
www.edn.com November 13, 2003 | edn 81

EXTREME PROGRAMMING PROVIDES A

ROADMAP TO A CONSISTENT AND RELIABLE

DEVELOPMENT PROCESS.

If you have managed a software project, you
know what it’s like to feel the push for results from
your managers working against the pull of your

dedication to the well-being of your development
team. What if these two forces were not in conflict?

XP (extreme programming) comprises a set of
principles that define a consistent and reliable de-
velopment process. The developers of these princi-
ples did not discover them at random. Each of them
corrects one or more deficiencies in previous devel-
opment processes. This article outlines these prin-
ciples.

SMALL RELEASES

Users once required developers to implement ma-
jor new functions at each release. When they keep up
this practice, they never allow time for the code to
stabilize and for programmers to see and fix subtle
problems. Management always focuses on checking
off the key deliverables on a status report to higher
management levels.As a result, the steamroller of de-
mand for functions always takes precedence over sta-
bility and robustness. In XP, the releases come fre-
quently and with small but stable increments in
function.

SIMPLE DESIGN

Complexity appeals to people for various reasons.
Designers like complexity because it tickles and chal-
lenges the mind. Software-development teams like
it, once they create it, because it validates their sense
of exclusivity to outsiders. And misguided mangers
often like it because it increases the probability that
their development organization will be large and
long-lived, because complex designs require com-
plex test tools, larger development teams, and con-

stant efforts at improvement. XP emphasizes sim-
ple design, iteratively improved and refined.

PLANNING GAME

Planning a project without involving the software
designers and the business people together sets the
designers against the specification and schedule,
rather than getting their commitment to the spec
and schedule. If the project leader alone does the
planning, then the team feels that the leader has sold
out or is part of management rather than part of the
team. Finally, if the schedule is unrealistic, the team
loses motivation to perform.

In the past, managers have consistently delivered
the message to development teams that they are in-
competent at estimating and controlling a project.
Teams responded by meeting those low expecta-
tions. Intelligent people can learn to estimate effort
levels when they have useful feedback and opportu-
nities to practice. XP asks the team to estimate its
work and improve its estimates at each iteration.

WHOLE TEAM

Teams of competent people welcome leadership.
But prima-donna technologists who lead projects
tend to measure each person on the team by one cri-
terion: Is this person smart enough to appreciate my
brilliant design? Managers have promoted these pri-
ma donnas into project leadership and even into
management without verifying their ability to lead.
Real leadership inspires great performance by re-
sponding to each team member in the way that
brings out the best in him or her.

First-level managers usually have to take on the
role of keepers of the requirements. When require-
ments change, as they always do, fearful managers

If extreme programming
is good management, 
what were we doing before?

designfeature By John V Levy, PhD, Certified Management Consultant



designfeature Extreme programming

82 edn | November 13, 2003 www.edn.com

have often failed to communicate the
changes to the development team, be-
cause they believe it will delay the next re-
lease or the whole project. They got away
with this tactic because upper manage-
ment rewarded first-level managers for
fulfilling the original—often obsolete—
project plan. This tactic was a triumph of
good execution over good sense. In XP,
customers and product managers are
part of the team; they share responsibil-
ity for the scope of the project and can
take advantage of emerging opportuni-
ties to develop the product as customer
requirements change.

TESTING

Separating the testing function from
development puts test engineers in a low-
er status position. Separating quality as-
surance from development leads design-
ers to believe that someone outside the
design organization can ensure quality.
Practitioners of XP develop test suites as
the definition of project milestones by in-
cluding customer-level functional tests in
each test suite. This reaction is an effec-
tive countermeasure to impossible-to-
meet or unclear milestones.

COLLECTIVE OWNERSHIP

When managers promote and reward
technology gurus who can’t lead, they re-
duce buy-in by the other team members.
This approach works against team com-
mitment to the project goals. Current, ac-
cessible documentation is key to product
update and maintenance, especially
when team membership is changing and
project requirements are evolving. Most
designers resist documenting their de-
signs because the task is larger than nec-
essary. When the team believes in the
whole process of design, delivery, and
maintenance, then it will find ways to
create the necessary documents.

Senior developers should not be the
only ones to mentor junior developers,
because such a practice reinforces prima-
donna leadership, which ultimately un-
dermines the team’s effectiveness. The
well-functioning XP team accepts own-
ership for the product life cycle and finds
ways to engage every team member in the
process, including training and develop-
ment of junior team members.

REFACTORING

Code seems fragile, so designers tend
to freeze it as soon as they have evidence

that it is working within spec. From this
point of view, unchanging code is stable
code. Modern software developers un-
derstand that, in the face of evolving cus-
tomer requirements, evolving hardware
platforms, and evolving network stan-
dards, frozen code rapidly becomes ob-
solete code. In XP, the countermeasure to
change is having a clear understanding of
the required functions and features, eyes-
open awareness of the alternatives avail-
able for implementing them, and an abil-
ity to keep making trade-offs among
performance, size, speed of development,
and cost of development.

