up, e.g., the type of calculation, the number of parts, the 
correlation of parts, and the rules in the model. The discussion 
below deals first with issues related to model architecture and 
second with issues related to the input distributions.  

In designing the architecture of a probabilistic model, it is 
essential to identify those drivers with the greatest impact on 
uncertainty, to consider all possible sources of uncertainty, to 
select an appropriate calculation methodology and level  
of detail.  

Input distributions are defined by range and form. 
Definition of these two parameters, however, is predicated 
upon proper understanding of biases and types of uncertainty. 
All of these are discussed below.  

Poor model-building causes an excessively narrow 
distribution of results and higher estimates of "reasonably 
certain" values. For example, the three most commonly cited 
pitfalls of implementation (aggregation, correlation, and range 
of input variables) all tend to reduce the range of outcomes. 
Ironically, though the high confidence end of the distribution 
is used to define Proved reserves, the extremes of a resultant 
distribution of outcomes are more poorly defined and subject 
to change than central estimates. Identifying the judgment 
calls which impact the range of results makes it possible to 
appreciate the limitations and subjectivity of  
probabilistic analysis. 

 
Model Architecture 
The single most important factor in the construction of a 
probabilistic model is the conceptual framework. This 
consideration more than any other affects the predicted range 
of outcomes.  

Breadth of model. The greatest risk to the use of 
probabilistic analysis is the failure to include major, 
unrecognized drivers of uncertainty. Probabilistic analysis is 
frequently applied to reserves alone, without considering 
economic uncertainty in product prices, development schemes, 
and costs. If the objective is to understand the uncertainty in 
value, then the model should address those drivers of value 
and not just of reserves. This is an issue of “begin with the end 
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in mind.” The modeler must understand what uncertainty he is 
trying to quantify, i.e., the purpose and use of the analysis.  

Given a clear understanding of the uncertainty to be 
quantified, the model builder should try to understand the 
potential drivers of that uncertainty. In part, this is an iterative 
process. First he builds the model and then tests it with 
preliminary inputs to determine the drivers. Finally the 
modeler can refine those inputs. But he must be careful from 
the beginning that he does not construct the model in the first 
place to exclude potentially critical features.  

A comprehensive outline of what type of uncertainties 
may, and arguably should, be included can be found in 
reference 3. Use of a standard structure like the one described 
will assist the evaluator in the examination of the key 
uncertainties and is helpful for comparison between projects.  

Paradigms or Model Structure. The greatest failure of 
probabilistic analysis occurs when the evaluator uses the 
wrong paradigm in the model.6,7 Paradigm shifts, i.e., different 
concepts about the reality to be modeled, can cause wholesale 
differences in predicted ranges of outcomes between analysts 
and over time. Different technicians analyzing the same data 
can create different models and arrive at substantially different 
answers as a result of structuring the calculations differently. 
Reference 8 offers an example of this dynamic.  

Different ideas and rules, correlations, sub-divisions of 
data, reservoir processes, etc., express themselves as 
differences in the structure of the model. For example, the 
inclusion of capital constraints on a development plan in a 
statistical play can significantly affect the results of the 
analysis. Alternatively, one analyst may decide that there is 
large uncertainty around the compressibility of the formation 
that another analyst may not recognize. One analysis may 
assume one drive mechanism while a subsequent analysis may 
recognize another.  

Much discussion has been given to the participation of 
multi-disciplinary teams and peer review in the determination 
of the range of inputs to a model. These same techniques are 
equally applicable, and more valuable, at the stage of framing 
the types of uncertainties to include and the paradigms  
to investigate.  

Calculation methods. There is often more difference 
between different types of calculations for the same results as 
there is among the results using one technique with different 
inputs. The range of calculated results for different techniques 
may not even overlap. Uncertainty analysis of decline curve 
projections can differ dramatically from a probabilistic 
treatment of a finite difference simulation model of the same 
field. The two are based on fundamentally different 
calculations with different inputs and different uncertainties 
associated with each. At a lower level, using different 
analytical waterflood techniques can result in meaningfully 
different ranges of outcomes.  

