

Computerworld

You may retrieve this story by entering QuickLink# 41389

Return to story

12 Things to Ask Your Software Team

By John V. Levy, John Levy Consulting LLC, and Geoff Caras, The Igneous Group
SEPTEMBER 22, 2003

 Below are 12 questions that you should ask the people who are responsible for developing software
for your company. Along with helping the development team's organization and preparation, these
questions may help higher-level executives who aren't familiar with software development learn a few
things about the process.

As you listen to the answers, watch for signs that your questions were unexpected or considered
unreasonable or challenging by the managers who own the project. If you do see these signs, more
communication is required to ensure that everyone knows that these questions don't concern
arbitrary demands, but are fundamental to the business and in line with company strategy.

1. Who are the intended users of the software?

Without knowing who is going to use the software, the development team has no criteria for dealing
with user interactions. Are they consumers, technicians, grocery store bookkeepers, managers? How
technically proficient are they? How much time will they spend interacting with the software each
day/week/month? Have they used systems like this before? Will this system be a disruptive factor in
their current jobs? Do they have to understand the error messages or correct the database contents?

If the development team doesn't know the answers to these questions, go back to your product
definition phase and do some more work on defining the user.

2. What are the functional objectives of the project?

There must be a few key objectives -- functions that the software will perform -- that are foremost in
the developers' minds during the project. There may be a long list of features, functions and
capabilities, but they should be prioritized so that the team can concentrate on the key ones. If the
leaders of the project can't list the top three functions without reference to paper, then they aren't in
tune with what the project is all about.

3. What is the architecture of the software you are building?

Similarly, the project leaders should be able to draw a diagram of the top-level structure of the
software. This is a map of how the major modules fit together. Each major module should have a
function that is clear and related to the overall functional objectives of the project. Connections
between modules represent communication -- places where signals (information about what to do or
when to do it) and data structures (packaged information) are exchanged.

There shouldn't be a rat's nest of lines connecting these major modules, nor should there be simply a
page of unconnected boxes. Check to see whether the team understands the architecture, or at least
the function of the component they are working on.

10/29/03 11:06 AM12 Things to Ask Your Software Team - Computerworld

Page 1 of 4http://www.computerworld.com/printthis/2003/0,4814,85009,00.html

4. Which modules need to change if there is a change of processor?

Below the top-level architecture, there should be a diagram of all modules in the system. When the
software system is moved into a different computing environment from the one that's initially
envisioned, some of these modules will have to change. Why should you care? Because change to
underlying hardware happens regularly for long-lived software. And you expect this software to last
for a while, right?

5. Which modules have to change when you add new features?

Being able to explain which modules are involved in the implementation of each feature is a good
indicator of familiarity with the programs. Also, if you find that most suggested additional features are
going to cause change to nearly all of the modules, then you have an architecture that isn't very
modular. Modular design contains the processor, system and data-specific functions in relatively few
places. It's a good thing to encourage.

For example, be sure that the designers have put processor-dependent things like byte ordering,
numeric precision and pointer math in logically isolated modules in order to make these fundamental
definitions easier to change when the processor is changed.

Check on the feature request process. Is there a working document for feature development that
makes it clear how a feature change in one area of the system may affect other areas? Is the
document up to date?

6. What language are you using to implement the software?

You don't need to know a lot about computer languages to know that there are relatively few well-
supported ones to choose from. Possible languages include C, C++, Java, Visual Basic and SQL.
This is basic information, of course, but there are important issues related to the choice of language.

Ask the name of the vendor that supplies the language compiler and debugging tools. Ask how long
it's been in business and how many users it currently supports. Ask the team how long they have
been using these tools from this vendor and how good the support has been. Remember, you're going
to be depending on the tools for as long as you are supporting the customers of this software.

Check to see if there is a system architect involved in the decision process. Are there adequate tools
to make this project manageable? Have they checked references from the tool vendors?

7. How large do you expect the programs to be?

There are several reasons for estimating code size. It helps you to anticipate the effort involved in
generating the code. It also gives a first estimate of the size of the software package you will be
shipping or using, and that may affect the choice of medium you use for distribution. Finally, size
corresponds roughly with complexity, so the larger the programs, the more interactions and features
there will be to test and debug.

Don't automatically ask the programming staff to minimize code size,
because that could cause them to spend too much time on that single issue.
On the other hand, if they have no idea how big the code will be, they
probably don't yet understand the requirements and specifications, or they
haven't chosen a language for implementation yet.

The best approach is to make it work first, and then make it better. Trying to
optimize during detailed development and design leads to designs that are
"too smart" for their own good.

There are many things that can be optimized, such as debugability, memory
space and fast response time. If someone is asking for one of these
optimizations, be sure there is someone on the team who knows how to do
it.

8. How will you know when the software is ready for release?

This is not the question, "Is the software ready for release?" This is a Geoff Caras is co-founder and CEO

10/29/03 11:06 AM12 Things to Ask Your Software Team - Computerworld

Page 2 of 4http://www.computerworld.com/printthis/2003/0,4814,85009,00.html

question to your staff asking what the criteria are for determining that the
software is ready for release. It is extremely important that you get the
project managers to state these criteria clearly and in advance, because
when the pressure comes to ship the product, it will be tempting to ignore
some or all of the criteria. Make sure that some of the criteria include actual
use of the product by people who aren't part of the development team, and
resolve all of the questions and problems that came up during that use.