Refactoring in XP means constantly
replacing code that works with new code
that works better, works faster, or costs
less to release. Once a team accepts this
view, it can rapidly prototype without re-
gard for performance, experiment with
alternative implementations for speed,
and improve memory requirements or
network interactions. It ends up with
much better products that cost less to
maintain and to extend.

PAIR PROGRAMMING

New team members need to learn in a
work context. In XP, they grow quickly
under the guidance of the whole team be-
cause there is at least one mentor for each
member. Pair programming helps the
junior member of the pair learn how the
senior member thinks, and the senior
member of the pair often learns just as
much by having to explain his or her
thinking. Senior-senior pairing is even
better. It provides the beneficial effects of
code review, design review, and peer
pressure for maintaining good coding
discipline. Team members, especially pri-
ma donnas, often resist pair program-
ming, but more and more evidence is
demonstrating that the practice is effec-
tive. Pair programming has the potential
to produce better results than leaving the
hard projects to individual “wizards”that
many people thought were the key to
success.

CODING STANDARD

In old-style software management,
managers left all decisions about coding
style and documentation to the devel-
opers, because the managers had no idea
how to specify what they wanted. Devel-
opers typically did not establish their
own coding standards, because they re-
spected their differences, and they often

came from different backgrounds. Later,
managers imposed coding standards
based on something acquired from a
vendor or from the quality-assurance
department. These standards, superfi-
cially rational, caused resistance from the
developers because they were not based
on the developers’ needs. Compliance
came at the cost of creativity and a re-
duced designer commitment to code
quality.

Coding standards are beneficial once
the development team itself takes re-
sponsibility for the usefulness and effec-
tiveness of the standard. Coding stan-
dards improve readability, portability,
and quality when the team meticulous-
ly follows those standards. In XP, the
team sees itself as responsible for en-
forcing the standards and for changing
them when they get in the way of effi-
ciency and effectiveness.

SUSTAINABLE PACE

Vendors used to plan projects without
the developers’ participation. They used
this top-down approach to estimating
schedules and budgets without buy-in
by the people who were going to do the
work. Upper-level managers often insist
on shortening project schedules without
reducing requirements. As a result, a
generation of software managers lived in
a fantasy world where the real schedule
had to be hidden while the function was
frozen. The result was that no one trust-
ed software-development schedules.

Those organizations depended on
having software developers work 80 to
100 hours per week during the crunch to
complete undermanned or oversched-
uled software projects. And the crunch
was the standard state of existence.
Working tired, the team made even more
mistakes. This approach burned out the
teams, burned out the managers, and de-
stroyed credibility with everyone.

It takes a long time to create an envi-
ronment in which top management be-
lieves software-schedule estimates. In
XP, development teams create schedules
and meet them in the presence of chang-
ing requirements. The manager’s job is
to defend the team’s right to have a rea-
sonable workweek. No one can sustain
a 100-hour-per-week pace without los-
ing efficiency and creativity. It is time for
software teams to get a life and demon-
strate that they can also consistently
meet projected schedules. Management’s



designfeature Extreme programming

84 edn | November 13, 2003 www.edn.com

job is to set up the conditions for this
demonstration.

Designers used to assume that they
could in a few hours or days build, inte-
grate, and test a base level of software.
This belief is unrealistic when few tools
exist for automating the process. Inte-
gration and testing often require more
than half of the project schedule, espe-
cially when no consistent module-level
testing exists.

In XP, continuous integration and test-
ing are antidotes to taking big schedule
hits whenever a team builds a system.
When the team knows that integration
must occur every day or several times a
day, then it will buy or build the tools to
make the process easy to perform. When
it is easy to detect which module is caus-
ing a failure during daily integration and
testing, no big schedule surprises lurk at
the next milestone.

Software management must evolve.
Changing management thinking is the
hard part of introducing effective devel-
opment processes, such as XP. By study-
ing what managers believed in the past, to-

day’s managers prepare themselves for this
change in thinking. Enjoy the challenge.�

Author’s biography
John V Levy has been a management con-
sultant since 1982. His practice focuses on
product development with special atten-
tion to software development inside hard-
ware-development organizations. He has
held management positions with Quan-
tum Corp, Apple Computer, Tandem
Computers, and Digital Equipment Corp.
He earned a doctorate in computer science
from Stanford University (Stanford, CA)
and holds bachelor’s and master’s degrees
in engineering from Cornell University
(Ithaca, NY) and California Institute of
Technology (Pasadena), respectively. His
Web site is at http://johnlevyconsulting.
com, and you can reach him at 1-415 663-
1818 or info@johnlevyconsulting.com.

Acknowledgments
Thanks to Kent Beck, Peter Christy, Tom
Rolander, Jean-Dominique Savelli, Kevin
Smith, and Mike Williams for their com-
ments and suggestions.