Consequently, the evaluator should judiciously choose the 
calculation technique and may consider the calculation 
technique as one of the variables for examination when he 
audits his model.  

Aggregation. Aggregation inside a probabilistic model can 
cause a falsely narrow distribution. It is well-established that 
aggregation of resultant distributions from various projects 
affects the range of the total distribution. Central limits 

theorem states that distributions of any shape, when summed, 
tend toward a normal distribution with progressively 
diminishing standard deviation. For multiplication of 
distributions, the results tend toward log normal with 
diminishing standard deviation.  

The same principles of aggregation apply to the 
construction of a single probabilistic calculation. All else 
being equal, breaking down a calculation into more parts or 
more separate elements of uncertainty decreases the range of 
the final outcome.  

A large-scale analysis may be broken down into too many 
parts. For instance, a practitioner may breakdown the 
calculation into too many separate areas of a field, separate 
stages of depletion, separate recovery mechanisms or other 
smaller parts. An uncorrelated well level analysis of decline 
curve uncertainty, when summed, will show less uncertainty 
than if the entire field decline curve is analyzed.  

Excessive detail. Many have mistakenly assumed that a 
more comprehensive model is a more detailed one and thus a 
more accurate one. This is often not true. An analyst may opt 
to include too many separate contributors to uncertainty, 
causing the overall uncertainty of the major drivers to be 
masked by the uncertainty of the lesser drivers. In addition, it 
is possible to break the uncertainty into too many component 
parts. For example, one might model bulk rock volume 
uncertainty as the combination of four uncertainties related to 
seismic interpretation. Trying to add too many possible 
contributors to uncertainty in an effort to make a 
comprehensive model may lead to an excessively narrow 
result. A model should focus on that limited set of issues 
which dominate the resultant uncertainty.9,10,11 

Another example illustrates both of these points. A cost 
estimate for a major project consisting of four concurrent parts 
may be described by the authors of the estimate as accurate to 
+/- 25%. A probabilistic analysis might incorrectly separate 
the estimate into the four parts and apply a range of +/-25% to 
each component of the estimate independently. Cost 
uncertainty at the total project level is then  
improperly reduced.  

Length and thickness in the volumetric equation offers 
another good example. These two variables may not be 
independent, but the relationship is usually complex. There is 
no need for an anachronistic reduction of the uncertainty into 
these two inputs when they can be straightforwardly modeled 
as uncertainty in gross rock volume.  

It is not improper to model at a fine scale or to include 
many uncertain elements. In fact, it may be most appropriate 
to separate different calculations and uncertainties in a 
probabilistic model. However, the implications of doing so 
may not be obvious or intended, especially when 
independence is assumed. The implications of building the 
model in this way should be tested, understood, and affirmed. 
If the implications do not reflect the intention of the modeler, 
then adjustments can be made in the structure of the 
calculations, the uncertainties included or the correlations 
among parts of the calculation.  

Correlations. Correlations are a major driver of the final 
range of outcome. Particularly in cases where the model 
construction requires many distributions, attention must be 
paid to possible correlations.  
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Much has been written about how to model certain types 
of correlations. Unfortunately, correlations come in many 
forms and are often quite subjective and amorphous. 
Relationships are often not amenable to quantification and 
reduction into correlation coefficients as required by common 
software packages. Moreover, the correlation coefficients used 
in the common software packages address rank correlations, 
not value correlations. Alternative methods of implementing 
correlation can seem equally arbitrary.  

Correlations between risk factors offer a good example. 
Risk factor distributions are usually binomial, yielding values 
of either zero or one. It is obvious that certain risks between 
prospects may be related, yet rank order correlation 
coefficients are awkward at best. Nonetheless, the dependence 
must be represented somehow in the calculations.  

Correlations can sometimes be modeled best by combining 
distributions rather than using correlation algorithms.12,13 For 
example, the effects of porosity and water saturation in a gas 
reservoir can be modeled together as hydrocarbon porosity. In 
this way, the analyst circumvents the need to quantify and 
quality control the correlation between the parameters.  

Since overly narrow results are the unique danger of 
probabilistic analysis, the presumption of correlation is to be 
preferred. Suspected correlation should usually be included in 
the model and the effects of the correlation checked as 
described below. 