This should have been clearly outlined in the specification stage. Who
makes this determination? How will you be able to tell if the functional
objectives are met? What are the metrics used to evaluate/measure these
objectives? Who handles this and how often?

9. When can we try out the user interface?

If the user interface isn't available for testing well before the completion of the rest of the functions of
the program, there will be too little time to work on redesign of the parts that aren't easy to use. Be
sure that the project schedule shows user interface testing -- by users outside the development team
-- earlier than halfway through the proposed schedule. Better yet, include demonstration of the user
interface as part of the first review of the product specifications.

The highest priority should be the parts of the product development, such as user interface, that are
most likely to need rethinking. This will help to ensure that the team will have enough time in the rest
of the development cycle.

10. Which features can we try out tomorrow?

This question is aimed at finding out what's actually implemented and debugged in the software
package. Often a status report will say that x, y and z are completed, but you can't use those items
because another portion of the package is still incomplete. Try insisting that the project reporting
include only demonstrable working features in the "completed" column. Then you can probe further
by asking what tests those features have and have not passed.

Make sure that your team builds "stubs" -- modules that do nothing now, but are place-holders for
future functionality -- so the whole system can be put together frequently for testing.

11. When can we try out the final feature set?

Project teams will often leave implementation of the most difficult features to the last minute.
Therefore, the project isn't 50% complete when 50% of the features have been implemented. In
general, you can expect that the project is about 50% complete when all of the features have been
implemented. The rest of the project time will be taken up by debugging those features and the
interactions between program modules. Therefore, the answer to this question may give you an
indication of when the project will be approaching the halfway mark.

12. What remains to be done?

The project team will continually discover additional modules, subfunctions and rework that need to
be taken care of as they develop the product. This is natural. Therefore, each time that you ask,
"What have you completed?" you'll get a list of things that are done, but you won't find out what's
been added to the list since the last report. So ask this question, instead, and make your own
projection of completion based on the historical rate of increase in things to be done.

Be sure that your managers are using project management tools on a regular basis -- updating the
information weekly or more frequently. Check that they are using the tools to let team members know
what has to be done by when.

Finally, as you ask these 12 questions and deal with the resulting issues and concerns, remember
that software development teams function better when they are exposed to the business issues
associated with a project and that there are nontechnical issues that are affected by the schedule,
budget and other factors. Keeping everyone on the same page helps to ensure a successful project.

Source: Computerworld

of , an Internet
technology and consulting service
company. He has over 23 years of
experience in technology
management and speaks at
technology and business events,
workshops and forums. He has a
degree in earth sciences from the
University of California, Santa Cruz.

The Igneous Group Inc.

John V. Levy is principal of
. He has a Ph.D. in

computer science from Stanford
University and an M.S. in electrical
engineering from the California
Institute of Technology. He is an
industry speaker and author
specializing in software development
management.

John Levy
Consulting LLC

10/29/03 11:06 AM12 Things to Ask Your Software Team - Computerworld

Page 3 of 4http://www.computerworld.com/printthis/2003/0,4814,85009,00.html

Sponsored Links

IBM eServer p615: thousands of UNIX and Linux apps.
Register Today: e-Security online product demonstration
Remedy Free White Paper - Minimize risk through Change Management Solutions.
eService Best Practices... Free RightNow White Paper
Webcast: Learn How to Webify Peoplesoft 8 and Win...
Free Webcast Nov 5! Improve the value of IT through alignment with your
Tips to create an “empowered environment” for your branch or small office
Nokia - IDC Executive Brief - Email Risk Management: A Growing Concern for Enterprise
Click for a free report rating Oracle Collaboration Suite is #1 for TCO
Revolutionize the Way Your Branch and Small Offices Conduct Business
Take your Mainframe and AS/400 applications to the web fast!
Unicenter® Infrastructure Management Software From CA
Compare Sprint to AT&T Wireless Sprint comes out on top
Subscribe Now! - 6 Complimentary Storage Strategy Newsletters from ADIC featuring Gartner Analysis
SuperAIT A Tape Technology for the 21st Century
Microsoft® Windows® Server 2003 Free Evaluation Kit
Microsoft: Get the latest news on Windows Server 2003 across all IDG sites
AMD: Introduces the AMD Opteron ™ Processor

About Us Contacts Editorial Calendar Help Desk Advertise Privacy Policy

 Copyright © 2003 Computerworld Inc. All rights reserved. Reproduction in whole or in part in any form or medium without express of Computerworld Inc. is prohibited. Computerworld and
Computerworld.com and the respective logos are trademarks of International Data Group Inc.

written permission

10/29/03 11:06 AM12 Things to Ask Your Software Team - Computerworld

Page 4 of 4http://www.computerworld.com/printthis/2003/0,4814,85009,00.html