 
Input distributions  

Though less important than model architecture, input 
distributions affect the results of a probabilistic model. There 
are two technical considerations in the construction of each 
distribution to the probabilistic model: the functional form and 
the range. However, the consideration of biases and types of 
uncertainty form a foundation for the definition of the two 
technical parameters. Consequently, bias and uncertainty are 
the more important and are treated first below.  

Before reviewing specific problems in the specification of 
form and range, it is important to understand what the 
probability density functions (pdf) are meant to express.  

An input pdf is meant to express the evaluator’s sense of 
the range of what the correct value might be. It is often not 
meant to capture a stochastic process since many, even most, 
of the inputs are not stochastic (random) in nature. Moreover, 
the evaluator does not and cannot know a priori what the 
relative probabilities are. A card game like black jack or poker 
can be modeled accurately because the rules and probabilities 
are known exactly. The petroleum evaluator does not have this 
privilege. The ranges of inputs to a simulation are subjective 
estimates of what the probabilities might be or of what the 
truth might be. In the end, the primary purpose of a 
distribution is to express the relative probability of a range of 
outcomes in the view of the evaluator.  

Caldwell,14 Capen,15 Campbell,16  and Bratvold7 have 
described the types of psychological biases that can influence 
the judgment calls made by evaluators. These are the most 
meaningful considerations in the formation of input 
distributions as they can have order-of-magnitude impact on 
the results. Caldwell has written the most comprehensive 
treatment of the types of uncertainties generally encountered. 

Fylling12 provides a useful examination of these uncertainties 
as it applies to petrophysical analyses.  

Murtha11 describes how distributions, i.e., range and form, 
can be constructed from three general sources: fundamental 
principles (primarily on form), expert opinions and historical 
or analog data. Selected issues related to form and range are 
outlined below.  

However, the evaluator should bear in mind that form and 
range are a means and not the end of specifying inputs. The 
two elements of the input distributions that are propogated 
through a model directly to the final result are the mean and 
the standard deviation.17 Consequently, the analyst should be 
more concerned with the mean and standard deviation of his 
inputs than with the functional form. The range is more 
important than the form since range generally has the greater 
impact on standard deviation.  

  
Bias. Several good treatments have been given to the types 
and sources of inadvertent bias which can interfere with the 
objective quantification of uncertainty.14,16,18,7,15 The evaluator 
should bear closely in mind the possibility of such bias in 
himself since the bias can have an order-of-magnitude level 
impact on the resultant range. Previously identified biases are 
briefly recapitulated below: 
Confirmation bias. The tendency to “see what you believe.”  
Availability bias. The tendency to give undue weight to data 
which is readily available.  
Recency or Primacy bias. The tendency to give undue weight 
to the most recent or the first data observed.  
Vividness bias. The tendency to give undue bias to data which 
is particularly interesting or engaging.  
Anchoring. The tendency not to adjust far enough away from 
some reference point.  
Status quo bias. The tendency to quit examination and resist 
change.  
Illusion of control bias. The tendency to overestimate the 
odds of success by failing to consider all of the parameters or 
drivers outside of the evaluator’s control.  
Motivational bias. The tendency to expect or endorse an 
answer which provides personal rewards.  
Cognitive or Experience bias. Tendency to evaluate based 
upon the training and experience available to the evaluator 
without considering the limitations of its applicability in the 
current situation.  
Overconfidence bias. As the single greatest source of faulty 
ranges, this topic deserves more treatment. Research 
conducted by Capen15 and others illustrates that people tend to 
underestimate their range of uncertainty, even about topics 
with which they are familiar. Capen cites empirical research 
suggesting that one has trouble estimating ranges beyond the 
70% confidence interval. It is easy to see how this might be 
the case since most of life is not concerned with accurately 
estimating very high or very low frequency events. Moreover, 
we don't encounter enough “trials” of low or high probability 
events to develop a good quantitative sense about them.  

The uncertainty between the estimates of different people 
is generally larger than the uncertainty judged by a single 
person. As with model construction, formation of the range of 
uncertainty in an input distribution should represent the 
contributions of several analysts.  
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Ironically, Capen15 and Bratvold7 further observe, the 
perceived range of uncertainty is smaller when less is known 
about a subject. This is the “problem of one data point,” the 
situation where psychological biases are most likely to come 
into play. With little data, one is likely to assume that the 
value is near the center of the distribution of possible 
outcomes. However, it could well be an extreme value. 
Without other data to provide a sense of scale to the 
uncertainty, people tend to underestimate the range of  
possible outcomes.  

An analyst should be vigilant against these biases in the 
formation of the ranges. More importantly, systems can be 
created for the implementation of probabilistic analysis to 
reduce these biases.  

 
Types of uncertainty. When an analyst sets about to 

specify an input distribution, he should create the distribution 
to reflect the major kinds of uncertainty present in the 
variable. A conceptual framework for the types of uncertainty 
was earlier addressed by Purvis19 and Caldwell14 and  
reviewed here. 
Incomplete Data. The difficulty of assessing a range of results 
from a small or incomplete dataset. As described above, this is 
the area where the psychological biases are likely to impact 
the results.  
Computational approximation. The uncertainty associated 
with different methods used to calculate an input parameter. In 
the same way that different calculation methods in the 
architecture of the model affect the results, so do different 
calculation methods for determining the uncertainty in inputs 
to the model. Though it is almost always overlooked, this 
uncertainty can be the largest uncertainty present.  

For example, different correlations for fluid properties, 
different models for interpreting log responses,12 and different 
velocity mapping techniques may all result in wholly different 
figures for the uncertain variables. If an analyst considered 
only one method, he might artificially reduce the actual 
uncertainty in the result.  
Measurement uncertainty. The imprecise or inaccurate ability 
to measure a property. “Precision” relates to exactness while 
“accuracy” relates to how close the answer is to the truth. 
Using a postal meter to weigh a person might yield an answer 
precise to a fraction of an ounce, but the answer is not likely to 
be accurate. A probabilistic analysis is meant to capture the 
issue of accuracy, not of precision.  

All measurements have some error rate associated with the 
accuracy of the results. If one assumes that the error is 
random, then the error may be assumed to be averaged to 
acceptably near zero. The real danger, and that which the 
analyst must be most aware of, is the possibility of systematic 
error.20  Weighing the same person on 100 postal meters and 
averaging the results does nothing to remove the systematic 
error introduced by using an inaccurate technique. 
Stochastic systems. Most of the inputs to a probabilistic 
analysis reflect uncertainty of estimation, but some inputs 
represent more truly stochastic (random) variables.  

Of these types of uncertainties, the problems associated 
with incomplete data are the most insidious and potentially the 
most important. Computational approximation may be 
important and has often been ignored. Although hard to detect, 

systematic error of measurement has the potential for 
significant impact on the answer. The builder of the 
probabilistic model should be aware of which types of 
uncertainties he is dealing with.  

 
Range. When the evaluator has taken due notice of 

potential biases and the types of uncertainties involved, he 
may proceed to the specification of range and form. The 
specifications follow from the particulars of the variable and 
situation.  

The following discussion deals in more detail with the 
application of some of the ideas listed above.  
Excessive extrapolation. Though the more common error is 
the underestimation of ranges, in some cases the range may be 
too broad. In the absence of constraining data, an evaluator’s 
paradigm may exceed the limits of reality or the limits of 
reserves definitions. For example, in the situation of an 
evaluation with an unknown water contact, a reasonable 
distribution for the water contact would have an absolute 
upper limit at the lowest known hydrocarbon. Unless corrected 
by the circumspect analyst, the P10 of the resultant 
distribution would be located deeper than the lowest known 
hydrocarbon permitted by reserve definitions for the Proved 
category. At the other end of the distribution, the lower limit 
of the range of contacts would be limited only by the optimism 
of the engineer, expanding the median and P90 ( i.e., Probable 
and Possible) estimates accordingly.  
Scale. The scale of the data used and the scale to which it is 
applied can also affect the range of uncertainty. The most 
common scale difficulty is that of applying small scale data to 
large scale uncertainties. Understanding the differences 
between data used to form a distribution and the application of 
a distribution can be important.  

The range of the average is not the same as the range of the 
population observed. The range of a population is an example 
of small scale data, but the average is applied large-scale over 
the entire reservoir. For example, the range of half-foot 
porosity values measured by logs in one well is sometimes 
used as the basis for average porosity throughout a new 
discovery. In doing so, the engineer assumes that the one well 
tested all the range of porosities present in the reservoir and in 
the same proportions as they are likely to occur on average. It 
is clear that unless the entire reservoir is just like the one well, 
the confidence interval of the average porosity measured in 
one well will not be the same as that for the entire reservoir.  

The modeler must make some kind of assumption to get a 
reasonable range of values. Substituting the range measured in 
one well is one way to approximate the range. But it should be 
realized that if there are significant differences in lithology, 
the reservoir-scale average may not fall within the weight  
of probabilities. 
Different analysis techniques. Though mentioned above, this 
idea remains poorly enough understood that it bears repeating. 
Actual values that are the basis for input distributions are often 
themselves the result of some sort of calculation. Bulk 
volume, for instance, can be the result of a seismic 
interpretation, or net pay can be the result of a log 
interpretation. The differences among calculation techniques 
can be greater than the differences in the calculation of 
multiple values by the same technique. For example, net pay 
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may be consistent across several wells given a single set of net 
pay criteria. Changing the net pay criteria may yield a 
different range of uncertainty. Or, changing the interpretation 
algorithm may have the same effect. The final input 
distribution should acknowledge both the variability between 
wells and between calculation methods when both are judged 
to be significant. In this way, an analyst may best represent the 
range of uncertainty by making several diverse scenario-type 
calculations of the inputs and creating a distribution to reflect 
the range of results.  
Use of Scenario Analysis. Keeping in mind that many 
variables are not stochastic in nature, the evaluator may find 
that certain situations are better handled by scenario analysis 
than probabilistic analysis.  

In some cases there may be major discontinuities in the 
uncertainty of a particular parameter. For example, one might 
estimate only a 50% probability that a secondary recovery 
project will be implemented. Or, the price to be received for 
production from a remote field may center around two diverse 
estimates, depending on which pipelines are built at the time 
production begins.  

In some situations of little data, the evaluator may not 
have sufficient data to determine a functional form or range, 
i.e., he may not be able to determine a range with associated 
relative probabilities, or the distribution may be highly 
subjective. In this case also, scenario analysis may be the 
better option. As always, the scenarios should cover a wide 
range of possibilities.   

In these cases the results of a probabilistic analysis may 
be clearer, less subjective and more useful if certain 
uncertainties are not modeled and the assumptions clearly 
stated. Instead, two cases can be run, one with each 
assumption, as a scenario analysis.  

 
Form. The form of a distribution does impact the resultant 

distribution, though to a lesser degree than the range, unless 
the uncertainty is driven by one major factor. In some cases 
there may be a theoretical basis for the selection of a particular 
distribution. However, as stated before, the ultimate objective 
of the form is to reflect the relative probabilities as judged by 
the evaluator.  

Normal and log normal distributions are quite common in 
nature and often cited as the theoretically appropriate form. 
For example, the distribution of permeability values in a 
reservoir is often assumed to be log normal while porosity is 
observed to be normally distributed. It has also been observed 
that the population of field sizes appears to be log normal.  

In such a case, the form of the distribution can be used to 
define part of the range as well. For example, a log normal 
distribution is fully defined by a mean and a P90 value. Given 
the form and a single value, the entire distribution is defined.  

It should be noted, however, that some of the theory and 
empirical evidence supporting normal and log normal 
distributions relates to populations of data. It is a fallacy to 
suppose that the uncertainty about an individual in a 
population necessarily follows the same form as the 
distribution of actual outcomes of the population as a whole. 
Once a member of the population is identified, e.g., a prospect 
is identified on seismic, the uncertainty is specific to that 
member only and may take any form which reflects the 

uncertainty as judged by the evaluator. Similarly, it is a fallacy 
to suppose that the uncertainty in the average of a population 
is necessarily the same form and range as the distribution of 
the population itself.  

For example, if someone were to try to estimate the 
population of New York City, he might observe that the 
distribution of city sizes in the United States is log normally 
distributed. He could then take a guess at the population, 
assign a probability level and end up with a range of possible 
outcomes with a high side in excess of the actual value.  

That is not to say that information of a different scale or 
information for an entire population is not useful for defining 
distributions. These factors should not be regarded as the 
touchstone for the creation of inputs.  

When considering alternative forms, the evaluator should 
be conscious of the skewness in the form. Skewed forms lead 
to more difference between separate measures of central 
tendency and generally to greater standard deviation.21 

 
Testing the Model 

It has been said, “Start right. Work right. Finish right.” 
Care in the initial construction and execution of the 
probabilistic model is not sufficient either to obtain reliable 
results or to obtain the valuable insights sought. The model 
builder must interrogate, audit and test the model.11,22  

Plainly, one should examine the architecture of the model. 
Running the model under different paradigms (assumptions), 
with different rules, with and without correlations, and even 
using different calculation methods may offer insights and 
refinements to the model. One may also hold different parts of 
the analysis constant and examine the interactions with other 
parameters and the impact on the resultant distribution. 

Of course, the input distributions should be subjected to 
sense-checks and sensitivities. Though range and form were 
carefully selected, the input distributions may not reflect the 
evaluator’s uncertainty. This testing may occur after running 
the model since the results of the model often give the 
evaluator more data about the implications of the inputs. 
Following are some suggestions of how assumptions may be 
tested and thus refined.  
� Restate probabilities as odds. This can be done with risk 

probabilities and with continuous variables. For 
example, the odds are 4 to 1 that a value is less than a 
P80 figure. 

� Compare probabilities or odds of the input distributions 
to those for more familiar types of events, such as the 
likelihood of drawing two pair in a game of five card 
stud. (5%)23 

� Examine the probability of drawing values between 
multiple pairs of values, e.g., there is a 50% chance of 
average porosity being between 18% and 22%.  

� Examine the distributions implied by intermediate results 
or smaller parts of the simulation. For example, examine 
the product of porosity and gas saturation or the total 
number of successful prospects.  

� Examine the distribution of combinations of inputs and 
the results for individual realizations. 

� Examine pairs of values or other results created  
by correlations. 
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As a result of this kind of audit and testing, the final 
version of the model is likely not to be the same as the initial 
version. The changes should be regarded as refinements and 
improvements to accurately reflect the uncertainty as 
understood by the evaluator.  

 
Perspectives on Results  

Good construction and good testing should result in a 
model worthy of use in decision-making. However, we should 
note the limits of even a good model. The result of a good 
probabilistic analysis can be described as an accurate 
reflection of the uncertainty in the final outcome as judged by 
the evaluator and as a result of the uncertainties considered in 
the calculation. Though it yields more information, 
probabilistic analysis can be as subjective as  
deterministic analysis.24 

More importantly, the extremes of a resultant distribution 
are more poorly defined and are subject to greater error than 
central estimates. (See also ref. 6.) Though we have faith in 
the central estimates, it would be ridiculous to conclude that a 
value just outside the simulated range was absolutely 
impossible. Said another way, there is more uncertainty in the 
location of the P10 value than there is in the value of the mean 
due to both model construction and convergence. 

While the mean of a resultant distribution converges 
quickly (i.e., with fewer trials), many more trials are required 
to converge on a stable value of a probability level nearer the 
extremes. In all but the most computationally intensive models 
like those involving large finite difference simulations, this 
limitation can be overcome simply by letting the computer run 
longer. In large models or when using experimental design or 
other approximations,13 this consideration may affect the 
stability of the P10 or P90 answer.  

The extremes of the distribution are more likely to change 
with changes in the model architecture, input ranges and even 
pdf forms. Changes with minor or negligible effects in the 
mean result can meaningfully change P10 or P90. Jordan 
offers an example of this phenomenon.25 Ironically, these 
extreme values are the ones used to determine reserves.  

It is easy for an evaluator to place excess faith in a model 
of reality that is not correct or not consistent with reserve 
criteria.  It seems to be the nature of engineers, and humans in 
general, to be inherently optimistic about future developments 
and the adequacy of available data to describe reality. This can 
result in the inclusion of too much in a model, or distributions 
that are too broad or too narrow. An evaluator should 
recognize the limits of available data and, in some cases, 
depending on the use of the evaluation, the limits imposed by 
reserve criteria. Recognizing these limits may not change the 
way the modeling is conducted but should certainly affect the 
way the results are viewed. 

 
Best Practice and Heuristics 

Many of the pitfalls and shortcomings of probabilistic 
analyses can be avoided by a few simple steps.1,4,7,26,27,28,29 
Among the most important are:  
� Users and builders of probabilistic analyses should be 

well-grounded in probability and statistics.  
� Careful attention should be paid to the design 

(“framing”) and testing of the architecture of the model. 

� Models should be built with contributions and review by 
a group of people.  

� The model should be subjected to sense-checks and 
sensitivity analysis before being finalized.  

� When a type of situation is encountered repeatedly in a 
company (e.g., prospect analysis), the company should 
maintain a single model for use in every case and ensure 
that the model is implemented consistently.  

� Companies should maintain databases of actual results 
so that improvements can be made to the model, to the 
training of evaluators on probabilities, and to provision 
of a database of analogous data from which to conceive 
input distributions for future projects.  

To this list of guidelines, I offer the following heuristics: 
� The purpose of probabilistic analysis is to understand 

risks and uncertainty. Underestimation of the range of 
results represents a failure in the analysis. Consequently, 
the presumption of correlation should usually be favored.  

� More detailed models are not necessarily better models. 
The issue of aggregation within a model can lead to 
excessively narrow distributions of results. The model 
should focus on the most important uncertainties. 

� The greatest uncertainty for an input to a model or within 
a model can be the method of calculation. For example, 
differences between methods can be much larger than 
differences for one method with variable inputs. Input 
distributions may sometimes be defined by determining 
values using multiple methods.  

� Correlations are often poorly defined and awkwardly 
programmed. If not properly sense-checked after the 
fact, the results may not be consistent with the judgment 
of the evaluator. In many cases, correlations can be 
circumvented by the combination of variables.  

� In forming the inputs to the model, the evaluator should 
consciously be aware of his own biases and bear in mind 
the types of uncertainty at hand.  

� The purpose of an input distribution is to reflect the 
uncertainty as determined by the evaluator.  

� It is a fallacy to suppose that the uncertainty about an 
individual in a population necessarily follows the same 
form as the distribution of actual outcomes of the 
population as a whole. Similarly, it is a fallacy to 
suppose that the uncertainty in the average of a 
population is necessarily the same form and range as the 
distribution of the population itself. 

� A model should be thoroughly audited, tested and 
refined before it is deemed useful.  

These ideas will go a long way toward making judicious 
and consistent evaluations of risk.  

 
Conclusions 

The above observations about the process of building a 
probabilistic model lead to several conclusions:  
1. The architecture of a probabilistic model has more impact 

on the results than the range or form of the inputs. The 
architecture should be carefully designed and tested. In 
this way, the evaluator gains the main benefits of 
probabilistic analysis. 

2. Though it yields more information, probabilistic analysis 
is not without subjectivity. The result of a good 
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probabilistic analysis can be described as an accurate 
reflection of the uncertainty in the final outcome as a 
result of the considered uncertainties in a calculation as 
judged by the evaluator.  

3. The extremes of a resultant distribution are more poorly 
defined and sensitive to change than central estimates. 
There is more uncertainty in the location of the P10 value 
than there is in the value of the mean due to both model 
construction and, potentially, convergence. Poor model-
building causes excessively narrow distribution of results 
and thus leads to higher estimates of "reasonably  
certain" values. 

4. The possibility of a quantum shift in uncertainty is 
completely undefined by distributions of results, making 
it the greatest danger of probabilistic analysis. In some 
cases, scenario analysis is aptly used together with or 
instead of probabilistic analysis to examine wholly 
different paradigms.  
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